1
|
Towards In-Situ Geochemical Analysis of Planetary Rocks and Soils by Laser Ablation/Ionisation Time-of-Flight Mass Spectrometry. UNIVERSE 2022. [DOI: 10.3390/universe8080410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spectroscopic instruments were a part of payloads on orbiter and lander missions and delivered vast data sets to explore minerals, elements and molecules on air-less rocky planets, asteroids and comets on global and local scales. To answer current space science questions, the chemical composition of planetary rocks and soils at grain scale is required, as well as measurements of element (isotope) concentrations down to the part per million or lower. Only mass spectrometric methods equipped with laser sampling ion sources can deliver the necessary information. Laser sampling techniques can reduce the dimensions of the investigated sample material down to micrometre scale, allowing for the composition analysis of grain-sized objects or thin mineral layers with sufficiently high spatial resolution, such that important geological processes can be recognised and studied as they progressed in time. We describe the performance characteristics, when applied to meteorite and geological samples, of a miniaturised laser ablation/ionisation mass spectrometer (named LMS) system that has been developed in our group. The main advantages of the LMS instrument over competing techniques are illustrated by examples of high spatial (lateral and vertical) resolution studies in different meteorites, terrestrial minerals and fossil-like structures in ancient rocks for most elements of geochemical interest. Top-level parameters, such as dimension, weight, and power consumption of a possible flight design of the LMS system are presented as well.
Collapse
|
2
|
Lukmanov RA, Tulej M, Wiesendanger R, Riedo A, Grimaudo V, Ligterink NFW, de Koning C, Neubeck A, Wacey D, Wurz P. Multiwavelength Ablation/Ionization and Mass Spectrometric Analysis of 1.88 Ga Gunflint Chert. ASTROBIOLOGY 2022; 22:369-386. [PMID: 35196459 DOI: 10.1089/ast.2019.2201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The investigation of chemical composition on planetary bodies without significant sample processing is of importance for nearly every mission aimed at robotic exploration. Moreover, it is a necessary tool to achieve the longstanding goal of finding evidence of life beyond Earth, for example, possibly preserved microbial remains within martian sediments. Our Laser Ablation Ionization Mass Spectrometer (LIMS) is a compact time-of-flight mass spectrometer intended to investigate the elemental, isotope, and molecular composition of a wide range of solid samples, including e.g., low bulk density organic remains in microfossils. Here, we present an overview of the instrument and collected chemical spectrometric data at the micrometer level from a Precambrian chert sample (1.88 Ga Gunflint Formation, Ontario, Canada), which is considered to be a martian analogue. Data were collected from two distinct zones-a silicified host area and a carbon-bearing microfossil assemblage zone. We performed these measurements using an ultrafast pulsed laser system (pulse width of ∼180 fs) with multiple wavelengths (infrared [IR]-775 nm, ultraviolet [UV]-387 nm, UV-258 nm) and using a pulsed high voltage on the mass spectrometer to reveal small organic signals. We investigated (1) the chemical composition of the sample and (2) the different laser wavelengths' performance to provide chemical depth profiles in silicified media. Our key findings are as follows: (1) microfossils from the Gunflint chert reveal a distinct chemical composition compared with the host mineralogy (we report the identification of 24 elements in the microfossils); (2) detection of the pristine composition of microfossils and co-occurring fine chemistry (rare earth elements) requires utilization of the depth profiling measurement protocol; and (3) our results show that, for analysis of heterogeneous material from siliciclastic deposits, siliceous sinters, and cherts, the most suitable wavelength for laser ablation/Ionization is UV-258 nm.
Collapse
Affiliation(s)
- Rustam A Lukmanov
- Space Research & Planetary Sciences (WP), Physics Institute, University of Bern, Bern, Switzerland
| | - Marek Tulej
- Space Research & Planetary Sciences (WP), Physics Institute, University of Bern, Bern, Switzerland
| | - Reto Wiesendanger
- Space Research & Planetary Sciences (WP), Physics Institute, University of Bern, Bern, Switzerland
| | - Andreas Riedo
- Space Research & Planetary Sciences (WP), Physics Institute, University of Bern, Bern, Switzerland
| | - Valentine Grimaudo
- Space Research & Planetary Sciences (WP), Physics Institute, University of Bern, Bern, Switzerland
| | - Niels F W Ligterink
- Space Research & Planetary Sciences (WP), Physics Institute, University of Bern, Bern, Switzerland
| | - Coenraad de Koning
- Space Research & Planetary Sciences (WP), Physics Institute, University of Bern, Bern, Switzerland
| | - Anna Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - David Wacey
- Centre for Microscopy, Characterization and Analysis, The University of Western Australia, Perth, Australia
| | - Peter Wurz
- Space Research & Planetary Sciences (WP), Physics Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Lukmanov RA, Riedo A, Wacey D, Ligterink NFW, Grimaudo V, Tulej M, de Koning C, Neubeck A, Wurz P. On Topological Analysis of fs-LIMS Data. Implications for in Situ Planetary Mass Spectrometry. Front Artif Intell 2021; 4:668163. [PMID: 34497998 PMCID: PMC8419467 DOI: 10.3389/frai.2021.668163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
In this contribution, we present results of non-linear dimensionality reduction and classification of the fs laser ablation ionization mass spectrometry (LIMS) imaging dataset acquired from the Precambrian Gunflint chert (1.88 Ga) using a miniature time-of-flight mass spectrometer developed for in situ space applications. We discuss the data generation, processing, and analysis pipeline for the classification of the recorded fs-LIMS mass spectra. Further, we define topological biosignatures identified for Precambrian Gunflint microfossils by projecting the recorded fs-LIMS intensity space into low dimensions. Two distinct subtypes of microfossil-related spectra, a layer of organic contamination and inorganic quartz matrix were identified using the fs-LIMS data. The topological analysis applied to the fs-LIMS data allows to gain additional knowledge from large datasets, formulate hypotheses and quickly generate insights from spectral data. Our contribution illustrates the utility of applying spatially resolved mass spectrometry in combination with topology-based analytics in detecting signatures of early (primitive) life. Our results indicate that fs-LIMS, in combination with topological methods, provides a powerful analytical framework and could be applied to the study of other complex mineralogical samples.
Collapse
Affiliation(s)
- Rustam A Lukmanov
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| | - Andreas Riedo
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| | - David Wacey
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Niels F W Ligterink
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| | - Valentine Grimaudo
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| | - Marek Tulej
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| | - Coenraad de Koning
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| | - Anna Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - Peter Wurz
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Riedo A, Lukmanov R, Grimaudo V, de Koning C, Ligterink NFW, Tulej M, Wurz P. Improved plasma stoichiometry recorded by laser ablation ionization mass spectrometry using a double-pulse femtosecond laser ablation ion source. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9094. [PMID: 33821534 DOI: 10.1002/rcm.9094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Femtosecond (fs) laser ablation ion sources have allowed for improved measurement capabilities and figures of merit of laser ablation based spectroscopic and mass spectrometric measurement techniques. However, in comparison to longer pulse laser systems, the ablation plume from fs lasers is observed to be colder, which favors the formation of polyatomic species. Such species can limit the analytical capabilities of a system due to isobaric interferences. In this contribution, a double-pulse femtosecond (DP-fs) laser ablation ion source is coupled to our miniature Laser Ablation Ionization Mass Spectrometry (LIMS) system and its impact on the recorded stoichiometry of the generated plasma is analyzed in detail. METHODS A DP-fs laser ablation ion source (temporal delays of +300 to - 300 ps between pulses) is connected to our miniature LIMS system. The first pulse is used for material removal from the sample surface and the second for post-ionization of the ablation plume. To characterize the performance, parametric double- and single-pulse studies (temporal delays, variation of the pulse energy, voltage applied on detector system) were conducted on three different NIST SRM alloy samples (SRM 661, 664 and 665). RESULTS At optimal instrument settings for both the double-pulse laser ablation ion source and the detector voltage, relative sensitivity coefficients were observed to be closer (factor of ~2) to 1 compared with single-pulse measurements. Furthermore, the optimized settings worked for all three samples, meaning no further optimization was necessary when changing to another alloy sample material during this study. CONCLUSIONS The application of a double-pulse femtosecond laser ablation ion source resulted in the recording of improved stoichiometry of the generated plasma using our LIMS measurement technique. This is of great importance for the quantitative chemical analysis of more complex solid materials, e.g., geological samples or metal alloys, especially when aiming for standard-free quantification procedures for the determination of the chemical composition.
Collapse
Affiliation(s)
- Andreas Riedo
- Physics Institute, Space Research and Planetary Sciences, University of Bern, Sidlerstrasse 5, Bern, 3012, Switzerland
| | - Rustam Lukmanov
- Physics Institute, Space Research and Planetary Sciences, University of Bern, Sidlerstrasse 5, Bern, 3012, Switzerland
| | - Valentine Grimaudo
- Physics Institute, Space Research and Planetary Sciences, University of Bern, Sidlerstrasse 5, Bern, 3012, Switzerland
| | - Coenraad de Koning
- Physics Institute, Space Research and Planetary Sciences, University of Bern, Sidlerstrasse 5, Bern, 3012, Switzerland
| | - Niels F W Ligterink
- Physics Institute, Space Research and Planetary Sciences, University of Bern, Sidlerstrasse 5, Bern, 3012, Switzerland
| | - Marek Tulej
- Physics Institute, Space Research and Planetary Sciences, University of Bern, Sidlerstrasse 5, Bern, 3012, Switzerland
| | - Peter Wurz
- Physics Institute, Space Research and Planetary Sciences, University of Bern, Sidlerstrasse 5, Bern, 3012, Switzerland
| |
Collapse
|
5
|
Current Progress in Femtosecond Laser Ablation/Ionisation Time-of-Flight Mass Spectrometry. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The last decade witnessed considerable progress in the development of laser ablation/ionisation time-of-flight mass spectrometry (LI-TOFMS). The improvement of both the laser ablation ion sources employing femtosecond lasers and the method of ion coupling with the mass analyser led to highly sensitive element and isotope measurements, minimisation of matrix effects, and reduction of various fractionation effects. This improvement of instrumental performance can be attributed to the progress in laser technology and accompanying commercialisation of fs-laser systems, as well as the availability of fast electronics and data acquisition systems. Application of femtosecond laser radiation to ablate the sample causes negligible thermal effects, which in turn allows for improved resolution of chemical surface imaging and depth profiling. Following in the footsteps of its predecessor ns-LIMS, fs-LIMS, which employs fs-laser ablation ion sources, has been developed in the last two decades as an important method of chemical analysis and will continue to improve its performance in subsequent decades. This review discusses the background of fs-laser ablation, overviews the most relevant instrumentation and emphasises their performance figures, and summarizes the studies on several applications, including geochemical, semiconductor, and bio-relevant materials. Improving the chemical analysis is expected by the implementation of laser pulse sequences or pulse shaping methods and shorter laser wavelengths providing current progress in mass resolution achieved in fs-LIMS. In parallel, advancing the methods of data analysis has the potential of making this technique very attractive for 3D chemical analysis with micrometre lateral and sub-micrometre vertical resolution.
Collapse
|