1
|
Loubane G, Robert G, Firdaus SB, Venne P, Comeau C, Boudreault PL, Komba JE, Wagner JR, Naylor S, Klarskov K. Conundrum of dehydroascorbic acid and homocysteine thiolactone reaction products: Structural characterization and effect on peptide and protein N-homocysteinylation. Free Radic Biol Med 2023; 206:111-124. [PMID: 37385568 DOI: 10.1016/j.freeradbiomed.2023.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
An excessive blood level of homocysteine (HcySH) is associated with numerous cardiovascular and neurodegenerative disease conditions. It has been suggested that direct S-homocysteinylation, of proteins by HcySH, or N-homosteinylation by homocysteine thiolactone (HTL) could play a causative role in these maladies. In contrast, ascorbic acid (AA) plays a significant role in oxidative stress prevention. AA is oxidized to dehydroascorbic acid (DHA) and if not rapidly reduced back to AA may degrade to reactive carbonyl products. In the present work, DHA is shown to react with HTL to produce a spiro bicyclic ring containing a six-membered thiazinane-carboxylic acid moiety. This reaction product is likely formed by initial imine condensation and subsequent hemiaminal product followed by HTL ring opening and intramolecular nucleophilic attack of the resulting thiol anion to form the spiro product. The reaction product was determined to have an accurate mass of 291.0414 and a molecular composition C10H13NO7S containing five double bond equivalents. We structurally characterized the reaction product using a combination of accurate mass tandem mass spectrometry, 1D and 2D-nuclear magnetic resonance. We also demonstrated that formation of the reaction product prevented peptide and protein N-homocysteinylation by HTL using a model peptide and α-lactalbumin. Furthermore, the reaction product is formed in Jurkat cells when exposed to HTL and DHA.
Collapse
Affiliation(s)
- Ghizlane Loubane
- Département de Pharmacologie et Physiologie Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 2160 San Fernando Drive, Milwaukee, WI, 53122, USA
| | - Gabriel Robert
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 2160 San Fernando Drive, Milwaukee, WI, 53122, USA
| | - Syed Benazir Firdaus
- Département de Pharmacologie et Physiologie Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 2160 San Fernando Drive, Milwaukee, WI, 53122, USA
| | - Philippe Venne
- Département de Chimie, 2160 San Fernando Drive, Milwaukee, WI, 53122, USA
| | - Christian Comeau
- Département de Chimie, 2160 San Fernando Drive, Milwaukee, WI, 53122, USA
| | | | - Jeampy E Komba
- Département de Pharmacologie et Physiologie Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 2160 San Fernando Drive, Milwaukee, WI, 53122, USA
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 2160 San Fernando Drive, Milwaukee, WI, 53122, USA
| | - Stephen Naylor
- ReNeuroGen LLC, 2160 San Fernando Drive, Milwaukee, WI, 53122, USA
| | - Klaus Klarskov
- Département de Pharmacologie et Physiologie Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 2160 San Fernando Drive, Milwaukee, WI, 53122, USA.
| |
Collapse
|
2
|
Ahammer L, Unterhauser J, Eidelpes R, Meisenbichler C, Nothegger B, Covaciu CE, Cova V, Kamenik AS, Liedl KR, Breuker K, Eisendle K, Reider N, Letschka T, Tollinger M. Ascorbylation of a Reactive Cysteine in the Major Apple Allergen Mal d 1. Foods 2022; 11:2953. [PMID: 36230029 PMCID: PMC9562000 DOI: 10.3390/foods11192953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
The protein Mal d 1 is responsible for most allergic reactions to apples (Malus domestica) in the northern hemisphere. Mal d 1 contains a cysteine residue on its surface, with its reactive side chain thiol exposed to the surrounding food matrix. We show that, in vitro, this cysteine residue is prone to spontaneous chemical modification by ascorbic acid (vitamin C). Using NMR spectroscopy and mass spectrometry, we characterize the chemical structure of the cysteine adduct and provide a three-dimensional structural model of the modified apple allergen. The S-ascorbylated cysteine partially masks a major IgE antibody binding site on the surface of Mal d 1, which attenuates IgE binding in sera of apple-allergic patients. Our results illustrate, from a structural perspective, the role that chemical modifications of allergens with components of the natural food matrix can play.
Collapse
Affiliation(s)
- Linda Ahammer
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Jana Unterhauser
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Reiner Eidelpes
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Christina Meisenbichler
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Bettina Nothegger
- Department of Dermatology, Venerology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Claudia E. Covaciu
- Department of Dermatology, Venerology and Allergology, Central Teaching Hospital, 39100 Bolzano, Italy
| | - Valentina Cova
- Department of Applied Genomics and Molecular Biology, Laimburg Research Centre, 39040 Auer, Italy
| | - Anna S. Kamenik
- Institute of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Klaus Eisendle
- Department of Dermatology, Venerology and Allergology, Central Teaching Hospital, 39100 Bolzano, Italy
| | - Norbert Reider
- Department of Dermatology, Venerology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Letschka
- Department of Applied Genomics and Molecular Biology, Laimburg Research Centre, 39040 Auer, Italy
| | - Martin Tollinger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Ahuié Kouakou G, Gagnon H, Lacasse V, Wagner JR, Naylor S, Klarskov K. Dehydroascorbic acid S-Thiolation of peptides and proteins: Role of homocysteine and glutathione. Free Radic Biol Med 2019; 141:233-243. [PMID: 31228548 DOI: 10.1016/j.freeradbiomed.2019.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 01/05/2023]
Abstract
Ascorbic acid (vitamin C) plays a significant role in the prevention of oxidative stress. In this process, ascorbate is oxidized to dehydroascorbate (DHA). We have investigated the impact of DHA on peptide/protein intramolecular disulfide formation as well as S-glutathionylation and S-homocysteinylation. S-glutathionylation of peptides/proteins is a reversible, potential regulatory mechanism in oxidative stress. Although the exact role of protein S-homocysteinylation is unknown, it has been proposed to be of importance in pathobiological processes such as onset of cardiovascular disease. Using an in vitro model system, we demonstrate that DHA causes disulfide bond formation within the active site of recombinant human glutaredoxin (Grx-1). DHA also facilities the formation of S-glutathionylation and S-homocysteinylation of a model peptide (AcFHACAAK) as well as Grx-1. We discuss the possible mechanisms of peptide/protein S-thiolation, which can occur either via thiol exchange or a thiohemiketal intermediate. A thiohemiketal DHA-peptide adduct was detected by mass spectrometry and its location on the peptide/protein cysteinyl thiol group was unambiguously confirmed by tandem mass spectrometry. This demonstrates that peptide/protein S-thiolation mediated by DHA is not limited to thiol exchange reactions but also takes place directly via the formation of a thiohemiketal peptide intermediate. Finally, we investigated a potential reducing role of glutathione (GSH) in the presence of S-homocysteinylated peptide/protein adducts. S-homocysteinylated AcFHACAAK, human hemoglobin α-chain and Grx-1 were incubated with GSH. Both peptide and proteins were reduced, and homocysteine replaced with GS-adducts by thiol exchange, as a function of time.
Collapse
Affiliation(s)
- Grace Ahuié Kouakou
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Canada
| | - Hugo Gagnon
- PhenoSwitch Bioscience, 975 Rue Léon-Trépanier, Sherbrooke, QC J1G 5J6, Canada
| | - Vincent Lacasse
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Canada
| | - J Richard Wagner
- Département de Médecine Nucléaire et radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Canada
| | - Stephen Naylor
- ReNeuroGen LLC, 2160 San Fernando Drive, Elm Grove, WI, 53122, USA
| | - Klaus Klarskov
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Canada.
| |
Collapse
|
4
|
Smirnoff N. Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free Radic Biol Med 2018; 122:116-129. [PMID: 29567393 PMCID: PMC6191929 DOI: 10.1016/j.freeradbiomed.2018.03.033] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023]
Abstract
Ascorbic acid is synthesised by eukaryotes, the known exceptions being primates and some other animal groups which have lost functional gulonolactone oxidase. Prokaryotes do not synthesise ascorbate and do not need an ascorbate supply, so the functions that are essential for mammals and plants are not required or are substituted by other compounds. The ability of ascorbate to donate electrons enables it to act as a free radical scavenger and to reduce higher oxidation states of iron to Fe2+. These reactions are the basis of its biological activity along with the relative stability of the resulting resonance stabilised monodehydroascorbate radical. The importance of these properties is emphasised by the evolution of at least three biosynthetic pathways and production of an ascorbate analogue, erythroascorbate, by fungi. The iron reducing activity of ascorbate maintains the reactive centre Fe2+ of 2-oxoglutarate-dependent dioxygenases (2-ODDs) thus preventing inactivation. These enzymes have diverse functions and, recently, the possibility that ascorbate status in mammals could influence 2-ODDs involved in histone and DNA demethylation thereby influencing stem cell differentiation and cancer has been uncovered. Ascorbate is involved in iron uptake and transport in plants and animals. While the above biochemical functions are shared between mammals and plants, ascorbate peroxidase (APX) is an enzyme family limited to plants and photosynthetic protists. It provides these organisms with increased capacity to remove H2O2 produced by photosynthetic electron transport and photorespiration. The Fe reducing activity of ascorbate enables hydroxyl radical production (pro-oxidant effect) and the reactivity of dehydroascorbate (DHA) and reaction of its degradation products with proteins (dehydroascorbylation and glycation) is potentially damaging. Ascorbate status influences gene expression in plants and mammals but at present there is little evidence that it acts as a specific signalling molecule. It most likely acts indirectly by influencing the redox state of thiols and 2-ODD activity. However, the possibility that dehydroascorbylation is a regulatory post-translational protein modification could be explored.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|