1
|
Hua Z, Feng S, Zhou Z, Liang H, Chen Y, Zhao D. A cryogenic cylindrical ion trap velocity map imaging spectrometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:013101. [PMID: 30709209 DOI: 10.1063/1.5079264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
A cryogenic cylindrical ion trap velocity map imaging spectrometer has been developed to study photodissociation spectroscopy and dynamics of gaseous molecular ions and ionic complexes. A cylindrical ion trap made of oxygen-free copper is cryogenically cooled down to ∼7 K by using a closed cycle helium refrigerator and is coupled to a velocity map imaging (VMI) spectrometer. The cold trap is used to cool down the internal temperature of mass selected ions and to reduce the velocity spread of ions after extraction from the trap. For CO2 + ions, a rotational temperature of ∼12 K is estimated from the recorded [1 + 1] two-photon dissociation spectrum, and populations in spin-orbit excited X2Πg,1/2 and vibrationally excited states of CO2 + are found to be non-detectable, indicating an efficient internal cooling of the trapped ions. Based on the time-of-flight peak profile and the image of N3 +, the velocity spread of the ions extracted from the trap, both radially and axially, is interpreted as approximately ±25 m/s. An experimental image of fragmented Ar+ from 307 nm photodissociation of Ar2 + shows that, benefitting from the well-confined velocity spread of the cold Ar2 + ions, a VMI resolution of Δv/v ∼ 2.2% has been obtained. The current instrument resolution is mainly limited by the residual radial speed spread of the parent ions after extraction from the trap.
Collapse
Affiliation(s)
- Zefeng Hua
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Shaowen Feng
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhengfang Zhou
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hao Liang
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yang Chen
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Dongfeng Zhao
- CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
2
|
Johnston MD, Pearson WL, Wang G, Metz RB. A velocity map imaging mass spectrometer for photofragments of fast ion beams. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:014102. [PMID: 29390723 DOI: 10.1063/1.5012896] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present the details of a fast ion velocity map imaging mass spectrometer that is capable of imaging the photofragments of trap-cooled (≥7 K) ions produced in a versatile ion source. The new instrument has been used to study the predissociation of N2O+ produced by electric discharge and the direct dissociation of Al2+ formed by laser ablation. The instrument's resolution is currently limited by the diameter of the collimating iris to a value of Δv/v = 7.6%. Photofragment images of N2O+ show that when the predissociative state is changed from 2Σ+(200) to 2Σ+(300) the dominant product channel shifts from a spin-forbidden ground state, N (4S) + NO+(v = 5), to a spin-allowed pathway, N*(2D) + NO+. The first photofragment images of Al2+ confirm the existence of a directly dissociative parallel transition (2Σ+u ← 2Σ+g) that yields products with a large amount of kinetic energy. D0 of ground state Al2+ (2Σ+g) measured from these images is 138 ± 5 kJ/mol, which is consistent with the published literature.
Collapse
Affiliation(s)
- M David Johnston
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Wright L Pearson
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Greg Wang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Ricardo B Metz
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
3
|
Sánchez JP, Aguirre NF, Díaz-Tendero S, Martín F, Alcamí M. Structure, Ionization, and Fragmentation of Neutral and Positively Charged Hydrogenated Carbon Clusters: CnHmq+ (n = 1–5, m = 1–4, q = 0–3). J Phys Chem A 2016; 120:588-605. [DOI: 10.1021/acs.jpca.5b10143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Fernando Martín
- Instituto
Madrileño de Estudios Avanzados en Nanociencias (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain
| | - Manuel Alcamí
- Instituto
Madrileño de Estudios Avanzados en Nanociencias (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
4
|
Gundlach-Graham A, Dennis EA, Ray SJ, Enke CG, Barinaga CJ, Koppenaal DW, Hieftje GM. Interleaved Distance-of-Flight Mass Spectrometry: A Simple Method to Improve the Instrument Duty Factor. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1736-1744. [PMID: 23982936 DOI: 10.1007/s13361-013-0718-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
Distance-of-flight mass spectrometry (DOFMS) is a velocity-based, spatially dispersive MS technique in which ions are detected simultaneously along the plane of a spatially selective detector. In DOFMS, ions fly though the instrument and mass separate over a set period of time. The single flight time at which all ions are measured defines the specific m/z values that are detectable; the range of m/z values is dictated by the length of the spatially selective detector. However, because each packet of ions is detected at a single flight time, multiple groups of ions can fly through the instrument concurrently and be detected at a single detector. In this way, DOFMS experiments can be interleaved to perform several mass separation experiments within a single DOF repetition period. Interleaved operation allows the orthogonal acceleration region to be operated at a repetition rate higher than the reciprocal of the flight time, which improves the duty factor of the technique. In this paper, we consider the fundamental parameters of interleaved DOFMS and report first results.
Collapse
|