1
|
Khajavinia A, Haddadi A, El-Aneed A. Establishment of the tandem mass spectrometric fingerprints of taxane-based anticancer compounds. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9107. [PMID: 33864637 DOI: 10.1002/rcm.9107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Compounds in the taxane drug family are among the most successful and effective chemotherapeutic agents used in the treatment of solid tumors, such as breast, ovarian, and prostate cancers. The tandem mass spectrometric (MS/MS) fragmentation behavior of these compounds is described in detail, and a generalized MS/MS fingerprint is established for the first time. METHODS Five compounds, namely paclitaxel, docetaxel, cabazitaxel, cephalomannine, and baccatin III, were evaluated. A hybrid quadrupole orthogonal time-of-flight (Q-TOF) mass spectrometer was used to obtain accurate mass measurements, whereas MS/MS and second-generation MS/MS (MS3 ) analyses were performed using a triple quadrupole-linear ion trap mass spectrometer. Both instruments were equipped with an electrospray ionization source operated in the positive ion mode. RESULTS All taxanes showed an abundant singly charged [M + H]+ species in the single-stage analysis with mass accuracies less than 3 ppm. The evaluated compounds exhibited common fragmentation behavior in their MS/MS analysis, which allowed for the production of a universal fragmentation pattern. MS3 experiments confirmed the genesis of the various product ions proposed in the fragmentation pathway. In addition, diagnostic product ions were originated from a cleavage in the ester bond between the core diterpene ring structure and the side chain. CONCLUSIONS Varying functional groups present in these compounds resulted in unique product ions that are specific to each structure. The established MS/MS fingerprints will be used in the near future for identification and for the development of multiple reaction monitoring liquid chromatography-MS/MS quantification methods.
Collapse
Affiliation(s)
- Amir Khajavinia
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Azita Haddadi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Nwabufo CK, El-Aneed A, Krol ES. Tandem mass spectrometric analysis of novel caffeine scaffold-based bifunctional compounds for Parkinson's disease. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1792-1803. [PMID: 31351020 DOI: 10.1002/rcm.8540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Novel bifunctional compounds composed of a caffeine scaffold attached to nicotine (C8 -6-N), 1-aminoindan (C8 -6-I), or caffeine (C8 -6-C8 ) were designed as therapeutics or diagnostics for Parkinson's disease (PD). In order to probe their pharmacological and toxicological profile, an appropriate analytical method is required. The goal of this study is to establish a tandem mass spectrometric fingerprint for the development of quantitative and qualitative methods that will aid future assessment of the in vitro and in vivo absorption, distribution, metabolism, excretion (ADME) and pharmacokinetic properties of these lead bifunctional compounds for PD. METHODS Accurate mass measurement was performed using a hybrid quadrupole orthogonal time-of-flight mass spectrometer while multistage MS/MS and MS3 analyses were conducted using a triple quadrupole linear ion trap mass spectrometer. Both instruments are equipped with an electrospray ionization (ESI) source and were operated in the positive ion mode. The source and compound parameters were optimized for all three tested bifunctional compounds. RESULTS The MS/MS analysis indicates that the fragmentation of C8 -6-N and C8 -6-I is driven by the dissociation of the nicotine and 1-aminoindan moieties, respectively, but not caffeine. A significant observation in the MS/MS fragmentation of C8 -6-C8 suggests that a previously reported loss of acetaldehyde during caffeine dissociation is instead a loss of CO2 . CONCLUSIONS The collision-induced tandem mass spectrometry (CID-MS/MS) analysis of these novel bifunctional compounds revealed compound-specific diagnostic product ions and neutral losses for all three tested bifunctional compounds. The established MS/MS fingerprint will be applied to the future development of qualitative and quantitative methods.
Collapse
Affiliation(s)
- Chukwunonso K Nwabufo
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anas El-Aneed
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ed S Krol
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Jiang K, Gachumi G, Poudel A, Shurmer B, Bashi Z, El-Aneed A. The Establishment of Tandem Mass Spectrometric Fingerprints of Phytosterols and Tocopherols and the Development of Targeted Profiling Strategies in Vegetable Oils. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1700-1712. [PMID: 31111414 DOI: 10.1007/s13361-019-02242-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
Phytosterols and tocopherols are essential for plant biochemistry, and they possess beneficial health effects for humans. Evaluating the tandem mass spectrometric (MS/MS) behavior of phytosterols and tocopherols is needed for the development of a qualitative and quantitative method for these biologically active plant metabolites. Herein, the MS/MS dissociation behavior of phytosterols and tocopherols is elucidated to establish generalized MS/MS fingerprints. MS/MS and multistage (MS3) analysis revealed common fragmentation behavior among the four tested phytosterols, namely β-sitosterol, stigmasterol, campesterol, and brassicasterol. Similar analysis was conducted for the tocopherols (i.e., alpha (α), beta (β), gamma (γ), and delta (δ)). As such, a universal MS/MS fragmentation pathway for each group was successfully established for the first time. Based on the generalized MS/MS fragmentation behavior of phytosterols, diagnostic product ions were chosen for the development of profiling methods for over 20 naturally occurring phytosterols. A precursor ion scan-triggered-enhanced product ion scan (PIS-EPI) method was established. Due to enhanced chromatographic peaks, multiple ion monitoring-triggered-enhanced product ion scan (MIM-EPI) was employed for confirmation. The screening approach was applied successfully to identify blinded samples obtained from standard mixtures as well as sesame and olive oils. The oil samples contain other phytosterols, and their successful identification indicates that, the generalized MS/MS fragmentation behavior is applicable to various structures of phytosterols. A similar approach was attempted for tocopherols and was only hindered by the low concentration of these bioactive metabolites present in the oil samples.
Collapse
Affiliation(s)
- Kang Jiang
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - George Gachumi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Asmita Poudel
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bryn Shurmer
- Government of Canada, Canadian Food Inspection Agency, Saskatoon, SK, Canada
| | - Zafer Bashi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
4
|
Jin W, Badea I, Leary SC, El-Aneed A. The determination of gemini surfactants used as gene delivery agents in cellular matrix using validated tandem mass spectrometric method. J Pharm Biomed Anal 2019; 164:164-172. [PMID: 30390558 DOI: 10.1016/j.jpba.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
Abstract
A simple, reliable flow injection analysis (FIA)-tandem mass spectrometric (MS/MS) method was developed for the determination of gemini surfactants, designated as 16-3-16, 16(Py)-S-2-S-(Py)16 and 16-7N(GK)-16, as gene delivery agents in cellular matrix. 16-3-16 is a conventional gemini surfactant bearing two quaternary amines, linked by a 3-carbon spacer region, 16(Py)-S-2-S-(Py)16 contains two pyridinium head groups, while 16-7N(GK)-16 bears a glycine-lysine di-peptide in the space region. The method was fully validated according to USFDA guidelines. It is the first time that FIA-MS/MS method was developed for the quantification of gemini surfactants, belonging to different structural families. The method was superior to existing liquid chromatographic (LC)-MS/MS methods in terms of sensitivity and time of analysis. Positive electrospray ionization (ESI) in the multiple reaction monitoring (MRM) mode were used on a triple quadrupole-linear ion trap (4000 QTRAP®) instrument. Deuterated internal standards were used to correct for matrix effects and variations in ionization within the ESI source. Isotope dilution standard curves were established in cellular matrix, with a linear range of 10 nM-1000 nM for 16-3-16 and 16(Py)-S-2-S-(Py)16, and 20 nM-2000 nM for 16-7N(GK)-16. The precision, accuracy, recovery and stability were all within the acceptable ranges as per the USFDA guidelines. The method was successfully applied for the quantification of target gemini surfactants in the nuclear fraction of PAM 212 keratinocyte cells treated with nanoparticles, which varied significantly and may explain differences in the observed efficiency and/or toxicity of these gemini surfactants in gene delivery.
Collapse
Affiliation(s)
- Wei Jin
- Drug Design & Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Ildiko Badea
- Drug Design & Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Scot C Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Anas El-Aneed
- Drug Design & Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
5
|
Al-Dulaymi M, El-Aneed A. Tandem mass spectrometric analysis of novel peptide-modified gemini surfactants used as gene delivery vectors. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:353-366. [PMID: 28409852 DOI: 10.1002/jms.3933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
Diquaternary ammonium gemini surfactants have emerged as effective gene delivery vectors. A novel series of 11 peptide-modified compounds was synthesized, showing promising results in delivering genetic materials. The purpose of this work is to elucidate the tandem mass spectrometric (MS/MS) dissociation behavior of these novel molecules establishing a generalized MS/MS fingerprint. Exact mass measurements were achieved using a hybrid quadrupole orthogonal time-of-flight mass spectrometer, and a multi-stage MS/MS analysis was conducted using a triple quadrupole-linear ion trap mass spectrometer. Both instruments were operated in the positive ionization mode and are equipped with electrospray ionization. Abundant triply charged [M+H]3+ species were observed in the single-stage analysis of all the evaluated compounds with mass accuracies of less than 8 ppm in mass error. MS/MS analysis showed that the evaluated gemini surfactants exhibited peptide-related dissociation characteristics because of the presence of amino acids within the compounds' spacer region. In particular, diagnostic product ions were originated from the neutral loss of ammonia from the amino acids' side chain resulting in the formation of pipecolic acid at the N-terminus part of the gemini surfactants. In addition, a charge-directed amide bond cleavage was initiated by the amino acids' side chain producing a protonated α-amino-ε-caprolactam ion and its complimentary C-terminus ion that contains quaternary amines. MS/MS and MS3 analysis revealed common fragmentation behavior among all tested compounds, resulting in the production of a universal MS/MS fragmentation pathway. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- M Al-Dulaymi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - A El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Willems JL, Khamis MM, Mohammed Saeid W, Purves RW, Katselis G, Low NH, El-Aneed A. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry. Anal Chim Acta 2016; 933:164-74. [DOI: 10.1016/j.aca.2016.05.041] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/09/2016] [Accepted: 05/22/2016] [Indexed: 11/26/2022]
|
7
|
Hydrophilic interaction liquid chromatography-tandem mass spectrometry quantitative method for the cellular analysis of varying structures of gemini surfactants designed as nanomaterial drug carriers. J Chromatogr A 2016; 1446:114-24. [PMID: 27086283 DOI: 10.1016/j.chroma.2016.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 11/21/2022]
Abstract
Diquaternary gemini surfactants have successfully been used to form lipid-based nanoparticles that are able to compact, protect, and deliver genetic materials into cells. However, what happens to the gemini surfactants after they have released their therapeutic cargo is unknown. Such knowledge is critical to assess the quality, safety, and efficacy of gemini surfactant nanoparticles. We have developed a simple and rapid liquid chromatography electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the quantitative determination of various structures of gemini surfactants in cells. Hydrophilic interaction liquid chromatography (HILIC) was employed allowing for a short simple isocratic run of only 4min. The lower limit of detection (LLOD) was 3ng/mL. The method was valid to 18 structures of gemini surfactants belonging to two different structural families. A full method validation was performed for two lead compounds according to USFDA guidelines. The HILIC-MS/MS method was compatible with the physicochemical properties of gemini surfactants that bear a permanent positive charge with both hydrophilic and hydrophobic elements within their molecular structure. In addition, an effective liquid-liquid extraction method (98% recovery) was employed surpassing previously used extraction methods. The analysis of nanoparticle-treated cells showed an initial rise in the analyte intracellular concentration followed by a maximum and a somewhat more gradual decrease of the intracellular concentration. The observed intracellular depletion of the gemini surfactants may be attributable to their bio-transformation into metabolites and exocytosis from the host cells. Obtained cellular data showed a pattern that grants additional investigations, evaluating metabolite formation and assessing the subcellular distribution of tested compounds.
Collapse
|
8
|
Awad H, Das U, Dimmock J, El-Aneed A. Establishment of tandem mass spectrometric fingerprint of novel antineoplastic curcumin analogues using electrospray ionization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1307-1316. [PMID: 26405792 DOI: 10.1002/rcm.7222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/03/2015] [Accepted: 05/02/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Curcumin analogues are antineoplastic agents, designed based on the structure of the spice turmeric with structural modifications aiming at enhancing potency. The goal is to identify the common tandem mass spectrometric (MS/MS) behavior of 13 novel curcumin analogues. Such knowledge is critical for their biological assessment, including metabolite identification and pharmacokinetic evaluation. METHODS Both detection of the protonated molecules [M + H](+) of the synthesized compounds and determination of their exact molecular masses were achieved with hybrid quadrupole orthogonal time-of-flight mass spectrometry (QqTOF-MS). Low-energy collision-induced dissociation (CID)-MS/MS analysis was performed using triple quadrupole linear ion trap mass spectrometry (QqLIT-MS). Both instruments were equipped with an electrospray ionization (ESI) source. MS(3) and neutral loss experiments were performed using QqLIT-MS to confirm the genesis of the observed product ions. RESULTS Abundant [M + H](+) molecules were formed using the QqTOF-MS hybrid instrument with mass accuracies below 6 ppm. CID-MS/MS dissociation studies were centered on the piperidone ring of curcumin analogues; twelve common product ions have been identified from the fission of the various bonds within the piperidone moiety. There was a tendency for the formation of highly conjugated product ions, stabilized via resonance. The variety of the side-chain substituents at the nitrogen atom resulted in side-chain-specific product ions. CONCLUSIONS The ESI-CID-MS/MS analysis of curcumin analogues revealed a common fragmentation behavior of all tested compounds, which gave diagnostic product ions identified for each molecule. The established MS/MS behavior will be applied to determine metabolic by-products of curcumin analogues as well as to develop targeted identification/quantification methods within biological extracts.
Collapse
Affiliation(s)
- H Awad
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - U Das
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - J Dimmock
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - A El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| |
Collapse
|
9
|
Donkuru M, Chitanda JM, Verrall RE, El-Aneed A. Multi-stage tandem mass spectrometric analysis of novel β-cyclodextrin-substituted and novel bis-pyridinium gemini surfactants designed as nanomedical drug delivery agents. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:757-772. [PMID: 24573807 DOI: 10.1002/rcm.6827] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE This study aimed at evaluating the collision-induced dissociation tandem mass spectrometric (CID-MS/MS) fragmentation patterns of novel β-cyclodextrin-substituted- and bis-pyridinium gemini surfactants currently being explored as nanomaterial drug delivery agents. In the β-cyclodextrin-substituted gemini surfactants, a β-cyclodextrin ring is grafted onto an N,N-bis(dimethylalkyl)-α,ω-aminoalkane-diammonium moiety using variable succinyl linkers. In contrast, the bis-pyridinium gemini surfactants are based on a 1,1'-(1,1'-(ethane-1,2-diylbis(sulfanediyl))bis(alkane-2,1-diyl))dipyridinium template, defined by two symmetrical N-alkylpyridinium parts connected through a fixed ethane dithiol spacer. METHODS Detection of the precursor ion [M](2+) species of the synthesized compounds and the determination of mass accuracies were conducted using a QqTOF-MS instrument. A multi-stage tandem MS analysis of the detected [M](2+) species was conducted using the QqQ-LIT-MS instrument. Both instruments were equipped with an electrospray ionization (ESI) source. RESULTS Abundant precursor ion [M](2+) species were detected for all compounds at sub-1 ppm mass accuracies. The β-cyclodextrin-substituted compounds, fragmented via two main pathways: Pathway 1: the loss of one head-tail region produces a [M-(N(Me)2-R)](2+) ion, from which sugar moieties (Glc) are sequentially cleaved; Pathway 2: both head-tail regions are lost to give [M-2(N(Me)2-R)](+), followed by consecutive loss of Glc units. Alternatively, the cleavage of the Glc units could also have occurred simultaneously. Nevertheless, the fragmentation evolved around the quaternary ammonium cations, with characteristic cleavage of Glc moieties. For the bis-pyridinium gemini compounds, they either lost neutral pyridine(s) to give doubly charged ions (Pathway A) or formed complementary pyridinium alongside other singly charged ions (Pathway B). Similar to β-cyclodextrin-substituted compounds, the fragmentation was centered on the pyridinium functional groups. CONCLUSIONS The MS(n) analyses of these novel gemini surfactants, reported here for the first time, revealed diagnostic ions for each compound, with a universal fragmentation pattern for each compound series. The diagnostic ions will be employed within liquid chromatography (LC)/MS/MS methods for screening, identification, and quantification of these compounds within biological samples.
Collapse
Affiliation(s)
- McDonald Donkuru
- Drug Design & Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | | | | | | |
Collapse
|
10
|
Obłąk E, Piecuch A, Krasowska A, Łuczyński J. Antifungal activity of gemini quaternary ammonium salts. Microbiol Res 2013; 168:630-8. [DOI: 10.1016/j.micres.2013.06.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/28/2013] [Accepted: 06/01/2013] [Indexed: 11/26/2022]
|
11
|
Buse J, Badea I, Verrall RE, El-Aneed A. A general liquid chromatography tandem mass spectrometry method for the quantitative determination of diquaternary ammonium gemini surfactant drug delivery agents in mouse keratinocytes’ cellular lysate. J Chromatogr A 2013; 1294:98-105. [DOI: 10.1016/j.chroma.2013.04.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 11/28/2022]
|
12
|
Domínguez R, Rodríguez A, Maestre A, Robina I, Moyá ML. Synthesis and physicochemical characterization of alkanedyil-α-ω-bis(dimethyldodecylammonium) bromide, 12-s-12,2Br−, surfactants with s=7, 9, 11 in aqueous medium. J Colloid Interface Sci 2012; 386:228-39. [DOI: 10.1016/j.jcis.2012.06.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/26/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
|