1
|
|
2
|
Chen W, Smeekens JM, Wu R. Comprehensive Analysis of Protein N-Glycosylation Sites by Combining Chemical Deglycosylation with LC–MS. J Proteome Res 2014; 13:1466-73. [DOI: 10.1021/pr401000c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Weixuan Chen
- School
of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Johanna M. Smeekens
- School
of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School
of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Voigt J, Kieß M, Getzlaff R, Wöstemeyer J, Frank R. Generation of the heterodimeric precursor GP3 of the Chlamydomonas cell wall. Mol Microbiol 2010; 77:1512-26. [DOI: 10.1111/j.1365-2958.2010.07302.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update covering the period 2001-2002. MASS SPECTROMETRY REVIEWS 2008; 27:125-201. [PMID: 18247413 DOI: 10.1002/mas.20157] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This review is the second update of the original review on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates that was published in 1999. It covers fundamental aspects of the technique as applied to carbohydrates, fragmentation of carbohydrates, studies of specific carbohydrate types such as those from plant cell walls and those attached to proteins and lipids, studies of glycosyl-transferases and glycosidases, and studies where MALDI has been used to monitor products of chemical synthesis. Use of the technique shows a steady annual increase at the expense of older techniques such as FAB. There is an increasing emphasis on its use for examination of biological systems rather than on studies of fundamental aspects and method development and this is reflected by much of the work on applications appearing in tabular form.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
5
|
Voigt J, Woestemeyer J, Frank R. The chaotrope-soluble glycoprotein GP2 is a precursor of the insoluble glycoprotein framework of the Chlamydomonas cell wall. J Biol Chem 2007; 282:30381-92. [PMID: 17673458 DOI: 10.1074/jbc.m701673200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The cell wall of the unicellular green alga Chlamydomonas reinhardtii consists of an insoluble, hydroxyproline-rich glycoprotein framework and several chaotrope-soluble, hydroxyproline-containing glycoproteins. Up to now, there have been no data concerning the amino acid sequences of the hydroxyproline-containing polypeptides of the insoluble wall fraction. Matrix-assisted laser desorption ionization time-of-flight analyses of peptides released from the insoluble cell wall fraction by trypsin treatment revealed the presence of 14 peptide fragments that could be attributed to non-glycosylated domains of the chaotrope-soluble cell wall glycoprotein GP2. However, these peptides cover only 15% of the GP2 polypeptide backbone. Considerably more information concerning the presence of GP2 in the insoluble cell wall fraction was obtained by an immunochemical approach. For this purpose, 407 overlapping pentadecapeptides covering the whole known amino acid sequence of GP2 were chemically synthesized and probed with a polyclonal antibody raised against the deglycosylated, insoluble cell wall fraction. This particular antibody reacted with 297 of the 407 GP2-derived peptides. The peptides that were recognized by this antibody are distributed over the whole known GP2 sequence. The epitopes recognized by polyclonal antibodies raised against the 64- and 45-kDa constituents purified from the deglycosylation products of the insoluble cell wall fraction are also distributed over the whole GP2 backbone, although the corresponding antigens are considerably smaller than GP2. The significance of the latter results for the structure of the insoluble cell wall fraction is discussed.
Collapse
Affiliation(s)
- Jürgen Voigt
- Institute for Biochemistry, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany.
| | | | | |
Collapse
|
6
|
|
7
|
Taylor AM, Holst O, Thomas-Oates J. Mass spectrometric profiling ofO-linked glycans released directly from glycoproteins in gels using in-gel reductive β-elimination. Proteomics 2006; 6:2936-46. [PMID: 16586430 DOI: 10.1002/pmic.200500331] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glycosylation is a widespread PTM of proteins; the carbohydrate moieties provide various functional, immunological and structural aspects of both eukaryotic and prokaryotic glycoproteins. Traditional strategies used to analyse glycoprotein O-glycans involve glycoprotein isolation, followed by glycan release using solution-phase base-catalysed beta-elimination. However, in a proteomics context, mixtures of proteins and glycoproteins are routinely separated using SDS-PAGE. We have therefore developed a method to enable the profiling of O-linked glycans directly from glycoproteins on gels. This is achieved using in-gel reductive beta-elimination followed by mass spectrometric analysis of the released glycans. Here we describe our demonstration of the feasibility of this approach, our development and optimisation of the procedure using bovine submaxillary gland glycoproteins as a standard, and then show its usefulness by applying the developed procedure to the analysis of the O-glycans from a glycoprotein band from a Coomassie-stained SDS-PAGE separation of a mixture of Mycobacterium avium capsular proteins and glycoproteins. The procedure has been shown to be applicable to both CBB- and silver-stained gels. The method offers a quick and easy way to identify the O-glycans from gel-separated glycoproteins within gel-based proteomics workflows.
Collapse
Affiliation(s)
- Adrian M Taylor
- Department of Chemistry, University of York, Heslington, York, UK
| | | | | |
Collapse
|
8
|
de Groot PWJ, de Boer AD, Cunningham J, Dekker HL, de Jong L, Hellingwerf KJ, de Koster C, Klis FM. Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. EUKARYOTIC CELL 2005; 3:955-65. [PMID: 15302828 PMCID: PMC500891 DOI: 10.1128/ec.3.4.955-965.2004] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Covalently linked cell wall proteins (CWPs) of the dimorphic fungus Candida albicans are implicated in virulence. We have carried out a comprehensive proteomic analysis of the covalently linked CWPs in exponential-phase yeast cells. Proteins were liberated from sodium dodecyl sulfate (SDS)-extracted cell walls and analyzed using immunological and advanced protein sequencing (liquid chromatography-tandem mass spectrometry [LC/MS/MS]) methods. HF-pyridine and NaOH were used to chemically release glycosylphosphatidylinositol-dependent proteins (GPI proteins) and mild alkali-sensitive proteins, respectively. In addition, to release both classes of CWPs simultaneously, cell walls were digested enzymatically with a recombinant beta-1,3-glucanase. Using LC/MS/MS, we identified 14 proteins, of which only 1 protein, Cht2p, has been previously identified in cell wall extracts by using protein sequencing methods. The 14 identified CWPs include 12 GPI proteins and 2 mild alkali-sensitive proteins. Nonsecretory proteins were absent in our cell wall preparations. The proteins identified included several functional categories: (i) five CWPs are predicted carbohydrate-active enzymes (Cht2p, Crh11p, Pga4p, Phr1p, and Scw1p); (ii) Als1p and Als4p are believed to be adhesion proteins. In addition, Pga24p shows similarity to the flocculins of baker's yeast. (iii) Sod4p/Pga2p is a putative superoxide dismutase and is possibly involved in counteracting host defense reactions. The precise roles of the other CWPs (Ecm33.3p, Pir1p, Pga29p, Rbt5p, and Ssr1p) are unknown. These results indicate that a substantial number of the covalently linked CWPs of C. albicans are actively involved in cell wall remodeling and expansion and in host-pathogen interactions.
Collapse
Affiliation(s)
- Piet W J de Groot
- Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sagi D, Kienz P, Denecke J, Marquardt T, Peter-Katalinić J. Glycoproteomics ofN-glycosylation by in-gel deglycosylation and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry mapping: Application to congenital disorders of glycosylation. Proteomics 2005; 5:2689-701. [PMID: 15912511 DOI: 10.1002/pmic.200401312] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A general strategy for the structural evaluation of N-glycosylation, a common post-translational protein modification, is presented. The methods for the release of N-linked glycans from the gel-separated proteins, their isolation, purification and matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-MS) analysis of their mixtures were optimised. Since many glycoproteins are available only at low quantities from sodium dodecyl sulphate-polyacrylamide gel electrophoresis or two-dimensional gels, high attention was paid to obtain N-glycan mixtures representing their actual composition in human plasma by in-gel deglycosylation. The relative sensitivity of solid MALDI matrices for MS analysis of acidic N-glycans was compared. The most favourable results for native acidic N-glycans were obtained with 2,4,6-trihydroxyacetophenone monohydrate/diammoniumcitrate as a matrix. This matrix provided good results for both neutral and acidic mixtures as well as for methylated N-glycans. In the second part of this paper the potential of such an optimised MS strategy alone or in combination with high pH anion-exchange chromatography profiling for the clinical diagnosis of congenital disorders of glycosylation is presented.
Collapse
Affiliation(s)
- Dijana Sagi
- Institute for Medical Physics and Biophysics, University of Münster, Münster, Germany
| | | | | | | | | |
Collapse
|
10
|
Mittag M. The function of circadian RNA-binding proteins and their cis-acting elements in microalgae. Chronobiol Int 2003; 20:529-41. [PMID: 12916711 DOI: 10.1081/cbi-120022411] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An endogenous clock regulates the temporal expression of genes/mRNAs that are involved in the circadian output pathway. In the bioluminescent dinoflagellate Gonyaulax polyedra circadian expression of the luciferin-binding protein (LBP) is controlled at the translational level. Thereby, a clock-controlled RNA-binding protein, called circadian controlled translational regulator (CCTR), interacts specifically with an UG-repeat, which is situated in the lbp 3' UTR. Its binding activity correlates negatively with the amount of LBP during a circadian cycle. In the green alga Chlamydomonas reinhardtii, a clock-controlled RNA-binding protein (CHLAMY 1) was identified, which represents an analog of the CCTR from the phylogenetically diverse alga G. polyedra. CHLAMY 1 binds specifically to the 3' UTRs of several mRNAs and recognizes them all via a common cis-acting element, composed of at least seven UG-repeats. The binding strength of CHLAMY 1 is strongest to mRNAs, whose products are key components of nitrogen metabolism resulting in arginine biosynthesis as well as of CO2 metabolism. Since temporal activities of processes involved in nitrogen metabolism have an opposite phase than CHLAMY 1 binding activity, the protein might repress the translation of the cognate mRNAs.
Collapse
Affiliation(s)
- Maria Mittag
- Institut für Allgemeine Botanik, Friedrich-Schiller--Universität-Jena, Jena, Germany.
| |
Collapse
|
11
|
Person MD, Monks TJ, Lau SS. An integrated approach to identifying chemically induced posttranslational modifications using comparative MALDI-MS and targeted HPLC-ESI-MS/MS. Chem Res Toxicol 2003; 16:598-608. [PMID: 12755589 DOI: 10.1021/tx020109f] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identification of multiple and novel posttranslational modifications remains a major challenge in proteomics. The present approach uses comparative analysis by matrix-assisted laser/desorption ionization (MALDI) MS of proteolytic digests from control and treated proteins to target differences due to modifications, without initial assumption as to type or residue localization. Differences between modified and unmodified digest MS spectra highlight peptides of interest for subsequent tandem mass spectrometry (MS/MS) analysis. Targeted HPLC-electrospray ionization (ESI)-MS/MS is then used to fragment peptides, and manual de novo sequencing is used to determine the amino acid sequence and type of modification. This strategy for identifying posttranslational modifications in an unbiased manner is particularly useful for finding modifications produced by exogenous chemicals. Successful characterization of chemically induced posttranslational modifications and novel chemical adducts is given as an example of the use of this strategy. Histone H4 from butyrate-treated LLC-PK1 cells is separated on a gel into bands representing different overall charge state. Bands are analyzed by comparative MALDI-MS and LC-MS/MS to identify the sites of methylation and acetylation. Previous attempts to identify chemically adducted proteins in vivo have been unsuccessful in part due to a lack of understanding of the final adduct form. Cytochrome c is adducted in vitro with benzoquinone, an electrophilic metabolite of benzene capable of interacting with nucleophilic sites within proteins. De novo sequencing identifies a novel cyclized diquinone adduct species as the major reaction product, targeting Lys and His residues at two specific locations on the protein surface. This unpredicted reaction product is characterized using our unbiased methods for detection and demonstrates the important influence of protein structure on chemical adduction.
Collapse
Affiliation(s)
- Maria D Person
- Center for Molecular and Cellular Toxicology, Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, 78712, USA
| | | | | |
Collapse
|
12
|
Mittag M, Wagner V. The circadian clock of the unicellular eukaryotic model organism Chlamydomonas reinhardtii. Biol Chem 2003; 384:689-95. [PMID: 12817465 DOI: 10.1515/bc.2003.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The green unicellular alga Chlamydomonas reinhardtii, also called 'green yeast', emerged in the past years as a model organism for specific scientific questions such as chloroplast biogenesis and function, the composition of the flagella including its basal apparatus, or the mechanism of the circadian clock. Sequencing of its chloroplast and mitochondrial genomes have already been completed and a first draft of its nuclear genome has also been released recently. In C. reinhardtii several circadian rhythms are physiologically well characterized, and one of them has even been shown to operate in outer space. Circadian expression patterns of nuclear and plastid genes have been studied. The mode of regulation of these genes occurs at the transcriptional level, although there is also evidence for posttranscriptional control. A clock-controlled, phylogenetically conserved RNA-binding protein was characterized in this alga, which interacts with several mRNAs that all contain a common cis-acting motif. Its function within the circadian system is currently under investigation. This review summarizes the current state of the knowledge about the circadian system in C. reinhardtii and points out its potential for future studies.
Collapse
Affiliation(s)
- Maria Mittag
- Institut für Allgemeine Botanik, Friedrich-Schiller-Universität Jena, Am Planetarium 1, D-07743 Jena, Germany
| | | |
Collapse
|
13
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2002; 37:545-556. [PMID: 12112761 DOI: 10.1002/jms.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|