1
|
Westhoff P, Weber APM. The role of metabolomics in informing strategies for improving photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1696-1713. [PMID: 38158893 DOI: 10.1093/jxb/erad508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Photosynthesis plays a vital role in acclimating to and mitigating climate change, providing food and energy security for a population that is constantly growing, and achieving an economy with zero carbon emissions. A thorough comprehension of the dynamics of photosynthesis, including its molecular regulatory network and limitations, is essential for utilizing it as a tool to boost plant growth, enhance crop yields, and support the production of plant biomass for carbon storage. Photorespiration constrains photosynthetic efficiency and contributes significantly to carbon loss. Therefore, modulating or circumventing photorespiration presents opportunities to enhance photosynthetic efficiency. Over the past eight decades, substantial progress has been made in elucidating the molecular basis of photosynthesis, photorespiration, and the key regulatory mechanisms involved, beginning with the discovery of the canonical Calvin-Benson-Bassham cycle. Advanced chromatographic and mass spectrometric technologies have allowed a comprehensive analysis of the metabolite patterns associated with photosynthesis, contributing to a deeper understanding of its regulation. In this review, we summarize the results of metabolomics studies that shed light on the molecular intricacies of photosynthetic metabolism. We also discuss the methodological requirements essential for effective analysis of photosynthetic metabolism, highlighting the value of this technology in supporting strategies aimed at enhancing photosynthesis.
Collapse
Affiliation(s)
- Philipp Westhoff
- CEPLAS Plant Metabolomics and Metabolism Laboratory, Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Annibal A, Ripa R, Ballhysa E, Latza C, Hochhard N, Antebi A. Mass spectrometric characterization of cyclic dinucleotides (CDNs) in vivo. Anal Bioanal Chem 2021; 413:6457-6468. [PMID: 34476522 PMCID: PMC8412381 DOI: 10.1007/s00216-021-03628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/03/2022]
Abstract
Cyclic dinucleotides (CDNs) are key secondary messenger molecules produced by cyclic dinucleotide synthases that trigger various cellular signaling cascades from bacteria to vertebrates. In mammals, cyclic GMP-AMP synthase (cGAS) has been shown to bind to intracellular DNA and catalyze the production of the dinucleotide 2′3′ cGAMP, which signals downstream effectors to regulate immune function, interferon signaling, and the antiviral response. Despite the importance of CDNs, sensitive and accurate methods to measure their levels in vivo are lacking. Here, we report a novel LC-MS/MS method to quantify CDNs in vivo. We characterized the mass spectrometric behavior of four different biologically relevant CDNs (c-di-AMP, c-di-GMP, 3′3′ cGAMP, 2′3′ cGAMP) and provided a means of visually representing fragmentation resulting from collision-induced dissociation at different energies using collision energy breakdown graphs. We then validated the method and quantified CDNs in two in vivo systems, the bacteria Escherichia coli OP50 and the killifish Nothobranchius furzeri. We found that optimization of LC-MS/MS parameters is crucial to sensitivity and accuracy. These technical advances should help illuminate physiological and pathological roles of these CDNs in in vivo settings. Graphical abstract ![]()
Collapse
Affiliation(s)
- Andrea Annibal
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Roberto Ripa
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Eugen Ballhysa
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Christian Latza
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Nadine Hochhard
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Regulation of the one carbon folate cycle as a shared metabolic signature of longevity. Nat Commun 2021; 12:3486. [PMID: 34108489 PMCID: PMC8190293 DOI: 10.1038/s41467-021-23856-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
The metabolome represents a complex network of biological events that reflects the physiologic state of the organism in health and disease. Additionally, specific metabolites and metabolic signaling pathways have been shown to modulate animal ageing, but whether there are convergent mechanisms uniting these processes remains elusive. Here, we used high resolution mass spectrometry to obtain the metabolomic profiles of canonical longevity pathways in C. elegans to identify metabolites regulating life span. By leveraging the metabolomic profiles across pathways, we found that one carbon metabolism and the folate cycle are pervasively regulated in common. We observed similar changes in long-lived mouse models of reduced insulin/IGF signaling. Genetic manipulation of pathway enzymes and supplementation with one carbon metabolites in C. elegans reveal that regulation of the folate cycle represents a shared causal mechanism of longevity and proteoprotection. Such interventions impact the methionine cycle, and reveal methionine restriction as an underlying mechanism. This comparative approach reveals key metabolic nodes to enhance healthy ageing.
Collapse
|
4
|
Koseki K, Maekawa Y, Bito T, Yabuta Y, Watanabe F. High-dose folic acid supplementation results in significant accumulation of unmetabolized homocysteine, leading to severe oxidative stress in Caenorhabditis elegans. Redox Biol 2020; 37:101724. [PMID: 32961438 PMCID: PMC7509461 DOI: 10.1016/j.redox.2020.101724] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
Abstract
Using Caenorhabditis elegans as a model animal, we evaluated the effects of chronical supplementation with high-dose folic acid on physiological events such as life cycle and egg-laying capacity and folate metabolism. Supplementation of high-dose folic acid significantly reduced egg-laying capacity. The treated worms contained a substantial amount of unmetabolized folic acid and exhibited a significant downregulation of the mRNAs of cobalamin-dependent methionine synthase reductase and 5,10-methylenetetrahydrofolate reductase. In vitro experiments showed that folic acid significantly inhibited the activity of cobalamin-dependent methionine synthase involved in the metabolism of both folate and methionine. In turn, these metabolic disorders induced the accumulation of unmetabolized homocysteine, leading to severe oxidative stress in worms. These results were similar to the phenomena observed in mammals during folate deficiency. High-dose folic acid supplementation reduced egg-laying ability in worms. Substantial amounts of folic acid and homocysteine were accumulated in the worms. The mRNA expression of methylenetetrahydrofolate reductase was reduced in the treated worms. Folic acid was a potent inhibitor of cobalamin-dependent methionine synthase in in vitro tests. High-dose folic acid supplementation in worms resulted in severe oxidative stress.
Collapse
Affiliation(s)
- Kyohei Koseki
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan
| | - Yukina Maekawa
- Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan
| | - Tomohiro Bito
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan; Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan
| | - Yukinori Yabuta
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan; Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan
| | - Fumio Watanabe
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan; Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-Minami, Tottori City, Tottori, 680-8553, Japan.
| |
Collapse
|
5
|
Dabrowski R, Ripa R, Latza C, Annibal A, Antebi A. Optimization of mass spectrometry settings for steroidomic analysis in young and old killifish. Anal Bioanal Chem 2020; 412:4089-4099. [PMID: 32333075 PMCID: PMC7320053 DOI: 10.1007/s00216-020-02640-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/02/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022]
Abstract
Steroids are essential structural components of cell membranes that organize lipid rafts and modulate membrane fluidity. They can also act as signalling molecules that work through nuclear and G protein–coupled receptors to impact health and disease. Notably, changes in steroid levels have been implicated in metabolic, cardiovascular and neurodegenerative diseases, but how alterations in the steroid pool affect ageing is less well understood. One of the major challenges in steroidomic analysis is the ability to simultaneously detect and distinguish various steroids due to low in vivo concentrations and naturally occurring stereoisomers. Here, we established such a method to study the mass spectrometry behaviour of nine sterols/steroids and related molecules (cholesterol precursors: squalene, lanosterol; sterol metabolites; 7 Dehydrocholesterol, 24, 25 and 27 Hydroxycholesterol; and steroids: progesterone, testosterone, and corticosterone) during ageing in the African turquoise killifish, a new model for studying vertebrate longevity. We find that levels of all tested steroids change significantly with age in multiple tissues, suggesting that specific steroids could be used as biomarkers of ageing. These findings pave the way for use of Nothobranchius furzeri as a novel model organism to unravel the role of sterols/steroids in ageing and age-related diseases. Graphical abstract ![]()
Collapse
Affiliation(s)
- Rahel Dabrowski
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9 b, 50931, Cologne, Germany
| | - Roberto Ripa
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9 b, 50931, Cologne, Germany
| | - Christian Latza
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9 b, 50931, Cologne, Germany
| | - Andrea Annibal
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9 b, 50931, Cologne, Germany.
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9 b, 50931, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Josef-Stelzmann-Strasse 26, 50931, Cologne, Germany.
| |
Collapse
|