1
|
Wu YC, Zhang XW, Huang YC, Lu IC. Advancing carbohydrate quantification in MALDI mass spectrometry by the rapidly freeze-drying droplet (RFDD) method. Analyst 2024; 149:1766-1773. [PMID: 38372348 DOI: 10.1039/d3an02201c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Quantitative carbohydrate analysis faces challenges in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), including insufficient sensitivity and inconsistent spatial distribution of ion intensity. This study introduces an innovative sample preparation approach, the Rapidly Freeze-Drying Droplet (RFDD) method, aimed at overcoming these challenges by enhancing the homogeneity of the sample morphology and signal intensity in MALDI. Compared to conventional preparation methods, the RFDD method reduces the laser energy threshold and demonstrates a remarkable increase in signal intensity for carbohydrates, facilitating the detection of high-molecular-weight polysaccharides (>10 kDa). The RFDD-prepared samples exhibit a uniformly distributed signal intensity that overcomes the 'sweet spot' issue in MALDI. The enhanced signal intensity and reproducibility lead to reliable quantitative analysis of carbohydrates, eliminating the need for expensive isotopic standards in each sample. A straightforward and accessible approach is presented for general laboratories, revolutionizing carbohydrate analysis in MALDI-MS.
Collapse
Affiliation(s)
- Yu-Cheng Wu
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan.
| | - Xin-Wen Zhang
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan.
| | - Yi-Ching Huang
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan.
| | - I-Chung Lu
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan.
| |
Collapse
|
2
|
Lu Y, Gu TJ, Shen RN, Zhang KL. Proton conduction and electrochemical glucose sensing property of a newly constructed Cu(II) coordination polymer. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Płaza A, Kołodziej A, Nizioł J, Ruman T. Laser Ablation Synthesis in Solution and Nebulization of Silver-109 Nanoparticles for Mass Spectrometry and Mass Spectrometry Imaging. ACS MEASUREMENT SCIENCE AU 2022; 2:14-22. [PMID: 36785587 PMCID: PMC9885948 DOI: 10.1021/acsmeasuresciau.1c00020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Preparation of monoisotopic silver-109 nanoparticles (109AgNPs) by pulsed fiber laser (PFL) ablation synthesis in solution (LASiS) with the use of a 2D galvoscanner (2D GS) is described. The procedure of covering of custom-made stainless-steel MALDI targets containing studied objects via nebulization is also presented. Examples of application of the new method (PFL-2D GS LASiS and nebulization) in mass spectrometry (MS) analyses and MS imaging (MSI) are shown. These include tests with a nonionic nucleoside and saccharide, ionic amino acids, and also a low-molecular-weight polymer. Fingerprint MS imaging is shown as an example of a fast and simple MSI procedure.
Collapse
Affiliation(s)
- Aneta Płaza
- Doctoral
School of Engineering and Technical Sciences at the Rzeszów
University of Technology, 8 Powstańców Warszawy Ave., Rzeszów 35-959, Poland
| | - Artur Kołodziej
- Doctoral
School of Engineering and Technical Sciences at the Rzeszów
University of Technology, 8 Powstańców Warszawy Ave., Rzeszów 35-959, Poland
| | - Joanna Nizioł
- Rzeszów
University of Technology, Faculty of Chemistry,
Inorganic and Analytical Chemistry Department, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| | - Tomasz Ruman
- Rzeszów
University of Technology, Faculty of Chemistry,
Inorganic and Analytical Chemistry Department, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| |
Collapse
|
4
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
5
|
ZHAO YZ, XU Y, GONG C, JU YR, LIU ZX, XU X. Analysis of Small Molecule Compounds by Matrix-assisted Laser Desorption Ionization Mass Spectrometry with Fe3O4 Nanoparticles as Matrix. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60074-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Nanoparticle-based surface assisted laser desorption ionization mass spectrometry: a review. Mikrochim Acta 2019; 186:682. [DOI: 10.1007/s00604-019-3770-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
|
7
|
Hu K, Lv Y, Ye F, Chen T, Zhao S. Boric-Acid-Functionalized Covalent Organic Framework for Specific Enrichment and Direct Detection of cis-Diol-Containing Compounds by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Anal Chem 2019; 91:6353-6362. [PMID: 30999744 DOI: 10.1021/acs.analchem.9b01376] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Design and synthesis of a novel matrix that serves as highly selective adsorption material are significant for the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis of small molecules in complicated biosamples. In this work, we presented a facile one-pot strategy for the synthesis of boric-acid-functionalized covalent organic frameworks (B-COFs) by using 2,4,6-trihydroxy-1,3,5-benzenetrialdehyde, benzidine, and 4-aminophenyl-boronic acid as ligands. Compared with bare COFs, the B-COFs have similar crystallinity, specific surface, and well-developed pore structure. The surface area and average pore size of B-COFs were 238.0 m2/g and 1.2 nm, respectively. The resulting material was used as an adsorbent for selective enrichment of cis-diol-containing compounds based on an affinity reaction between phenylboronic acid and cis-diol. Using luteolin, riboflavin, and pyrocatechol as model analytes, the enrichment ability of B-COFs as a matrix was examined by MALDI-TOF MS assay, and its high selectivity against target analytes was obtained in the presence of 100 times more anti-nonspecific compounds than that even in the complicated biosample. The limits of detection for luteolin, riboflavin, and pyrocatechol were as low as fg/mL with B-COF enrichment. The B-COFs were further employed and validated for specific enrichment and direct detection of target analytes with complex samples such as human serum, milk, and Capsicum samples. Large surface area, numerous boric-acid active sites, and super stability make B-COFs with high enrichment capacity, high selectivity and sensitivity, satisfying reproducibility, and excellent applicability in MALDI-TOF MS assays.
Collapse
Affiliation(s)
- Kun Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| | - Yuanxia Lv
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| | - Fanggui Ye
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| | - Tao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Pharmaceutical Science , Guangxi Normal University , Guilin 541004 , P. R. China
| |
Collapse
|
8
|
Olaitan AD, Ward S, Barnes LF, Yount JR, Zanca BA, Schwieg JI, McCoy AL, Molek KS. Small- and large-sized iron(II, III) oxide nanoparticles for surface-assisted laser desorption/ionization mass spectrometry of small biomolecules. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1887-1896. [PMID: 30067884 PMCID: PMC6743475 DOI: 10.1002/rcm.8249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 06/26/2018] [Accepted: 07/16/2018] [Indexed: 05/15/2023]
Abstract
RATIONALE Common surface-assisted laser desorption/ionization (SALDI) surfaces are functionalized to improve mass spectrometric detection. Such surfaces are selective to certain group(s) of compounds. The application of universal and sensitive SALDI surfaces with appropriate size/surface area is paramount. In this study, two different sizes/surface areas of Fe3 O4 are compared as SALDI surfaces. METHODS For accurate surface area comparisons, the physical properties of the Fe3 O4 nanoparticles used as SALDI surfaces were determined using scanning electron microscopy, X-ray diffractometry, and N2 Brunauer-Emmet-Teller adsorption techniques. SALDI mass spectrometry (MS) data were acquired using a time-of-flight (TOF) mass spectrometer operated in the linear mode and equipped with a 50-Hz pulsed nitrogen laser (at 337 nm). Small biomolecules (adenosine, glucose, sucrose, tryptophan, and tripeptide) and a real sample (human serum) were analyzed. RESULTS The average sizes/specific surface areas of the SALDI surfaces of the small- and large-sized Fe3 O4 nanoparticles were ~21 nm/~82 m2 /g and ~39 nm/~38 m2 /g, respectively. An overall ~2.0-fold enhancement in signal-to-noise ratios was observed for the ionic species of the analyzed biomolecules in SALDI-MS using small-sized Fe3 O4 in comparison to large-sized Fe3 O4 nanoparticles. MS sensitivity from adenosine calibration curves (concentration between 0.05 and 10.0 mM) was ~2.0-fold higher for small-sized than large-sized Fe3 O4 nanoparticles as SALDI surfaces. CONCLUSIONS We have shown that transition-metal oxides such as Fe3 O4 nanoparticles are suitable and efficient surfaces for SALDI-TOF-MS analysis of small biomolecules. We observed improvement in signal-to-noise ratios and detection sensitivity for the analyzed samples from SALDI surfaces using small-sized (possessing larger surface area) than large-sized Fe3 O4 nanoparticles.
Collapse
Affiliation(s)
- Abayomi D. Olaitan
- Department of Chemistry, University of West Florida, Pensacola, FL 32514
| | - Savanna Ward
- Department of Chemistry, University of West Florida, Pensacola, FL 32514
| | - Lauren F. Barnes
- Department of Chemistry, University of West Florida, Pensacola, FL 32514
| | - Joseph R. Yount
- Department of Chemistry, University of West Florida, Pensacola, FL 32514
| | - Bryan A. Zanca
- Department of Chemistry, University of West Florida, Pensacola, FL 32514
| | - Julia I. Schwieg
- Department of Chemistry, University of West Florida, Pensacola, FL 32514
| | - Alyssa L. McCoy
- Department of Chemistry, University of West Florida, Pensacola, FL 32514
| | - Karen S. Molek
- Department of Chemistry, University of West Florida, Pensacola, FL 32514
| |
Collapse
|
9
|
Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Mikrochim Acta 2018; 185:200. [DOI: 10.1007/s00604-018-2687-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
|
10
|
Luo X, Tue PT, Sugiyama K, Takamura Y. High yield matrix-free ionization of biomolecules by pulse-heating ion source. Sci Rep 2017; 7:15170. [PMID: 29123135 PMCID: PMC5680173 DOI: 10.1038/s41598-017-15259-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/23/2017] [Indexed: 11/18/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry has been widely used for biomolecular analysis. However, with conventional MALDI, it is difficult to analyse low-molecular-weight compounds because of the interference of matrix ion signals. Here, we report a matrix-free on-chip pulse-heating desorption/ionization (PHDI) method for a wide range of biomolecules ranging from low molecular-weight substances such as glycine (75.7 Da) to large species such as α-lactalbumin (14.2 kDa). Compared with the conventional MALDI, the matrix-free PHDI method affords high yields of singly charged ions with very less fragmentation and background using only one-pulse without light (laser). We believe that this new technique for matrix-free biomolecules analysis would overcome the limitations of the conventional MALDI.
Collapse
Affiliation(s)
- Xi Luo
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa, 923-1211, Japan
| | - Phan-Trong Tue
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa, 923-1211, Japan
| | - Kiyotaka Sugiyama
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa, 923-1211, Japan
| | - Yuzuru Takamura
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa, 923-1211, Japan.
| |
Collapse
|
11
|
Calvano CD, Cataldi TRI, Kögel JF, Monopoli A, Palmisano F, Sundermeyer J. Structural Characterization of Neutral Saccharides by Negative Ion MALDI Mass Spectrometry Using a Superbasic Proton Sponge as Deprotonating Matrix. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1666-1675. [PMID: 28466430 DOI: 10.1007/s13361-017-1679-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 05/22/2023]
Abstract
The superbasic proton sponge 1,8-bis(tripyrrolidinylphosphazenyl)naphthalene (TPPN) has been successfully employed for the structural characterization of neutral saccharides, cyclodextrins, and saccharide alditols by matrix assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). Owing to its inherently high basicity, TPPN is capable of deprotonating neutral carbohydrates (M) providing an efficient and simple way to produce gas-phase [M - H]- ions. Highly informative negative ions MS/MS spectra showing several diagnostic fragment ions were obtained, mainly A-type cross-ring and C-type glycosidic cleavages. Indeed, cross-ring cleavages of monosaccharides with formation of 0,2A, 0,3A, 2,4A, 2,5A, 3,5A, and 0,3X product ions dominate the MS/MS spectra. A significant difference between reducing (e.g., lactose, maltose) and non-reducing disaccharides (e.g., sucrose, trehalose) was observed. Though disaccharides with the anomeric positions blocked give rise to deprotonated molecules, [M - H]-, at m/z 341.1, reducing ones exhibited a peak at m/z 340.1, most likely as radical anion, [M - H•- H]-•. The superiority of TPPN was clearly demonstrated by comparison with well recognized matrices, such as 2,5-dihydroxybenzoic acid and 2',4',6'-trihydroxyacetophenone (positive ion mode) and nor-harman (negative ion mode). MALDI MS/MS experiments on isotopically labeled sugars have greatly supported the interpretation of plausible fragmentation pathways. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy.
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Julius F Kögel
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032, Marburg, Germany
- FB Biologie/Chemie, Universität Bremen, Leobener Str. im NW2, 28359, Bremen, Germany
| | - Antonio Monopoli
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Francesco Palmisano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70126, Bari, Italy
| | - Jorge Sundermeyer
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032, Marburg, Germany
| |
Collapse
|
12
|
Surface tuning laser desorption/ionization mass spectrometry (STLDI-MS) for the analysis of small molecules using quantum dots. Anal Bioanal Chem 2017; 409:4943-4950. [DOI: 10.1007/s00216-017-0433-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/20/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022]
|
13
|
Nanomaterials as Assisted Matrix of Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for the Analysis of Small Molecules. NANOMATERIALS 2017; 7:nano7040087. [PMID: 28430138 PMCID: PMC5408179 DOI: 10.3390/nano7040087] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI), a soft ionization method, coupling with time-of-flight mass spectrometry (TOF MS) has become an indispensible tool for analyzing macromolecules, such as peptides, proteins, nucleic acids and polymers. However, the application of MALDI for the analysis of small molecules (<700 Da) has become the great challenge because of the interference from the conventional matrix in low mass region. To overcome this drawback, more attention has been paid to explore interference-free methods in the past decade. The technique of applying nanomaterials as matrix of laser desorption/ionization (LDI), also called nanomaterial-assisted laser desorption/ionization (nanomaterial-assisted LDI), has attracted considerable attention in the analysis of low-molecular weight compounds in TOF MS. This review mainly summarized the applications of different types of nanomaterials including carbon-based, metal-based and metal-organic frameworks as assisted matrices for LDI in the analysis of small biological molecules, environmental pollutants and other low-molecular weight compounds.
Collapse
|
14
|
Mechanisms of Nanophase-Induced Desorption in LDI-MS. A Short Review. NANOMATERIALS 2017; 7:nano7040075. [PMID: 28368330 PMCID: PMC5408167 DOI: 10.3390/nano7040075] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/26/2022]
Abstract
Nanomaterials are frequently used in laser desorption ionization mass spectrometry (LDI-MS) as DI enhancers, providing excellent figures of merit for the analysis of low molecular weight organic molecules. In recent years, literature on this topic has benefited from several studies assessing the fundamental aspects of the ion desorption efficiency and the internal energy transfer, in the case of model analytes. Several different parameters have been investigated, including the intrinsic chemical and physical properties of the nanophase (chemical composition, thermal conductivity, photo-absorption efficiency, specific heat capacity, phase transition point, explosion threshold, etc.), along with morphological parameters such as the nanophase size, shape, and interparticle distance. Other aspects, such as the composition, roughness and defects of the substrate supporting the LDI-active nanophases, the nanophase binding affinity towards the target analyte, the role of water molecules, have been taken into account as well. Readers interested in nanoparticle based LDI-MS sub-techniques (SALDI-, SELDI-, NALDI- MS) will find here a concise overview of the recent findings in the specialized field of fundamental and mechanistic studies, shading light on the desorption ionization phenomena responsible of the outperforming MS data offered by these techniques.
Collapse
|
15
|
Affiliation(s)
- Patricia M Peacock
- First State IR, LLC , 118 Susan Drive, Hockessin, Delaware 19707, United States
| | - Wen-Jing Zhang
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
16
|
Du R, Zhu L, Gan J, Wang Y, Qiao L, Liu B. Ultrasensitive Detection of Low-Abundance Protein Biomarkers by Mass Spectrometry Signal Amplification Assay. Anal Chem 2016; 88:6767-72. [PMID: 27253396 DOI: 10.1021/acs.analchem.6b01063] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A mass spectrometry signal amplification method is developed for the ultrasensitive and selective detection of low-abundance protein biomarkers by utilizing tag molecules on gold nanoparticles (AuNPs). EpCAM and thrombin as model targets are captured by specific aptamers immobilized on the AuNPs. With laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS), the mass tag molecules are detected to represent the protein biomarkers. Benefiting from the MS signal amplification, the assay can achieve a limit of detection of 100 aM. The method is further applied to detect thrombin in fetal bovine serum and EpCAM in cell lysates to demonstrate its selectivity and feasibility in complex biological samples. With the high sensitivity and specificity, the protocol shows great promise for providing a new route to single-cell analysis and early disease diagnosis.
Collapse
Affiliation(s)
- Ruijun Du
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Institutes of Biomedical Sciences, Fudan University , Handan Road 220, Shanghai 200433, China
| | - Lina Zhu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Institutes of Biomedical Sciences, Fudan University , Handan Road 220, Shanghai 200433, China
| | - Jinrui Gan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Institutes of Biomedical Sciences, Fudan University , Handan Road 220, Shanghai 200433, China
| | - Yuning Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Institutes of Biomedical Sciences, Fudan University , Handan Road 220, Shanghai 200433, China
| | - Liang Qiao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Institutes of Biomedical Sciences, Fudan University , Handan Road 220, Shanghai 200433, China.,Shanghai Stomatological Hospital, Fudan University , East Beijing Road 356, Shanghai 200001, China
| | - Baohong Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Institutes of Biomedical Sciences, Fudan University , Handan Road 220, Shanghai 200433, China.,Shanghai Stomatological Hospital, Fudan University , East Beijing Road 356, Shanghai 200001, China
| |
Collapse
|