1
|
Synthesis and characterization of bio-based quaternary ammonium salts with gibberellate or l-tryptophanate anion. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02672-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractNumerous biologically active acids can be transformed into an ionic form in a facile way and combined with appropriate quaternary ammonium cation to improve their application properties or biological activity. This study describes the synthesis of new quaternary ammonium salts with anions of gibberellic acid, a common plant growth regulator from the gibberellin group, or l-tryptophan, an important precursor of auxin biosynthesis. The surface-active tetrapentylammonium ion and natural substances such as acetylcholine, choline, and quinine were the sources of cations. Novel salts of gibberellic acid and l-tryptophan were obtained with high yields exceeding 97% as a result of the metathesis reaction or the neutralization of quaternary ammonium hydroxides. Phase transition temperatures, thermal and chemical stability, and solubility in solvents with different polarities were determined for all obtained salts. On the basis of studies regarding the influence of synthesized salts on the post-harvest longevity and quality of leaves of Convallaria majalis, it was established that the biological activity of the natural plant regulators in most cases was maintained. Therefore, it can be concluded that the conversion of the active substance into the form of a quaternary ammonium salt results in obtaining novel forms of plant growth regulators with favourable physicochemical properties while maintaining the efficacy of the biological active ingredients.
Graphic abstract
Collapse
|
2
|
Kemmegne-Mbouguen JC, Tchoumi FP, Mouafo-Tchinda E, Langmi HW, Bambalaza SE, Musyoka NM, Kowenje C, Mokaya R. Simultaneous quantification of acetaminophen and tryptophan using a composite graphene foam/Zr-MOF film modified electrode. NEW J CHEM 2020. [DOI: 10.1039/d0nj02374d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Derived synergistic effect of a composite results in high selectivity and sensitivity with low detection limits and wide concentration ranges.
Collapse
Affiliation(s)
| | - Firmin Parfait Tchoumi
- Laboratoire de Chimie Physique et Analytique Appliquée
- Faculté des Sciences
- Université de Yaoundé I
- Yaoundé
- Cameroon
| | - Edwige Mouafo-Tchinda
- Laboratoire de Chimie Physique et Analytique Appliquée
- Faculté des Sciences
- Université de Yaoundé I
- Yaoundé
- Cameroon
| | | | - Sonwabo E. Bambalaza
- Centre for Nanostructures and Advanced Materials (CeNAM)
- Chemicals Cluster
- Council for Scientific and Industrial Research (CSIR)
- Brummeria
- South Africa
| | - Nicholas M. Musyoka
- Centre for Nanostructures and Advanced Materials (CeNAM)
- Chemicals Cluster
- Council for Scientific and Industrial Research (CSIR)
- Brummeria
- South Africa
| | | | - Robert Mokaya
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham
- UK
| |
Collapse
|
3
|
Quantitation of Four Tryptophan-Related Impurities in Compound Amino Acid Injection-18 AA by HPLC–PDA. Chromatographia 2019. [DOI: 10.1007/s10337-019-03847-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
5-Hydroxytryptophan (5-HTP)-induced intracellular syndrome in mouse non-neural embryonic cells is associated with inhibited proliferation and cell death. Neuropharmacology 2019; 195:107862. [PMID: 31778690 DOI: 10.1016/j.neuropharm.2019.107862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/11/2019] [Accepted: 11/23/2019] [Indexed: 11/21/2022]
Abstract
Biogenic monoamines are involved in the regulation of various processes in both neural and non-neural cells during development. The present study aimed to identify the regulatory effects of serotonin (5-HT) and its precursors (l-tryptophan and 5-hydroxytryptophan, 5-HTP) on proliferation and cell death in mouse embryonic stem cells (ESCs) and embryonic fibroblasts (MEFs and 3T3 cells). The concentration-dependent cell growth and viability of the ESCs, MEFs and 3T3 cells were analyzed after treatment with l-tryptophan, 5-HTP and 5-HT in the concentration range 10-6 - 10-2 M. Treating the cells with 5-HTP, but not l-tryptophan and 5-HT, induced reversible toxic effects. 5-HTP treatment (10-3 - 10-2 M) significantly inhibited cell proliferation through blocking of the S-phase of the cell cycle and increasing apoptotic and necrotic cell death. Moreover, 5-HTP treatment stimulated a reorganization of the actin and tubulin networks and upregulated the gene expression of enzymes involved in 5-HT synthesis and metabolism: aromatic amino acid decarboxylase (Aadc/Ddc), monoamine oxidase A (Maoa), and transglutaminase 2 (Tgm2). HPLC analysis found no changes in the intracellular and extracellular levels of 5-HT after 5-HTP treatment, but a significant increase of intracellular 5-HTP levels. However, inhibition of AADC with NSD-1015 or transglutaminase with cystamine prevented 5-HTP-induced cell growth impairment and attenuated the toxic effects of 5-HTP treatment. Our results suggest that 5-HTP can induce toxic effects through cell cycle arrest and cell death in embryonic stem and somatic cells by enhancing the levels of 5-HT-mediated protein modifications. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
|
5
|
Shcherbik N, Pestov DG. The Impact of Oxidative Stress on Ribosomes: From Injury to Regulation. Cells 2019; 8:cells8111379. [PMID: 31684095 PMCID: PMC6912279 DOI: 10.3390/cells8111379] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
The ribosome is a complex ribonucleoprotein-based molecular machine that orchestrates protein synthesis in the cell. Both ribosomal RNA and ribosomal proteins can be chemically modified by reactive oxygen species, which may alter the ribosome′s functions or cause a complete loss of functionality. The oxidative damage that ribosomes accumulate during their lifespan in a cell may lead to reduced or faulty translation and contribute to various pathologies. However, remarkably little is known about the biological consequences of oxidative damage to the ribosome. Here, we provide a concise summary of the known types of changes induced by reactive oxygen species in rRNA and ribosomal proteins and discuss the existing experimental evidence of how these modifications may affect ribosome dynamics and function. We emphasize the special role that redox-active transition metals, such as iron, play in ribosome homeostasis and stability. We also discuss the hypothesis that redox-mediated ribosome modifications may contribute to adaptive cellular responses to stress.
Collapse
Affiliation(s)
- Natalia Shcherbik
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| |
Collapse
|
6
|
Retnoningrum DS, Arumsari S, Desi ES, Tandra YS, Artarini A, Ismaya WT. Leu169Trp substitution in MnSOD from Staphylococcus equorum created an active new form of similar resistance to UVC irradiation. Enzyme Microb Technol 2018; 118:13-19. [DOI: 10.1016/j.enzmictec.2018.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/11/2018] [Accepted: 06/27/2018] [Indexed: 11/25/2022]
|
7
|
Characterization of N-Acetyl-Tryptophan Degradation in Protein Therapeutic Formulations. J Pharm Sci 2017; 106:3499-3506. [DOI: 10.1016/j.xphs.2017.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022]
|
8
|
Marques EF, Medeiros MHG, Di Mascio P. Lysozyme oxidation by singlet molecular oxygen: Peptide characterization using [ 18 O]-labeling oxygen and nLC-MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:739-751. [PMID: 28801970 DOI: 10.1002/jms.3983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/24/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
Singlet molecular oxygen (1 O2 ) is generated in biological systems and reacts with different biomolecules. Proteins are a major target for 1 O2 , and His, Tyr, Met, Cys, and Trp are oxidized at physiological pH. In the present study, the modification of lysozyme protein by 1 O2 was investigated using mass spectrometry approaches. The experimental findings showed methionine, histidine, and tryptophan oxidation. The experiments were achieved using [18 O]-labeled 1 O2 released from thermolabile endoperoxides in association with nano-scale liquid chromatography coupled to electrospray ionization mass spectrometry. The structural characterization by nLC-MS/MS of the amino acids in the tryptic peptides of the proteins showed addition of [18 O]-labeling atoms in different amino acids.
Collapse
Affiliation(s)
- Emerson Finco Marques
- Departamento de Bioquímica and Departamento de Química Fundamental Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marisa H G Medeiros
- Departamento de Bioquímica and Departamento de Química Fundamental Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica and Departamento de Química Fundamental Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Zhou B, Zu L, Chen Y, Zheng X, Wang Y, Pan B, Dong M, Zhou E, Zhao M, Zhang Y, Zheng L, Gao W. Myeloperoxidase-oxidized high density lipoprotein impairs atherosclerotic plaque stability by inhibiting smooth muscle cell migration. Lipids Health Dis 2017; 16:3. [PMID: 28069011 PMCID: PMC5223295 DOI: 10.1186/s12944-016-0388-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/08/2016] [Indexed: 12/30/2022] Open
Abstract
Background High density lipoprotein (HDL) has been proved to be a protective factor for coronary heart disease. Notably, HDL in atherosclerotic plaques can be nitrated (NO2-oxHDL) and chlorinated (Cl-oxHDL) by myeloperoxidase (MPO), likely compromising its cardiovascular protective effects. Method Here we determined the effects of NO2-oxHDL and Cl-oxHDL on SMC migration using wound healing and transwell assays, proliferation using MTT and BrdU assays, and apoptosis using Annexin-V assay in vitro, as well as on atherosclerotic plaque stability in vivo using a coratid artery collar implantation mice model. Results Our results showed that native HDL promoted SMC proliferation and migration, whereas NO2-oxHDL and Cl-oxHDL inhibited SMC migration and reduced capacity of stimulating SMC proliferation as well as migration, respectively. OxHDL had no significant influence on SMC apoptosis. In addition, we found that ERK1/2-phosphorylation was significantly lower when SMCs were incubated with NO2-oxHDL and Cl-oxHDL. Furthermore, transwell experiments showed that differences between native HDL, NO2-oxHDL and Cl-oxHDL was abolished after PD98059 (MAPK kinase inhibitor) treatment. In aortic SMCs from scavenger receptor BI (SR-BI) deficient mice, differences between migration of native HDL, NO2-oxHDL and Cl-oxHDL treated SMCs vanished, indicating SR-BI’s possible role in HDL-associated SMC migration. Importantly, NO2-oxHDL and Cl-oxHDL induced neointima formation and reduced SMC positive staining cells in atherosclerotic plaque, resulting in elevated vulnerable index of atherosclerotic plaque. Conclusion These findings implicate MPO-catalyzed oxidization of HDL may contribute to atherosclerotic plaque instability by inhibiting SMC proliferation and migration through MAPK-ERK pathway which was dependent on SR-BI. Electronic supplementary material The online version of this article (doi:10.1186/s12944-016-0388-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Boda Zhou
- Department of Cardiology, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Lingyun Zu
- Department of Cardiology, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yong Chen
- Department of Neurology, People's Hospital of Deyang City, Deyang, 618000, China
| | - Xilong Zheng
- Department Biochemistry & Molecular Biology, the University of Calgary, Alberta, Canada
| | - Yuhui Wang
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Min Dong
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Enchen Zhou
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Youyi Zhang
- Department of Cardiology, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Wei Gao
- Department of Cardiology, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
10
|
Scuderi D, Ignasiak MT, Serfaty X, de Oliveira P, Houée Levin C. Tandem mass spectrometry and infrared spectroscopy as a tool to identify peptide oxidized residues. Phys Chem Chem Phys 2016; 17:25998-6007. [PMID: 26292724 DOI: 10.1039/c5cp03223g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The final products obtained by the oxidation of small model peptides containing the thioether function, either methionine or S-methyl cysteine, have been characterized by tandem mass spectrometry and IR Multiple Photon Dissociation (IRMPD) spectroscopy. The modified positions have been clearly identified by the CID-MS(2) fragmentation mass spectra with or without loss of sulfenic acid, as well as by the vibrational signature of the sulfoxide bond at around 1000 cm(-1). The oxidation of the thioether function did not lead to the same products in these model peptides. The sulfoxide and sulfone (to a lesser extent) have been clearly identified as final products of the oxidation of S-methyl-glutathione (GS-Me). Decarboxylation or hydrogen loss are the major oxidation pathways in GS-Me, while they have not been observed in tryptophan-methionine and methionine-tryptophan (Trp-Met and Met-Trp). Interestingly, tryptophan is oxidized in the dipeptide Met-Trp, while that is not the case in the reverse sequence (Trp-Met).
Collapse
Affiliation(s)
- D Scuderi
- Laboratoire de Chimie Physique, Université Paris Sud, 91405 Orsay Cedex, France.
| | | | | | | | | |
Collapse
|
11
|
Polakof S, Dardevet D, Lyan B, Mosoni L, Gatineau E, Martin JF, Pujos-Guillot E, Mazur A, Comte B. Time Course of Molecular and Metabolic Events in the Development of Insulin Resistance in Fructose-Fed Rats. J Proteome Res 2016; 15:1862-74. [PMID: 27115730 DOI: 10.1021/acs.jproteome.6b00043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We aimed to determine the time-course of metabolic changes related to the early onset of insulin resistance (IR), trying to evidence breaking points preceding the appearance of the clinical IR phenotype. The model chosen was the fructose (FRU)-fed rat compared to controls fed with starch. We focused on the hepatic metabolism after 0, 5, 12, 30, or 45 days of FRU intake. The hepatic molecular metabolic changes followed indeed a multistep trajectory rather than a continuous progression. After 5 d of FRU feeding, we observed deep modifications in the hepatic metabolism, driven by the induction of lipogenic genes and important glycogen depletion. Thereafter, a steady-state period between days 12 and 30 was observed, characterized by a switch from carbohydrate to lipid utilization at the hepatic level and increased insulin levels aiming at alleviating lipid accumulation and hyperglycemia, respectively. The FRU-fed animals were only clinically IR at day 45 (altered homeostasis model assessment-estimated insulin resistance and muscle glucose transport). Furthermore, the urine metabolome revealed even earlier metabolic trajectory changes that precede the hepatic alterations. We identified several candidate metabolites linked to the tryptophan-nicotinamide metabolism and the installation of fasting hyperglycemia that suggest a role of this metabolic pathway on the development of the IR phenotype in the FRU-fed rats.
Collapse
Affiliation(s)
- Sergio Polakof
- Clermont Université , Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.,INRA, UMR 1019, UNH, CRNH Auvergne , F-63000 Clermont-Ferrand, France
| | - Dominique Dardevet
- Clermont Université , Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.,INRA, UMR 1019, UNH, CRNH Auvergne , F-63000 Clermont-Ferrand, France
| | - Bernard Lyan
- Clermont Université , Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.,INRA, UMR 1019, UNH, CRNH Auvergne , F-63000 Clermont-Ferrand, France.,INRA, UMR 1019, Plateforme d'Exploration du Métabolisme, UNH , F-63000 Clermont-Ferrand, France
| | - Laurent Mosoni
- Clermont Université , Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.,INRA, UMR 1019, UNH, CRNH Auvergne , F-63000 Clermont-Ferrand, France
| | - Eva Gatineau
- Clermont Université , Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.,INRA, UMR 1019, UNH, CRNH Auvergne , F-63000 Clermont-Ferrand, France
| | - Jean-François Martin
- Clermont Université , Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.,INRA, UMR 1019, UNH, CRNH Auvergne , F-63000 Clermont-Ferrand, France.,INRA, UMR 1019, Plateforme d'Exploration du Métabolisme, UNH , F-63000 Clermont-Ferrand, France
| | - Estelle Pujos-Guillot
- Clermont Université , Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.,INRA, UMR 1019, UNH, CRNH Auvergne , F-63000 Clermont-Ferrand, France.,INRA, UMR 1019, Plateforme d'Exploration du Métabolisme, UNH , F-63000 Clermont-Ferrand, France
| | - Andrzej Mazur
- Clermont Université , Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.,INRA, UMR 1019, UNH, CRNH Auvergne , F-63000 Clermont-Ferrand, France
| | - Blandine Comte
- Clermont Université , Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France.,INRA, UMR 1019, UNH, CRNH Auvergne , F-63000 Clermont-Ferrand, France
| |
Collapse
|
12
|
Mast C, Lyan B, Joly C, Centeno D, Giacomoni F, Martin JF, Mosoni L, Dardevet D, Pujos-Guillot E, Papet I. Assessment of protein modifications in liver of rats under chronic treatment with paracetamol (acetaminophen) using two complementary mass spectrometry-based metabolomic approaches. J Proteomics 2015; 120:194-203. [DOI: 10.1016/j.jprot.2015.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/27/2015] [Accepted: 03/15/2015] [Indexed: 01/22/2023]
|
13
|
Anjum NA, Sofo A, Scopa A, Roychoudhury A, Gill SS, Iqbal M, Lukatkin AS, Pereira E, Duarte AC, Ahmad I. Lipids and proteins--major targets of oxidative modifications in abiotic stressed plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4099-121. [PMID: 25471723 DOI: 10.1007/s11356-014-3917-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/24/2014] [Indexed: 05/18/2023]
Abstract
Stress factors provoke enhanced production of reactive oxygen species (ROS) in plants. ROS that escape antioxidant-mediated scavenging/detoxification react with biomolecules such as cellular lipids and proteins and cause irreversible damage to the structure of these molecules, initiate their oxidation, and subsequently inactivate key cellular functions. The lipid- and protein-oxidation products are considered as the significant oxidative stress biomarkers in stressed plants. Also, there exists an abundance of information on the abiotic stress-mediated elevations in the generation of ROS, and the modulation of lipid and protein oxidation in abiotic stressed plants. However, the available literature reflects a wide information gap on the mechanisms underlying lipid- and protein-oxidation processes, major techniques for the determination of lipid- and protein-oxidation products, and on critical cross-talks among these aspects. Based on recent reports, this article (a) introduces ROS and highlights their relationship with abiotic stress-caused consequences in crop plants, (b) examines critically the various physiological/biochemical aspects of oxidative damage to lipids (membrane lipids) and proteins in stressed crop plants, (c) summarizes the principles of current technologies used to evaluate the extent of lipid and protein oxidation, (d) synthesizes major outcomes of studies on lipid and protein oxidation in plants under abiotic stress, and finally, (e) considers a brief cross-talk on the ROS-accrued lipid and protein oxidation, pointing to the aspects unexplored so far.
Collapse
Affiliation(s)
- Naser A Anjum
- CESAM-Centre for Environmental & Marine Studies and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Li W, Kerwin JL, Schiel J, Formolo T, Davis D, Mahan A, Benchaar SA. Structural Elucidation of Post-Translational Modifications in Monoclonal Antibodies. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wenzhou Li
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - James L. Kerwin
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - John Schiel
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Trina Formolo
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Darryl Davis
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Andrew Mahan
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Sabrina A. Benchaar
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
15
|
Moore BL, Lu A, Moatsou D, O’Reilly RK. The effect of polymer nanostructure on diffusion of small molecules using tryptophan as a FRET probe. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2014.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Bonifay V, Barrett TJ, Pattison DI, Davies MJ, Hawkins CL, Ashby MT. Tryptophan oxidation in proteins exposed to thiocyanate-derived oxidants. Arch Biochem Biophys 2014; 564:1-11. [PMID: 25172223 DOI: 10.1016/j.abb.2014.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/02/2014] [Accepted: 08/18/2014] [Indexed: 01/15/2023]
Abstract
Human defensive peroxidases, including lactoperoxidase (LPO) and myeloperoxidase (MPO), are capable of catalyzing the oxidation of halides (X(-)) by H2O2 to give hypohalous acids (HOX) for the purpose of cellular defense. Substrate selectivity depends upon the relative abundance of the halides, but the pseudo-halide thiocyanate (SCN(-)) is a major substrate, and sometimes the exclusive substrate, of all defensive peroxidases in most physiologic fluids. The resulting hypothiocyanous acid (HOSCN) has been implicated in cellular damage via thiol oxidation. While thiols are believed to be the primary target of HOSCN in vivo, Trp residues have also been implicated as targets for HOSCN. However, the mechanism involved in HOSCN-mediated Trp oxidation was not established. Trp residues in proteins appeared to be susceptible to oxidation by HOSCN, whereas free Trp and Trp residues in small peptides were found to be unreactive. We show that HOSCN-induced Trp oxidation is dependent on pH, with oxidation of free Trp, and Trp-containing peptides observed when the pH is below 2. These conditions mimic those employed previously to precipitate proteins after treatment with HOSCN, which accounts for the discrepancy in the results reported for proteins versus free Trp and small peptides. The reactant in these cases may be thiocyanogen ((SCN)2), which is produced by comproportionation of HOSCN and SCN(-) at low pH. Reaction of thiocyanate-derived oxidants with protein Trp residues at low pH results in the formation of a number of oxidation products, including mono- and di-oxygenated derivatives, which are also formed with other hypohalous acids. Our data suggest that significant modification of Trp by HOSCN in vivo is likely to have limited biological relevance.
Collapse
Affiliation(s)
- Vincent Bonifay
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Tessa J Barrett
- Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - David I Pattison
- Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Michael J Davies
- Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Clare L Hawkins
- Heart Research Institute, 7 Eliza St, Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Michael T Ashby
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
17
|
Prudent M, Sonego G, Abonnenc M, Tissot JD, Lion N. LC-MS/MS analysis and comparison of oxidative damages on peptides induced by pathogen reduction technologies for platelets. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:651-661. [PMID: 24470194 DOI: 10.1007/s13361-013-0813-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/21/2013] [Accepted: 12/13/2013] [Indexed: 06/03/2023]
Abstract
Pathogen reduction technologies (PRT) are photochemical processes that use a combination of photosensitizers and UV-light to inactivate pathogens in platelet concentrates (PCs), a blood-derived product used to prevent hemorrhage. However, different studies have questioned the impact of PRT on platelet function and transfusion efficacy, and several proteomic analyses revealed possible oxidative damages to proteins. The present work focused on the oxidative damages produced by the two main PRT on peptides. Model peptides containing residues prone to oxidation (tyrosine, histidine, tryptophane, and cysteine) were irradiated with a combination of amotosalen/UVA (Intercept process) or riboflavin/UVB (Mirasol-like process). Modifications were identified and quantified by liquid chromatography coupled to tandem mass spectrometry. Cysteine-containing peptides formed disulfide bridges (R-SS-R, -2 Da; favored following amotosalen/UVA), sulfenic and sulfonic acids (R-SOH, +16 Da, R-SO3H, +48 Da, favored following riboflavin/UVB) upon treatment and the other amino acids exhibited different oxidations revealed by mass shifts from +4 to +34 Da involving different mechanisms; no photoadducts were detected. These amino acids were not equally affected by the PRT and the combination riboflavin/UVB generated more oxidation than amotosalen/UVA. This work identifies the different types and sites of peptide oxidations under the photochemical treatments and demonstrates that the two PRT may behave differently. The potential impact on proteins and platelet functions may thus be PRT-dependent.
Collapse
Affiliation(s)
- Michel Prudent
- Service Régional Vaudois de Transfusion Sanguine, Unité de Recherche et Développement, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Rivardo F, Leach TGH, Chan CS, Winstone TML, Ladner CL, Sarfo KJ, Turner RJ. Unique Photobleaching Phenomena of the Twin-Arginine Translocase Respiratory Enzyme Chaperone DmsD. Open Biochem J 2014; 8:1-11. [PMID: 24497893 PMCID: PMC3912628 DOI: 10.2174/1874091x01408010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 11/27/2013] [Accepted: 12/01/2013] [Indexed: 11/22/2022] Open
Abstract
DmsD is a chaperone of the redox enzyme maturation protein family specifically required for biogenesis of DMSO reductase in Escherichia coli. It exists in multiple folding forms, all of which are capable of binding its known substrate, the twin-arginine leader sequence of the DmsA catalytic subunit. It is important for maturation of the reductase and targeting to the cytoplasmic membrane for translocation. Here, we demonstrate that DmsD exhibits an irreversible photobleaching phenomenon upon 280 nm excitation irradiation. The phenomenon is due to quenching of the tryptophan residues in DmsD and is dependent on its folding and conformation. We also show that a tryptophan residue involved in DmsA signal peptide binding (W87) is important for photobleaching of DmsD. Mutation of W87, or binding of the DmsA twin-arginine signal peptide to DmsD in the pocket that includes W72, W80, and W91 significantly affects the degree of photobleaching. This study highlights the advantage of a photobleaching phenomenon to study protein folding and conformation changes within a protein that was once considered unusable in fluorescence spectroscopy.
Collapse
Affiliation(s)
- Fabrizio Rivardo
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Thorin G H Leach
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Catherine S Chan
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Tara M L Winstone
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Carol L Ladner
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Kwabena J Sarfo
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| | - Raymond J Turner
- BI 156, Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
19
|
Silva AMN, Vitorino R, Domingues MRM, Spickett CM, Domingues P. Post-translational modifications and mass spectrometry detection. Free Radic Biol Med 2013; 65:925-941. [PMID: 24002012 DOI: 10.1016/j.freeradbiomed.2013.08.184] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 12/14/2022]
Abstract
In this review, we provide a comprehensive bibliographic overview of the role of mass spectrometry and the recent technical developments in the detection of post-translational modifications (PTMs). We briefly describe the principles of mass spectrometry for detecting PTMs and the protein and peptide enrichment strategies for PTM analysis, including phosphorylation, acetylation and oxidation. This review presents a bibliographic overview of the scientific achievements and the recent technical development in the detection of PTMs is provided. In order to ascertain the state of the art in mass spectrometry and proteomics methodologies for the study of PTMs, we analyzed all the PTM data introduced in the Universal Protein Resource (UniProt) and the literature published in the last three years. The evolution of curated data in UniProt for proteins annotated as being post-translationally modified is also analyzed. Additionally, we have undertaken a careful analysis of the research articles published in the years 2010 to 2012 reporting the detection of PTMs in biological samples by mass spectrometry.
Collapse
Affiliation(s)
- André M N Silva
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rui Vitorino
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Rosário M Domingues
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7 ET, United Kingdom
| | - Pedro Domingues
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
20
|
Metabolomics Study of Resina Draconis on Myocardial Ischemia Rats Using Ultraperformance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry Combined with Pattern Recognition Methods and Metabolic Pathway Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:438680. [PMID: 23762136 PMCID: PMC3677627 DOI: 10.1155/2013/438680] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/24/2013] [Accepted: 04/24/2013] [Indexed: 01/08/2023]
Abstract
Resina draconis (bright red resin isolated from Dracaena cochinchinensis, RD) has been clinically used for treatment of myocardial ischemia (MI) for many years. However, the mechanisms of its pharmacological action on MI are still poorly understood. This study aimed to characterize the plasma metabolic profiles of MI and investigate the mechanisms of RD on MI using ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry-based metabolomics combined with pattern recognition methods and metabolic pathway analysis. Twenty metabolite markers characterizing metabolic profile of MI were revealed, which were mainly involved in aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine, and tryptophan biosynthesis, vascular smooth muscle contraction, sphingolipid metabolism, and so forth. After RD treatment, however, levels of seven MI metabolite markers, including phytosphingosine, sphinganine, acetylcarnitine, cGMP, cAMP, L-tyrosine, and L-valine, were turned over, indicating that RD is likely to alleviate MI through regulating the disturbed vascular smooth muscle contraction, sphingolipid metabolism, phenylalanine metabolism, and BCAA metabolism. To our best knowledge, this is the first comprehensive study to investigate the mechanisms of RD for treating MI, from a metabolomics point of view. Our findings are very valuable to gain a better understanding of MI metabolic profiles and provide novel insights for exploring the mechanisms of RD on MI.
Collapse
|
21
|
Spickett CM, Reis A, Pitt AR. Use of narrow mass-window, high-resolution extracted product ion chromatograms for the sensitive and selective identification of protein modifications. Anal Chem 2013; 85:4621-7. [PMID: 23534669 DOI: 10.1021/ac400131f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein modifications, including oxidative modifications, glycosylations, and oxidized lipid-protein adducts, are becoming increasingly important as biomarkers and in understanding disease etiology. There has been a great deal of interest in mapping these on Apo B100 from low density lipoprotein (LDL). We have used extracted ion chromatograms of product ions generated using a very narrow mass window from high-resolution tandem mass spectrometric data collected on a rapid scanning quadrupole time-of-flight (QTOF) instrument, to selectively and sensitively detect modified peptides and identify the site and nature of a number of protein modifications in parallel. We have demonstrated the utility of this method by characterizing for the first time oxidized phospholipid adducts to LDL and human serum albumin and for the detection of glycosylation and kynurenin formation from the oxidation of tryptophan residues in LDL.
Collapse
Affiliation(s)
- Corinne M Spickett
- Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom
| | | | | |
Collapse
|
22
|
Mujika JI, Uranga J, Matxain JM. Computational study on the attack of ·OH radicals on aromatic amino acids. Chemistry 2013; 19:6862-73. [PMID: 23536477 DOI: 10.1002/chem.201203862] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/15/2013] [Indexed: 01/24/2023]
Abstract
The attack of hydroxyl radicals on aromatic amino acid side chains, namely phenylalanine, tyrosine, and tryptophan, have been studied by using density functional theory. Two reaction mechanisms were considered: 1) Addition reactions onto the aromatic ring atoms and 2) hydrogen abstraction from all of the possible atoms on the side chains. The thermodynamics and kinetics of the attack of a maximum of two hydroxyl radicals were studied, considering the effect of different protein environments at two different dielectric values (4 and 80). The obtained theoretical results explain how the radical attacks take place and provide new insight into the reasons for the experimentally observed preferential mechanism. These results indicate that, even though the attack of the first (·)OH radical on an aliphatic C atom is energetically favored, the larger delocalization and concomitant stabilization that are obtained by attack on the aromatic side chain prevail. Thus, the obtained theoretical results are in agreement with the experimental evidence that the aromatic side chain is the main target for radical attack and show that the first (·)OH radical is added onto the aromatic ring, whereas a second radical abstracts a hydrogen atom from the same position to obtain the oxidized product. Moreover, the results indicate that the reaction can be favored in the buried region of the protein.
Collapse
Affiliation(s)
- J I Mujika
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center, PK 1072, 20080 Donostia, Euskadi, Spain.
| | | | | |
Collapse
|
23
|
Targeted oxidation of Torpedo californica acetylcholinesterase by singlet oxygen: identification of N-formylkynurenine tryptophan derivatives within the active-site gorge of its complex with the photosensitizer methylene blue. Biochem J 2013; 448:83-91. [PMID: 22888904 DOI: 10.1042/bj20120992] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The principal role of AChE (acetylcholinesterase) is termination of impulse transmission at cholinergic synapses by rapid hydrolysis of the neurotransmitter acetylcholine. The active site of AChE is near the bottom of a long and narrow gorge lined with aromatic residues. It contains a CAS (catalytic 'anionic' subsite) and a second PAS (peripheral 'anionic' site), the gorge mouth, both of which bind acetylcholine via π-cation interactions, primarily with two conserved tryptophan residues. It was shown previously that generation of (1)O(2) by illumination of MB (Methylene Blue) causes irreversible inactivation of TcAChE (Torpedo californica AChE), and suggested that photo-oxidation of tryptophan residues might be responsible. In the present study, structural modification of the TcAChE tryptophan residues induced by MB-sensitized oxidation was investigated using anti-N-formylkynurenine antibodies and MS. From these analyses, we determined that N-formylkynurenine derivatives were specifically produced from Trp(84) and Trp(279), present at the CAS and PAS respectively. Peptides containing these two oxidized tryptophan residues were not detected when the competitive inhibitors, edrophonium and propidium (which should displace MB from the gorge) were present during illumination, in agreement with their efficient protection against the MB-induced photo-inactivation. Thus the bound MB elicited selective action of (1)O(2) on the tryptophan residues facing on to the water-filled active-site gorge. The findings of the present study thus demonstrate the localized action and high specificity of MB-sensitized photo-oxidation of TcAChE, as well as the value of this enzyme as a model system for studying the mechanism of action and specificity of photosensitizing agents.
Collapse
|
24
|
Kumar V, Calamaras TD, Haeussler D, Colucci WS, Cohen RA, McComb ME, Pimentel D, Bachschmid MM. Cardiovascular redox and ox stress proteomics. Antioxid Redox Signal 2012; 17:1528-59. [PMID: 22607061 PMCID: PMC3448941 DOI: 10.1089/ars.2012.4706] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SIGNIFICANCE Oxidative post-translational modifications (OPTMs) have been demonstrated as contributing to cardiovascular physiology and pathophysiology. These modifications have been identified using antibodies as well as advanced proteomic methods, and the functional importance of each is beginning to be understood using transgenic and gene deletion animal models. Given that OPTMs are involved in cardiovascular pathology, the use of these modifications as biomarkers and predictors of disease has significant therapeutic potential. Adequate understanding of the chemistry of the OPTMs is necessary to determine what may occur in vivo and which modifications would best serve as biomarkers. RECENT ADVANCES By using mass spectrometry, advanced labeling techniques, and antibody identification, OPTMs have become accessible to a larger proportion of the scientific community. Advancements in instrumentation, database search algorithms, and processing speed have allowed MS to fully expand on the proteome of OPTMs. In addition, the role of enzymatically reversible OPTMs has been further clarified in preclinical models. CRITICAL ISSUES The identification of OPTMs suffers from limitations in analytic detection based on the methodology, instrumentation, sample complexity, and bioinformatics. Currently, each type of OPTM requires a specific strategy for identification, and generalized approaches result in an incomplete assessment. FUTURE DIRECTIONS Novel types of highly sensitive MS instrumentation that allow for improved separation and detection of modified proteins and peptides have been crucial in the discovery of OPTMs and biomarkers. To further advance the identification of relevant OPTMs in advanced search algorithms, standardized methods for sample processing and depository of MS data will be required.
Collapse
Affiliation(s)
- Vikas Kumar
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Todorovski T, Fedorova M, Hoffmann R. Identification of isomeric 5-hydroxytryptophan- and oxindolylalanine-containing peptides by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:453-459. [PMID: 22689620 DOI: 10.1002/jms.2058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cells continuously produce reactive oxidative species that can modify all cellular components. In proteins, for example, cysteine, methionine, tryptophan (Trp), and tyrosine residues are particularly prone to oxidation. Here, we report two new approaches to distinguish two isomeric oxidation products of Trp residues, i.e. 5-hydroxytryptophan (5-HTP) and oxindolylalanine (Oia) residues, in peptides. First, 2-nitrobenzenesulfenyl chloride, known to derivatize Trp residues in position 2 of the indole ring, was used to label 5-HTP residues. The mass shift of 152.98 m/z units allowed identifying 5-HTP- besides Trp-containing peptides by mass spectrometry, whereas Oia residues were not labeled. Second, fragmentation of the Oia- and 5-HTP-derived immonium ions at m/z 175.08 produced ions characteristic for each residue that allowed their identification even in the presence of y(1) ions at m/z 175.12 derived from peptides with C-terminal arginine residues. The pseudo MS(3) spectra acquired on a quadrupole time-of-flight hybrid mass spectrometer displayed two signals at m/z 130.05 and m/z 132.05 characteristic for Oia-containing peptides and a group of six signals (m/z 103.04, 120.04, 130.04, 133.03, 146.04, and 148.04) for 5-HTP-cointaining peptides. In both cases, the relative signal intensities appeared to be independent of the sequence providing a specific fingerprint of each oxidative modification.
Collapse
Affiliation(s)
- Toni Todorovski
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
| | | | | |
Collapse
|