1
|
Chiu CP, Chen YC. Laser Printer Printed Ion Sources for Ambient Ionization Mass Spectrometric Analysis of Volatiles and Semivolatiles. Anal Chem 2024; 96. [PMID: 39135288 PMCID: PMC11359382 DOI: 10.1021/acs.analchem.4c03157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024]
Abstract
In this study, we demonstrated a facile method to fabricate ion sources using a laser printer for ambient ionization mass spectrometry (MS). Toner spots printed by a printer can readily facilitate ionizing volatile and semivolatile compounds derived from solid or liquid samples for MS analysis. The experimental arrangement involved positioning the toner-printed paper near the inlet of a mass spectrometer, which was subjected to a high electric potential (e.g., -6 kV). Volatile or semivolatile compounds deriving from the sample positioned below the metal inlet of the mass spectrometer were promptly ionized upon activating the mass spectrometer. No direct electrical connection or voltage application was required on the paper substrate. An electric field was established between the toner spot on the paper and the inlet applied with a high voltage to induce the dielectric breakdown of the surrounding air and water molecules. Consequently, ionic species, including electrons and cationic radicals, were generated. Subsequent ion-molecule reactions facilitated the production of protons for ionizing analytes present in the gas phase proximal to the inlet of the mass spectrometer. Deprotonated analytes were detected in the resultant mass spectra when employing the method in negative ion mode. This methodology presents a straightforward approach for analyzing analytes in the gas phase under ambient conditions utilizing an exceptionally uncomplicated experimental setup. In addition, the developed method can be used to detect trace 2,4-dinitrophenol, an explosive, with a limit of detection as low as ∼30 pg.
Collapse
Affiliation(s)
- Chin-Pao Chiu
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Chie Chen
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
- International
College of Semiconductor Technology, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
2
|
Tu CF, Chen YC. Utilizing a Metal Inlet Coiled with Copper Wire as the Ion Source for Ambient Ionization Mass Spectrometry. Anal Chem 2024; 96:661-667. [PMID: 38170959 DOI: 10.1021/acs.analchem.3c02589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In ambient ionization mass spectrometry (MS), a customized metal inlet is typically adapted to the orifice of the mass spectrometer for ease of introduction of the sample. We herein explore that the metal inlet coiled with a copper wire (∼50 μm) can be directly used as an ion source to induce corona discharge-like processes for ionization of analytes in the gas phase. When the metal inlet is subjected to a high voltage in the mass spectrometer, the electric field provided by the mass spectrometer enables the generation of corona discharge to ionize volatile/semivolatile analytes derived from the sample in the condensed phase. The limit of detection for azulene derived from the aqueous sample was as low as ∼1 pM. Moreover, we also demonstrated the feasibility of coupling ultraviolet-visible absorption spectroscopy with MS by using the metal inlet coiled with a thin copper wire as the interface. Integration of these two techniques enables the simultaneous acquisition of spectra from both instruments for quantitative and qualitative analysis of the sample. Furthermore, we showed that polar and nonpolar analytes in a mixture can be acquired in the same mass spectrum by simply depositing a sample droplet (∼20 μL) on a dielectric substrate near the copper wire-coiled metal inlet of the mass spectrometer. The ionization processes involved both electrospray ionization and corona discharge. To demonstrate the applicability of our method for detecting nonpolar and polar analytes in complex samples, we spiked a nonpolar analyte, benzo[a]pyrene, to a spice sample and successfully detected analytes with different polarities using our approach.
Collapse
Affiliation(s)
- Chi-Feng Tu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
3
|
Tsai JJ, Chang CC, Huang DY, Lin TS, Chen YC. Analysis and classification of coffee beans using single coffee bean mass spectrometry with machine learning strategy. Food Chem 2023; 426:136610. [PMID: 37331144 DOI: 10.1016/j.foodchem.2023.136610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Coffee is a daily essential, with prices varying based on taste, aroma, and chemical composition. However, distinguishing between different coffee beans is challenging due to time-consuming and destructive sample pretreatment. This study presents a novel approach for directly analyzing single coffee beans through mass spectrometry (MS) without the need for sample pretreatment. Using a single coffee bean deposited with a solvent droplet containing methanol and deionized water, we generated electrospray to extract the main species for MS analysis. Mass spectra of single coffee beans were obtained in just a few seconds. To showcase the effectiveness of the developed method, we used palm civet coffee beans (kopi luwak), one of the most expensive coffee types, as model samples. Our approach distinguished palm civet coffee beans from regular ones with high accuracy, sensitivity, and selectivity. Moreover, we employed a machine learning strategy to rapidly classify coffee beans based on their mass spectra, achieving 99.58% accuracy, 98.75% sensitivity, and 100% selectivity in cross-validation. Our study highlights the potential of combining the single-bean MS method with machine learning for the rapid and non-destructive classification of coffee beans. This approach can help to detect low-priced coffee beans mixed with high-priced ones, benefiting both consumers and the coffee industry.
Collapse
Affiliation(s)
- Jia-Jen Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Che-Chia Chang
- Department of Applied Mathematics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - De-Yi Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Te-Sheng Lin
- Department of Applied Mathematics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; National Center for Theoretical Sciences, National Taiwan University, Taipei 10617, Taiwan.
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| |
Collapse
|
4
|
Selvaprakash K, Chen YC. Using an insulating fiber as the sampling probe and ionization substrate for ambient ionization-mass spectrometric analysis of volatile, semi-volatile, and polar analytes. Anal Bioanal Chem 2022; 414:4633-4643. [PMID: 35445835 DOI: 10.1007/s00216-022-04080-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
A sharp metal needle used as the ionization emitter in conventional atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) is usually required for analyte ionization through corona discharge (i.e., gas discharge). Nevertheless, we herein demonstrate that an insulating fiber (tip diameter: 10-60 µm; length: ~ 1 cm) made of glass or bamboo can function as an APCI-like ionization emitter. Although no direct electric contact is made on the fiber, the ionization of volatiles and semi-volatiles occurs when the fiber is placed close (~ 1 mm) to the inlet of the mass spectrometer. No analyte ion signals can be observed without placing the insulating fiber in front of the mass spectrometer. The generation of ion species mainly relies on the electric field provided by the mass spectrometer. Presumably, owing to the high electric field provided by the mass spectrometer, the dielectric breakdown voltages of gas molecules in the air and the fiber are overcome, leading to the ionization of analytes in gas phase. In addition, the insulating fiber can function as a holder for sample solutions. Electrospray ionization-like processes derived from polar analytes such as amino acids, peptides, and proteins can readily occur when the insulating fiber deposited with a sample droplet is placed close to the inlet of the mass spectrometer. The feasibility of using the current approach for the detection of nonpolar and polar analytes from complex fetal bovine serum samples without tedious sample pretreatment is demonstrated in this work. The main advantage of using the suggested fiber is that the fiber can be used as the sampling probe to pick up samples and placed in front of a mass spectrometer for direct MS analysis. The application of using a robust, insulating, and disposable probe to pick up samples from real samples such as onion, honey, and pork samples followed by direct MS analysis is also demonstrated.
Collapse
Affiliation(s)
- Karuppuchamy Selvaprakash
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan. .,Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan. .,International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
5
|
Huang DY, Tsai JJ, Chen YC. Direct Mass Spectrometric Analysis of Semivolatiles Derived from Real Samples at Atmospheric Pressure. ACS OMEGA 2022; 7:10255-10261. [PMID: 35382327 PMCID: PMC8973113 DOI: 10.1021/acsomega.1c06869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
This study demonstrated a facile ionization method with the use of real samples for the ionization of their main compositions at ambient conditions for mass spectrometric analysis. Analyte ions derived from the real samples were readily observed in the mass spectrum when placing the samples close (≤1 mm) to the inlet of the mass spectrometer applied with a high voltage. No additional accessories such as an ionization emitter, a plasma generator, or a high voltage power supply were required for this approach. Ionization of semivolatiles derived from the samples occurred between the samples and the inlet of the mass spectrometer presumably owing to the dielectric breakdown induced by the electric field provided by the mass spectrometer. Real samples including plants, medicine tablets, and gloves with contaminants were used as the model samples. The putative ionization mechanisms are also discussed in this study.
Collapse
Affiliation(s)
- De-Yi Huang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Applied Chemistry, National Chiao Tung
University, Hsinchu 300, Taiwan
| | - Jia-Jen Tsai
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Applied Chemistry, National Chiao Tung
University, Hsinchu 300, Taiwan
| | - Yu-Chie Chen
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Applied Chemistry, National Chiao Tung
University, Hsinchu 300, Taiwan
- International
College of Semiconductor Technology, National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
6
|
Huang DY, Wang MJ, Wu JJ, Chen YC. Ionization of Volatile Organics and Nonvolatile Biomolecules Directly from a Titanium Slab for Mass Spectrometric Analysis. Molecules 2021; 26:molecules26226760. [PMID: 34833852 PMCID: PMC8623480 DOI: 10.3390/molecules26226760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) and electrospray ionization (ESI)-MS can cover the analysis of analytes from low to high polarities. Thus, an ion source that possesses these two ionization functions is useful. Atmospheric surface-assisted ionization (ASAI), which can be used to ionize polar and nonpolar analytes in vapor, liquid, and solid forms, was demonstrated in this study. The ionization of analytes through APCI or ESI was induced from the surface of a metal substrate such as a titanium slab. ASAI is a contactless approach operated at atmospheric pressure. No electric contacts nor any voltages were required to be applied on the metal substrate during ionization. When placing samples with high vapor pressure in condensed phase underneath a titanium slab close to the inlet of the mass spectrometer, analytes can be readily ionized and detected by the mass spectrometer. Furthermore, a sample droplet (~2 μL) containing high-polarity analytes, including polar organics and biomolecules, was ionized using the titanium slab. One titanium slab is sufficient to induce the ionization of analytes occurring in front of a mass spectrometer applied with a high voltage. Moreover, this ionization method can be used to detect high volatile or polar analytes through APCI-like or ESI-like processes, respectively.
Collapse
Affiliation(s)
- De-Yi Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Meng-Jiy Wang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan;
| | - Jih-Jen Wu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 700, Taiwan;
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence: ; Tel.: +886-3-5131527; Fax: +886-3-5723764
| |
Collapse
|
7
|
Li W, Yao YN, Wu L, Wang L, Hu B. Contactless electrospray ionization mass spectrometry for direct detection of analytes in living organisms. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4539. [PMID: 32677755 DOI: 10.1002/jms.4539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/26/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
In this study, we developed contactless electrospray ionization mass spectrometry (ESI-MS) for in vivo analysis of living organisms in different applications. The in vivo sampling and direct analysis processess of living organisms were integrated into an operation that only requires the organism close to MS inlet that was applied to a high voltage. Living plants and animals were directly induced to generate spray ionization. Direct detection and in vivo monitoring of metabolites and chemical residues in various living organisms were successfully demonstrated. Analysis of a single sample could be completed within 30 s. Overall, contactless ESI-MS provides an attractive in vivo method to straightforward investigation of living organisms.
Collapse
Affiliation(s)
- Wen Li
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Ya-Nan Yao
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, China
| | - Lin Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, China
| | - Lei Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, China
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Wu ML, Wu YC, Chen YC. Detection of pesticide residues on intact tomatoes by carbon fiber ionization mass spectrometry. Anal Bioanal Chem 2019; 411:1095-1105. [PMID: 30613840 DOI: 10.1007/s00216-018-1539-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 01/18/2023]
Abstract
Trace and toxic pesticide residues may still remain on crops after harvest. Thus, maximum residual levels (MRLs) of pesticides on crops have been regulated. To determine whether the remaining pesticide residue level is below MRL, time-consuming sample pretreatment is needed prior to analysis of crop samples by suitable analytical tools. By elimination of sample pretreatment steps, a high-throughput method can be developed to determine the presence of pesticide residues directly on intact crops. Carbon fiber ionization mass spectrometry (CFI-MS) is effective in determining analytes with different polarities in solid, liquid, and vapor phases in open air. Moreover, the vapor derived from solid or liquid samples possessing high vapor pressure can be readily detected by CFI-MS. The setup of CFI-MS is straightforward. A carbon fiber (diameter of ~ 10 μm and length of ~ 1 cm) is placed close (~ 1 mm) to the inlet of the mass spectrometer applied with a high voltage (- 4.5 kV). No direct electrical contact applied on the carbon fiber is required. When placing the sample with certain vapor pressure underneath the carbon fiber, analyte ions derived from the sample can be readily detected by the mass spectrometer. Given that most pesticides possess a certain vapor pressure (~ 1.33 × 10-5-~ 1.33 × 10-4 Pa), we herein develop a qualitative and quantitative analysis method to determine pesticide residues on intact fruits such as tomato based on CFI-MS without requiring any sample pretreatment. Atrazine, ametryn, carbofuran, chlorpyrifos, isoprocarb, and methomyl were selected as model samples. Low limits of detection (at nM range) were achieved for the model pesticides using the current approach. Moreover, we demonstrated that the precision and accuracy of quantitative analysis of ~ 5% and ~ 2%, respectively, could be achieved using this approach. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Min-Li Wu
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hseuch Road, Hsinchu, 300, Taiwan
| | - Yi-Cheng Wu
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hseuch Road, Hsinchu, 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hseuch Road, Hsinchu, 300, Taiwan.
| |
Collapse
|
9
|
Chen TY, Wu ML, Chen YC. Ultrasonication-assisted spray ionization-based micro-reactors for online monitoring of fast chemical reactions by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:26-34. [PMID: 30407688 DOI: 10.1002/jms.4307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 06/08/2023]
Abstract
Microfluidics can be used to handle relatively small volumes of samples and to conduct reactions in microliter-sized volumes. Electrospray ionization can couple microfluidics with mass spectrometry (MS) to monitor chemical reactions online. However, fabricating microfluidic chips is time-consuming. We herein propose the use of a micro-reactor that is sustained by two capillaries and an ultrasonicator. The inlets of the capillaries were individually immersed to two different sample vials that were subjected to the ultrasonicator. The tapered outlets of the two capillaries were placed cross with an angle of ~60° close to the inlet of the mass spectrometer to fuse the eluents. On the basis of capillary action and ultrasonication, the samples from the two capillaries can be continuously directed to the capillary outlets and fuse simultaneously to generate gas phase ions for MS analysis through ultrasonication-assisted spray ionization (UASI). Any electric contact applied on the capillaries is not required. Nevertheless, UASI spray derived from the eluents can readily occur in front of the mass spectrometer. That is, a micro-reactor was created from the fusing of the eluent containing different reactants from these two UASI capillaries, allowing reactions to be conducted in situ. The solvent in the fused droplets was evaporated quickly, and the product ions could be immediately observed by MS because of the extreme rise in the concentration of the reactants. For proof of concept, pyrazole synthesis reaction and cortisone derivatization by Girard T reagent were selected as the model reactions. The results demonstrated the feasibility of using UASI-based micro-reactor for online MS analysis to detect reaction intermediates and products.
Collapse
Affiliation(s)
- Te-Yu Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Min-Li Wu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan
| |
Collapse
|
10
|
Li L, Li W, Hu B. Electrostatic field-induced tip-electrospray ionization mass spectrometry for direct analysis of raw food materials. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:73-80. [PMID: 30422380 DOI: 10.1002/jms.4309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
Rapid characterization of metabolites and risk compounds such as chemical residues and natural toxins in raw food materials such as vegetables, meats, and edible living plants and animals plays an important part in ensuing food quality and safety. To rapidly characterize the analytes in raw food materials, it is essential to develop in situ method for directly analyzing raw food materials. In this work, raw food materials including biological tissues and living samples were placed between an electrode and mass spectrometric (MS) inlet under a strong electrostatic field; analytes were rapidly induced to generate electrospray ionization (ESI) from the sample tip by adding a drop of solvent onto the sample. Therefore, the electrostatic field-induced tip-ESI-MS allows raw samples to avoid contacting high voltage, and thus this method has the advantage for in vivo analysis of food living plants and animals. Metabolite profiling, residues of pesticides and veterinary drugs, and natural toxins from raw food materials have been successfully detected. The analytical performances, including the linear ranges, sensitivity, and reproducibility, were investigated for direct sample analysis. The ionization mechanism of electrostatic field-induced tip-ESI was also discussed in this work.
Collapse
Affiliation(s)
- Lei Li
- Institute of Mass Spectrometer and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| | - Wen Li
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, 510632, China
| | - Bin Hu
- Institute of Mass Spectrometer and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
11
|
Wu ML, Chen TY, Chen YC, Chen YC. Carbon Fiber Ionization Mass Spectrometry for the Analysis of Analytes in Vapor, Liquid, and Solid Phases. Anal Chem 2017; 89:13458-13465. [DOI: 10.1021/acs.analchem.7b03736] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Min-Li Wu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Te-Yu Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yen-Chun Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
12
|
Meher AK, Chen YC. Electrospray Modifications for Advancing Mass Spectrometric Analysis. ACTA ACUST UNITED AC 2017; 6:S0057. [PMID: 28573082 DOI: 10.5702/massspectrometry.s0057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/30/2016] [Indexed: 11/23/2022]
Abstract
Generation of analyte ions in gas phase is a primary requirement for mass spectrometric analysis. One of the ionization techniques that can be used to generate gas phase ions is electrospray ionization (ESI). ESI is a soft ionization method that can be used to analyze analytes ranging from small organics to large biomolecules. Numerous ionization techniques derived from ESI have been reported in the past two decades. These ion sources are aimed to achieve simplicity and ease of operation. Many of these ionization methods allow the flexibility for elimination or minimization of sample preparation steps prior to mass spectrometric analysis. Such ion sources have opened up new possibilities for taking scientific challenges, which might be limited by the conventional ESI technique. Thus, the number of ESI variants continues to increase. This review provides an overview of ionization techniques based on the use of electrospray reported in recent years. Also, a brief discussion on the instrumentation, underlying processes, and selected applications is also presented.
Collapse
Affiliation(s)
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University
| |
Collapse
|
13
|
Affiliation(s)
- Patricia M Peacock
- First State IR, LLC , 118 Susan Drive, Hockessin, Delaware 19707, United States
| | - Wen-Jing Zhang
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
14
|
Meher AK, Chen YC. Combination of Raman Spectroscopy and Mass Spectrometry for Online Chemical Analysis. Anal Chem 2016; 88:9151-7. [PMID: 27571682 DOI: 10.1021/acs.analchem.6b02152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mass spectrometry (MS) and Raman spectroscopy are complementary analytical techniques used to provide information related to chemical structures and functional groups of target analytes. Each instrument provides specific chemical information. If these two analytical tools are coupled online, comprehensive structural information can be simultaneously collected from the analytes of interest without losing any important chemical information. Nevertheless, exploring a suitable interface for coupling of these analytical tools, which are governed with different operation principles, remains challenging. In this study, we used a small piece of tissue paper as an interface for hyphenating a Raman spectroscope and a mass spectrometer online. The paper played multiroles as sample loading substrate and an emitter to generate electrospray. Furthermore, it can facilitate surface-enhanced Raman spectroscopic analysis to improve analyte signals in Raman spectra. A sample droplet was placed on the tissue paper located close to the laser of the Raman spectroscope and the inlet of mass spectrometer. Raman spectra were first collected by the Raman spectroscope through laser irradiation followed by generation of electrospray on the edge of the paper for MS analysis. Positional isomers were used as model samples to demonstrate the effectiveness of the hyphenated analytical tool in distinguishing isomers. The feasibility of using this Raman-MS hyphenated technique for monitoring chemical reactions online in real time was also investigated.
Collapse
Affiliation(s)
- Anil Kumar Meher
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 300, Taiwan
| |
Collapse
|
15
|
Yang Y, Deng J. Analysis of pharmaceutical products and herbal medicines using ambient mass spectrometry. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Meher AK, Chen YC. Online monitoring of chemical reactions by polarization-induced electrospray ionization. Anal Chim Acta 2016; 937:106-12. [DOI: 10.1016/j.aca.2016.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 01/09/2023]
|
17
|
Hu J, Jiang XX, Wang J, Guan QY, Zhang PK, Xu JJ, Chen HY. Synchronized Polarization Induced Electrospray: Comprehensively Profiling Biomolecules in Single Cells by Combining both Positive-Ion and Negative-Ion Mass Spectra. Anal Chem 2016; 88:7245-51. [DOI: 10.1021/acs.analchem.6b01490] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jun Hu
- State Key
Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Sciences, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Xiao Jiang
- State Key
Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Sciences, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiang Wang
- State Key
Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Sciences, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qi-Yuan Guan
- State Key
Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Sciences, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Pan-Ke Zhang
- State Key
Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Sciences, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key
Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Sciences, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key
Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Sciences, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Affiliation(s)
- Julia Laskin
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K8-88, Richland, WA 99352
| | - Ingela Lanekoff
- Department of Chemistry-BMC, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| |
Collapse
|
19
|
Field-induced wooden-tip electrospray ionization mass spectrometry for high-throughput analysis of herbal medicines. Anal Chim Acta 2015; 887:127-137. [PMID: 26320794 DOI: 10.1016/j.aca.2015.06.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 12/22/2022]
Abstract
This study demonstrates the first application of field-induced wooden-tip electrospray ionization (ESI) mass spectrometry (MS) for high-throughput analysis of herbal medicines. By application of an opposite and sample-contactless high voltage on the MS inlet rather than wooden tips, a high-throughput analysis device is easily set up, and a relatively fast analysis speed of 6 s per sample was successfully achieved. In addition, fast polarity switching between positive and negative ion detection mode is readily accomplished, which provides more complete chemical information for quality assessment and control of herbal medicines. By using the proposed method, various active ingredients present in different herbal medicines were rapidly detected, and the obtained mass spectra were served as the samples' fingerprints for tracing the origins, establishing the authenticity, and assessing the quality consistency and stability of herbal medicines. Our experimental results demonstrated that field-induced wooden-tip ESI-MS is a desirable method for high-throughput analysis of herbal medicines, with promising prospects for rapidly differentiating the origin, determining the authenticity, and assessing the overall quality of pharmaceuticals.
Collapse
|
20
|
Abstract
Tissue paper with fibrous structures is demonstrated to be the suitable sample loading substrate, sampling tool, and electrospray ionization (ESI) emitter for the analysis of analytes with a wide mass range in ESI mass spectrometry.
Collapse
Affiliation(s)
- Anil Kumar Meher
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 300
- Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 300
- Taiwan
| |
Collapse
|