1
|
Bertrand E, Gabelica V. Thermometer Ions, Internal Energies, and In-Source Fragmentation in Ambient Ionization. MASS SPECTROMETRY REVIEWS 2025. [PMID: 39871425 DOI: 10.1002/mas.21924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/29/2025]
Abstract
Ionization and fragmentation are at the core of mass spectrometry. But they are not necessarily separated in space, as in-source fragmentation can also occur. Here, we survey the literature published since our 2005 review on the internal energy and fragmentation in electrospray ionization sources. We present new thermometer molecules to diagnose and quantify source heating, provide tables of recommended threshold (E0) and appearance energies (Eapp) for the survival yield method, and attempt to compare the softness of a variety of ambient pressure ionization sources. The droplet size distribution and desolvation dynamics play a major role: lower average internal energies are obtained when the ions remain protected by a solvation shell and spend less time nakedly exposed to activating conditions in the transfer interface. Methods based on small droplet formation without charging can thus be softer than electrospray. New dielectric barrier discharge sources can gas-phase ionize small molecules while conferring barely more internal energy than electrospray ionization. However, the tuning of the entire source interface often has an even greater influence on ion internal energies and fragmentation than on the ionization process itself. We hope that this review will facilitate further research to control and standardize in-source ion activation conditions, and to ensure the transferability of data and research results in mass spectrometry.
Collapse
Affiliation(s)
- Emilie Bertrand
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Valérie Gabelica
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Mikawy NN, Roy HA, Israel E, Hamlow LA, Zhu Y, Berden G, Oomens J, Frieler CE, Rodgers MT. 5-Halogenation of Uridine Suppresses Protonation-Induced Tautomerization and Enhances Glycosidic Bond Stability of Protonated Uridine: Investigations via IRMPD Action Spectroscopy, ER-CID Experiments, and Theoretical Calculations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2165-2180. [PMID: 36279168 DOI: 10.1021/jasms.2c00231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Uridine (Urd), a canonical nucleoside of RNA, is the most commonly modified nucleoside among those that occur naturally. Uridine has also been an important target for the development of modified nucleoside analogues for pharmaceutical applications. In this work, the effects of 5-halogenation of uracil on the structures and glycosidic bond stabilities of protonated uridine nucleoside analogues are examined using tandem mass spectrometry and computational methods. Infrared multiple photon dissociation (IRMPD) action spectroscopy experiments and theoretical calculations are performed to probe the structural influences of these modifications. Energy-resolved collision-induced dissociation experiments along with survival yield analyses are performed to probe glycosidic bond stability. The measured IRMPD spectra are compared to linear IR spectra predicted for the stable low-energy conformations of these species computed at the B3LYP/6-311+G(d,p) level of theory to determine the conformations experimentally populated. Spectral signatures in the IR fingerprint and hydrogen-stretching regions allow the 2,4-dihydroxy protonated tautomers (T) and O4- and O2-protonated conformers to be readily differentiated. Comparisons between the measured and predicted spectra indicate that parallel to findings for uridine, both T and O4-protonated conformers of the 5-halouridine nucleoside analogues are populated, whereas O2-protonated conformers are not. Variations in yields of the spectral signatures characteristic of the T and O4-protonated conformers indicate that the extent of protonation-induced tautomerization is suppressed as the size of the halogen substituent increases. Trends in the energy-dependence of the survival yield curves find that 5-halogenation strengthens the glycosidic bond and that the enhancement in stability increases with the size of the halogen substituent.
Collapse
Affiliation(s)
- Neven N Mikawy
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H A Roy
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - E Israel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - L A Hamlow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Y Zhu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - G Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - C E Frieler
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
3
|
Influence of 2′-fluoro modification on glycosidic bond stabilities and gas-phase ion structures of protonated pyrimidine nucleosides. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2018.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Devereaux ZJ, Zhu Y, Rodgers MT. Relative glycosidic bond stabilities of naturally occurring methylguanosines: 7-methylation is intrinsically activating. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:16-29. [PMID: 30189754 DOI: 10.1177/1469066718798097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The frequency and diversity of posttranscriptional modifications add an additional layer of chemical complexity beyond canonical nucleic acid sequence. Methylations are particularly frequently occurring and often highly conserved throughout the kingdoms of life. However, the intricate functions of these modified nucleic acid constituents are often not fully understood. Systematic foundational research that reduces systems to their minimum constituents may aid in unraveling the complexities of nucleic acid biochemistry. Here, we examine the relative intrinsic N-glycosidic bond stabilities of guanosine and five naturally occurring methylguanosines (O2'-, 1-, 7-, N2,N2-di-, and N2,N2,O2'-trimethylguanosine) probed by energy-resolved collision-induced dissociation tandem mass spectrometry and complemented with quantum chemical calculations. Apparent glycosidic bond stability is generally found to increase with increasing methyl substitution (canonical < mono- < di- < trimethylated). Many biochemical transformations, including base excision repair mechanisms, involve protonation and/or noncovalent interactions to increase nucleobase leaving-group ability. The protonated gas-phase methylguanosines require less activation energy for glycosidic bond cleavage than their sodium cationized forms. However, methylation at the N7 position intrinsically weakens the glycosidic bond of 7-methylguanosine more significantly than subsequent cationization, and thus 7-methylguanosine is suggested to be under perpetually activated conditions. N7 methylation also alters the nucleoside geometric preferences relative to the other systems, including the nucleobase orientation in the neutral form, sugar puckering in the protonated form, and the preferred protonation and sodium cation binding sites. All of the methylated guanosines examined here are predicted to have proton affinities and gas-phase basicities that exceed that of canonical guanosine. Additionally, the proton affinity and gas-phase basicity trends exhibit a roughly inverse correlation with the apparent glycosidic bond stabilities.
Collapse
Affiliation(s)
| | - Y Zhu
- Department of Chemistry, Wayne State University, Detroit, USA
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, USA
| |
Collapse
|
5
|
Zhu Y, Yang Z, Rodgers MT. Influence of Linkage Stereochemistry and Protecting Groups on Glycosidic Bond Stability of Sodium Cationized Glycosyl Phosphates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2602-2613. [PMID: 28924832 DOI: 10.1007/s13361-017-1780-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/05/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
Energy-resolved collision-induced dissociation (ER-CID) experiments of sodium cationized glycosyl phosphate complexes, [GP x +Na]+, are performed to elucidate the effects of linkage stereochemistry (α versus β), the geometry of the leaving groups (1,2-cis versus 1,2-trans), and protecting groups (cyclic versus non-cyclic) on the stability of the glycosyl phosphate linkage via survival yield analyses. A four parameter logistic dynamic fitting model is used to determine CID50% values, which correspond to the level of rf excitation required to produce 50% dissociation of the precursor ion complexes. Present results suggest that dissociation of 1,2-trans [GP x +Na]+ occurs via a McLafferty-type rearrangement that is facilitated by a syn orientation of the leaving groups, whereas dissociation of 1,2-cis [GPx+Na]+ is more energetic as it involves the formation of an oxocarbenium ion intermediate. Thus, the C1-C2 configuration plays a major role in determining the stability/reactivity of glycosyl phosphate stereoisomers. For 1,2-cis anomers, the cyclic protecting groups at the C4 and C6 positions stabilize the glycosidic bond, whereas for 1,2-trans anomers, the cyclic protecting groups at the C4 and C6 positions tend to activate the glycosidic bond. The C3 O-benzyl (3 BnO) substituent is key to determining whether the sugar or phosphate moiety retains the sodium cation upon CID. For 1,2-cis anomers, the 3 BnO substituent weakens the glycosidic bond, whereas for 1,2-trans anomers, the 3 BnO substituent stabilizes the glycosidic bond. The C2 O-benzyl substituent does not significantly impact the glycosidic bond stability regardless of its orientation. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Zhihua Yang
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
6
|
Akinyemi TE, Wu RR, Nei YW, Cunningham NA, Roy HA, Steill JD, Berden G, Oomens J, Rodgers MT. Influence of Transition Metal Cationization versus Sodium Cationization and Protonation on the Gas-Phase Tautomeric Conformations and Stability of Uracil: Application to [Ura+Cu] + and [Ura+Ag]<sup/>. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2438-2453. [PMID: 28895083 DOI: 10.1007/s13361-017-1771-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/22/2017] [Accepted: 07/22/2017] [Indexed: 05/17/2023]
Abstract
The gas-phase conformations of transition metal cation-uracil complexes, [Ura+Cu]+ and [Ura+Ag]+, were examined via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra were measured over the IR fingerprint and hydrogen-stretching regions. Structures and linear IR spectra of the stable tautomeric conformations of these complexes were initially determined at the B3LYP/6-31G(d) level. The four most stable structures computed were also examined at the B3LYP/def2-TZVPPD level to improve the accuracy of the predicted IR spectra. Two very favorable modes of binding are found for [Ura+Cu]+ and [Ura+Ag]+ that involve O2N3 bidentate binding to the 2-keto-4-hydroxy minor tautomer and O4 monodentate binding to the canonical 2,4-diketo tautomer of Ura. Comparisons between the measured IRMPD and calculated IR spectra enable elucidation of the conformers present in the experiments. These comparisons indicate that both favorable binding modes are represented in the experimental tautomeric conformations of [Ura+Cu]+ and [Ura+Ag]+. B3LYP suggests that Cu+ exhibits a slight preference for O4 binding, whereas Ag+ exhibits a slight preference for O2N3 binding. In contrast, MP2 suggests that both Cu+ and Ag+ exhibit a more significant preference for O2N3 binding. The relative band intensities suggest that O4 binding conformers comprise a larger portion of the population for [Ura+Ag]+ than [Ura+Cu]+. The dissociation behavior and relative stabilities of the [Ura+M]+ complexes, M+ = Cu+, Ag+, H+, and Na+) are examined via energy-resolved collision-induced dissociation experiments. The IRMPD spectra, dissociation behaviors, and binding preferences of Cu+ and Ag+ are compared with previous and present results for those of H+ and Na+. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- T E Akinyemi
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - R R Wu
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Y-W Nei
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - N A Cunningham
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - H A Roy
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - J D Steill
- Institute for Molecules and Materials, FELIX Facility, Radboud University Nijmegen, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - G Berden
- Institute for Molecules and Materials, FELIX Facility, Radboud University Nijmegen, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Facility, Radboud University Nijmegen, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
7
|
Zhu Y, Roy HA, Cunningham NA, Strobehn SF, Gao J, Munshi MU, Berden G, Oomens J, Rodgers MT. IRMPD Action Spectroscopy, ER-CID Experiments, and Theoretical Studies of Sodium Cationized Thymidine and 5-Methyluridine: Kinetic Trapping During the ESI Desolvation Process Preserves the Solution Structure of [Thd+Na]<sup/>. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2423-2437. [PMID: 28836109 DOI: 10.1007/s13361-017-1753-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/01/2017] [Accepted: 07/02/2017] [Indexed: 05/25/2023]
Abstract
Thymidine (dThd) is a fundamental building block of DNA nucleic acids, whereas 5-methyluridine (Thd) is a common modified nucleoside found in tRNA. In order to determine the conformations of the sodium cationized thymine nucleosides [dThd+Na]+ and [Thd+Na]+ produced by electrospray ionization, their infrared multiple photon dissociation (IRMPD) action spectra are measured. Complementary electronic structure calculations are performed to determine the stable low-energy conformations of these complexes. Geometry optimizations and frequency analyses are performed at the B3LYP/6-311+G(d,p) level of theory, whereas energies are calculated at the B3LYP/6-311+G(2d,2p) level of theory. As protonation preferentially stabilizes minor tautomers of dThd and Thd, tautomerization facilitated by Na+ binding is also considered. Comparisons of the measured IRMPD and computed IR spectra find that [dThd+Na]+ prefers tridentate (O2,O4',O5') coordination to the canonical 2,4-diketo form of dThd with thymine in a syn orientation. In contrast, [Thd+Na]+ prefers bidentate (O2,O2') coordination to the canonical 2,4-diketo tautomer of Thd with thymine in an anti orientation. Although 2,4-dihydroxy tautomers and O2 protonated thymine nucleosides coexist in the gas phase, no evidence for minor tautomers is observed for the sodium cationized species. Consistent with experimental observations, the computational results confirm that the sodium cationized thymine nucleosides exhibit a strong preference for the canonical form of the thymine nucleobase. Survival yield analyses based on energy-resolved collision-induced dissociation (ER-CID) experiments suggest that the relative stabilities of protonated and sodium cationized dThd and Thd follow the order [dThd+H]+ < [Thd+H]+ < [dThd+Na]+ < [Thd+Na]+. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - H A Roy
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - N A Cunningham
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - S F Strobehn
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - J Gao
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - M U Munshi
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
8
|
Kuki Á, Nagy L, Zsuga M, Kéki S. An approach to estimate the activation energies of fragmentation occurring in quadrupole collision cell of the mass spectrometer. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:672-680. [PMID: 28732136 DOI: 10.1002/jms.3971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
The classical semi-quantitative Rice-Ramsperger-Kassel (RRK) theory was used for the calculation of the internal energy dependent reaction rate coefficient of the collision-induced dissociation (CID) reaction in tandem mass spectrometry (MS/MS). The survival yield (SY) was determined by the reaction rate equation for the unimolecular dissociation of the precursor ion. The parameters of the rate equation and the RRK model were approximated based on the instrumental conditions. We used the RRK equation for the description of the basic behavior of the fragmentation reactions and for the estimation of the internal energy of the precursor ion. The critical energies for fragmentation (Eo ) of various molecules were estimated and compared with those reported in the literature. The model was extended by taking into account the initial internal energy distribution of the ions created in the ion source. It must be emphasized that our approach provides only a crude estimate for Eo .
Collapse
Affiliation(s)
- Ákos Kuki
- Department of Applied Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Lajos Nagy
- Department of Applied Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Miklós Zsuga
- Department of Applied Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Sándor Kéki
- Department of Applied Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| |
Collapse
|
9
|
Zhu Y, Roy HA, Cunningham NA, Strobehn SF, Gao J, Munshi MU, Berden G, Oomens J, Rodgers MT. Effects of sodium cationization versus protonation on the conformations and N-glycosidic bond stabilities of sodium cationized Urd and dUrd: solution conformation of [Urd+Na] + is preserved upon ESI. Phys Chem Chem Phys 2017; 19:17637-17652. [PMID: 28665436 DOI: 10.1039/c7cp02377d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Uridine (Urd) is one of the naturally occurring pyrimidine nucleosides of RNA. 2'-Deoxyuridine (dUrd) is a naturally occurring modified form of Urd, but is not one of the canonical DNA nucleosides. In order to understand the effects of sodium cationization on the conformations and energetics of Urd and dUrd, infrared multiple photon dissociation (IRMPD) action spectroscopy experiments and density functional theory (DFT) calculations are performed. By comparing the calculated IR spectra of [Urd+Na]+ and [dUrd+Na]+ with the measured IRMPD spectra, the stable low-energy conformers populated in the experiments are determined. Anti oriented bidentate O2 and O2' binding conformers of [Urd+Na]+ are the dominant conformers populated in the experiments, whereas syn oriented tridentate O2, O4', and O5' binding conformers of [dUrd+Na]+ are dominantly populated in the experiments. The 2'-hydroxyl substituent of Urd stabilizes the anti oriented O2 binding conformers of [Urd+Na]+. Significant differences between the measured IRMPD and calculated IR spectra for complexes of [Urd+Na]+ and [dUrd+Na]+ involving minor tautomeric forms of the nucleobase make it obvious that none are populated in the experiments. Survival yield analyses based on energy-resolved collision-induced dissociation (ER-CID) experiments suggest that the relative stabilities of protonated and sodium cationized Urd and dUrd follow the order: [dUrd+H]+ < [Urd+H]+ < [dUrd+Na]+ < [Urd+Na]+. The 2'-deoxy modification is found to weaken the glycosidic bond of dUrd versus that of Urd for the sodium cationized uridine nucleosides.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - H A Roy
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - N A Cunningham
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - S F Strobehn
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - J Gao
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - M U Munshi
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - G Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
10
|
Zhu Y, Hamlow LA, He CC, Lee JK, Gao J, Berden G, Oomens J, Rodgers MT. Gas-Phase Conformations and N-Glycosidic Bond Stabilities of Sodium Cationized 2'-Deoxyguanosine and Guanosine: Sodium Cations Preferentially Bind to the Guanine Residue. J Phys Chem B 2017; 121:4048-4060. [PMID: 28355483 DOI: 10.1021/acs.jpcb.7b02906] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
2'-Deoxyguanosine (dGuo) and guanosine (Guo) are fundamental building blocks of DNA and RNA nucleic acids. In order to understand the effects of sodium cationization on the gas-phase conformations and stabilities of dGuo and Guo, infrared multiple photon dissociation (IRMPD) action spectroscopy experiments and complementary electronic structure calculations are performed. The measured IRMPD spectra of [dGuo+Na]+ and [Guo+Na]+ are compared to calculated IR spectra predicted for the stable low-energy structures computed for these species to determine the most favorable sodium cation binding sites, identify the structures populated in the experiments, and elucidate the influence of the 2'-hydroxyl substituent on the structures and IRMPD spectral features. These results are compared with those from a previous IRMPD study of the protonated guanine nucleosides to elucidate the differences between sodium cationization and protonation on structure. Energy-resolved collision-induced dissociation (ER-CID) experiments and survival yield analyses of protonated and sodium cationized dGuo and Guo are performed to compare the effects of these cations toward activating the N-glycosidic bonds of these nucleosides. For both [dGuo+Na]+ and [Guo+Na]+, the gas-phase structures populated in the experiments are found to involve bidentate binding of the sodium cation to the O6 and N7 atoms of guanine, forming a 5-membered chelation ring, with guanine found in both anti and syn orientations and C2'-endo (2T3 or 3T2) puckering of the sugar. The ER-CID results, IRMPD yields and the computed C1'-N9 bond lengths indicate that sodium cationization activates the N-glycosidic bond less effectively than protonation for both dGuo and Guo. The 2'-hydroxyl substituent of Guo is found to impact the preferred structures very little except that it enables a 2'OH···3'OH hydrogen bond to be formed, and stabilizes the N-glycosidic bond relative to that of dGuo in both the sodium cationized and protonated complexes.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - L A Hamlow
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - C C He
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J K Lee
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J Gao
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University , Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University , Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University , Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
11
|
Zhu Y, Hamlow LA, He CC, Strobehn SF, Lee JK, Gao J, Berden G, Oomens J, Rodgers MT. Influence of Sodium Cationization versus Protonation on the Gas-Phase Conformations and Glycosidic Bond Stabilities of 2'-Deoxyadenosine and Adenosine. J Phys Chem B 2016; 120:8892-904. [PMID: 27494378 DOI: 10.1021/acs.jpcb.6b06105] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The influence of noncovalent interactions with a sodium cation on the gas-phase structures and N-glycosidic bond stabilities of 2'-deoxyadenosine (dAdo) and adenosine (Ado), [dAdo+Na](+) and [Ado+Na](+), are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and energy-resolved collision-induced dissociation (ER-CID) experiments. ER-CID experiments are also performed on the protonated forms of these nucleosides, [dAdo+H](+) and [Ado+H](+), for comparison purposes. Complementary electronic structure calculations are performed to determine the structures and relative stabilities of the stable low-energy conformations of the sodium cationized nucleoside complexes and to predict their IR spectra. Comparison between the measured IRMPD action spectra and calculated IR spectra enables the conformations of the sodium cationized nucleosides present in the experiments to be elucidated. The influence of sodium cationization versus protonation on the structures and IR spectra is elucidated by comparison to IRMPD and theoretical results previously reported for the protonated forms of these nucleosides. The influence of sodium cationization versus protonation on the glycosidic bond stability of the adenine nucleosides is determined by comparison of the ER-CID behavior of these systems. All structures present in the experiments are found to involve tridentate binding of Na(+) to the N3, O4', and O5' atoms forming favorable 5- and 6-membered chelation rings, which requires that adenine rotate to a syn configuration. This mode of sodium cation binding results in moderate flexibility of the sugar moiety such that the sugar puckering of the conformations present varies between C2'-endo and O4'-endo. Sodium cationization is found to be less effective toward activating the N-glycosidic bond than protonation for both dAdo and Ado. Both the IRMPD yields and ER-CID behavior indicate that the 2'-hydroxyl substituent of Ado stabilizes the N-glycosidic bond relative to that of dAdo.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - L A Hamlow
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - C C He
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - S F Strobehn
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J K Lee
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J Gao
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - G Berden
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
12
|
De Petris A, Crestoni ME, Pirolli A, Rovira C, Iglesias-Fernández J, Chiavarino B, Ragno R, Fornarini S. Binding of azole drugs to heme: A combined MS/MS and computational approach. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Kirschbaum RW, Hausmann M, Boltalina OV, Strauss SH, Drewello T. Energy-dependent gas-phase fragmentation of fluorofullerene multiply charged anions (MCAs). Phys Chem Chem Phys 2015; 17:23052-8. [DOI: 10.1039/c5cp03112e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fragmentation behavior of fluorofullerene di- and trianions is governed by their electronic stability. Ions with the less stable odd-electron configuration dissociate into species with the more stable even-electron configuration.
Collapse
Affiliation(s)
- Rolf W. Kirschbaum
- Physical Chemistry I
- Department of Chemistry and Pharmacy
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
| | - Markus Hausmann
- Physical Chemistry I
- Department of Chemistry and Pharmacy
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
| | | | | | - Thomas Drewello
- Physical Chemistry I
- Department of Chemistry and Pharmacy
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
| |
Collapse
|
14
|
Rondeau D, Drahos L, Vékey K. Internal energy distribution in electrospray ionization: towards the evaluation of a thermal-like distribution from the multiple-collision model. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1273-1284. [PMID: 24760568 DOI: 10.1002/rcm.6899] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 02/07/2014] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE The internal energy deposition in ions that cross the desolvation region of an electrospray ionization (ESI) source affects the mass spectra that are obtained using in-source collision-induced dissociation (CID) or in tandem mass spectrometry (MS/MS) mode. It is thus important to evaluate the internal energy distributions of the ions in different parts of an ESI mass spectrometer. METHODS The desolvation region is considered as a collision zone and a partially elastic multiple-collision model is used to account for the accumulation of internal energy in the ions. The ion survival yields (SY(Theo) of the theoretical mass spectra calculated by MassKinetics software are fitted with the experimental ion survival yields (SY(Exp)) of the substituted benzylpyridinium cations that have been obtained with an ESI source interfaced with a quadrupole mass spectrometer. The theoretical parameters used for fitting the calculation data with the experimental results are the center-of-mass collision energy (Ecom ) of the colliding ions and a term related to the pressure of the desolvation area of the ESI interface. RESULTS In the proposed model, an average number of 'effective' collisions of close to 30 in the desolvation area is employed. The voltages applied to the orifice of this interface are correlated to a theoretical initial kinetic energy (E(init,Kin)) in the laboratory frame of the ions. In the present case, these theoretical initial kinetic energies range from 5.5 to 9 eV. The internal energy distributions evaluated from this model resemble the thermal distributions of ions having 'characteristic temperatures' between 1020 and 1550 K, and the results of calculations show that the mean internal energy of the ions increases linearly with the orifice voltage. CONCLUSIONS The model used in this study can account for the energy build-up of the ions in an ESI interface and allows the change in the internal energy distribution of the electrosprayed ions in different regions of a mass spectrometer to be evaluated.
Collapse
Affiliation(s)
- David Rondeau
- Institut d'Electronique et de Télécommunication de Rennes (IETR UMR CNRS 6164), Université de Rennes 1, Campus de Beaulieu, 263 Avenue du General Leclerc, 35042, Rennes Cedex, France; Université de Bretagne Occidentale, Département de Chimie, 6 avenue le Gorgeu, 29238, Brest Cedex 03, France
| | | | | |
Collapse
|
15
|
Indelicato S, Bongiorno D, Indelicato S, Drahos L, Turco Liveri V, Turiák L, Vékey K, Ceraulo L. Degrees of freedom effect on fragmentation in tandem mass spectrometry of singly charged supramolecular aggregates of sodium sulfonates. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:379-383. [PMID: 23494795 DOI: 10.1002/jms.3161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/08/2012] [Accepted: 12/20/2012] [Indexed: 06/01/2023]
Abstract
The characteristic collision energy (CCE) to obtain 50% fragmentation of positively and negatively single charged noncovalent clusters has been measured. CCE was found to increase linearly with the degrees of freedom (DoF) of the precursor ion, analogously to that observed for synthetic polymers. This suggests that fragmentation behavior (e.g. energy randomization) in covalent molecules and clusters are similar. Analysis of the slope of CCE with molecular size (DoF) indicates that activation energy of fragmentation of these clusters (loss of a monomer unit) is similar to that of the lowest energy fragmentation of protonated leucine-enkephalin. Positively and negatively charged aggregates behave similarly, but the slope of the CCE versus DoF plot is steeper for positive ions, suggesting that these are more stable than their negative counterparts.
Collapse
Affiliation(s)
- Serena Indelicato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, V.le delle Scienze-Ed, 16-90128, Palermo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Biri B, Nagy L, Kuki Á, Tőke ER, Deák G, Zsuga M, Kéki S. Collision-induced dissociation study of poly(2-ethyl-2-oxazoline) using survival yields and breakdown curves. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:16-23. [PMID: 23303744 DOI: 10.1002/jms.3105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 06/01/2023]
Abstract
Poly(2-ethyl-2-oxazoline), a synthetic polymer was analysed by mass spectrometry using different ion sources. Two distributions could be identified in the mass spectra which related to two different polymer series (one with hydrogen and hydroxyl end-groups and the other with methyl and hydroxyl end-groups). The fragmentation behaviour of the protonated oligomers was studied in a quadrupole time-of-flight mass spectrometer (MS) with electrospray, atmospheric pressure chemical ionization and direct analysis in real time soft ionization techniques. Three product ion series were identified in the MS/MS spectra independently of the ion source used. Based on the results, a mechanism was proposed for the dissociation by means of the accurate mass of the product ions, pseudo MS(3) experiments and the energy dependence of the product ion intensity, i.e. breakdown curves. The survival yield method was used to highlight the correlation between the size of the oligomers and the laboratory frame collision energy.
Collapse
Affiliation(s)
- Bernadett Biri
- Department of Applied Chemistry, University of Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
17
|
Kuki Á, Nagy L, Shemirani G, Memboeuf A, Drahos L, Vékey K, Zsuga M, Kéki S. A simple method to estimate relative stabilities of polyethers cationized by alkali metal ions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:304-308. [PMID: 22223317 DOI: 10.1002/rcm.5307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Dissociation of doubly cationized polyethers, namely [P + 2X](2+) into [P + X](+) and X(+), where P = polyethylene glycol (PEG), polypropylene glycol (PPG) and polytetrahydrofuran (PTHF) and X = Na, K and Cs, was studied by means of energy-dependent collision-induced dissociation tandem mass spectrometry. It was observed that the collision voltage necessary to obtain 50% fragmentation (CV(50)) determined for the doubly cationized polyethers of higher degree of polymerization varied linearly with the number of degrees of freedom (DOF) values. This observation allowed us to correlate these slopes with the corresponding relative gas-phase dissociation energies for binding of alkali ions to polyethers. The relative dissociation energies determined from the corresponding slopes were found to decrease in the order Na(+) > K(+) > Cs(+) for each polyether studied, and an order PPG ≈ PEG > PTHF can be established for each alkali metal ion.
Collapse
Affiliation(s)
- Ákos Kuki
- Department of Applied Chemistry, University of Debrecen, H-4032, Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Bongiorno D, Ceraulo L, Giorgi G, Indelicato S, Turco Liveri V. Do electrospray mass spectra of surfactants mirror their aggregation state in solution? JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:1262-1267. [PMID: 22223417 DOI: 10.1002/jms.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
One important feature in the gas phase chemistry of surfactants is to ascertain whether their aggregates produced by electrospray ionization reflect those formed in the starting solution. With this aim, we have performed ESI-MS, ESI-MS/MS and ER-MS spectra of bis(2-ethylhexyl)sulfosuccinate (AOTNa) solutions in different solvents, i.e. water, water/methanol, methanol and n-hexane. The results clearly indicate that, notwithstanding the strongly different aggregation state in solution (direct micelles in water and in water/methanol, molecular dispersion in methanol and reverse micelles in n-hexane) and marked effects of the solvent polarity on the total ionic current, the surfactant aggregates in gas phase show identical structural features. Analogous conclusions can be drawn analyzing the infrared multiple photon dissociation (IRMPD) spectra of AOTNa solutions in water/methanol and n-hexane. Moreover, according to the idea that gas phase can be considered an apolar environment par excellence, data consistently suggest a reverse micelle-like aggregation. Some peculiarities of the mechanisms leading to aggregate formation through electrospray ionization of surfactant solutions in solvent media with different polarity have been also discussed.
Collapse
Affiliation(s)
- D Bongiorno
- Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari (STEMBIO), Università degli Studi di Palermo, Viale delle Scienze, Ed. 16, I-90128, Palermo, Italy
| | | | | | | | | |
Collapse
|
19
|
Memboeuf A, Jullien L, Lartia R, Brasme B, Gimbert Y. Tandem mass spectrometric analysis of a mixture of isobars using the survival yield technique. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1744-1752. [PMID: 21952888 DOI: 10.1007/s13361-011-0195-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/08/2011] [Accepted: 06/12/2011] [Indexed: 05/31/2023]
Abstract
Collision induced dissociation tandem mass spectrometry experiments were performed to unequivocally separate compounds from an isobaric mixture of two products. The Survival Yield curve was obtained and is shown to consist in a linear combination of the curves corresponding to the two components separately. For such a mixture, a plateau appears on the diagram in lieu of the continuous decrease expected allowing for the structural study of the two components separately. The width of the plateau critically relates to the fragmentation parameters of the two molecular ions, which need to be sufficiently different structurally for the plateau to be observed. However, at constant fragmentation parameters, we have observed the width significantly increases at large m/z. This makes the separation more and more efficient as isobars have larger m/z and the technique complementary to those applicable at low m/z only. We have observed that the vertical position of the plateau relates linearly to the relative concentration of the two compounds that may be useful for quantification. Repeatability was estimated at 2% on a quadrupole ion trap. An advantage of using survival yield curves only, is that a priori knowledge of the respective fragmentation patterns of the two isobars becomes unnecessary. Consequently, similar performances are obtained if fragments are isobaric, which is also demonstrated in our study. The critical case of reverse peptides, at low m/z and similar fragmentation parameters, is also presented as a limitation of the method.
Collapse
Affiliation(s)
- Antony Memboeuf
- Département de Chimie Moléculaire, UMR 5250-ICMG-FR 2607, CNRS Université Joseph Fourier, BP 53, 38041 Grenoble, Cedex 9, France.
| | | | | | | | | |
Collapse
|
20
|
Database searching for structural identification of metabolites in complex biofluids for mass spectrometry-based metabonomics. Bioanalysis 2011; 1:1627-43. [PMID: 21083108 DOI: 10.4155/bio.09.145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MS and HPLC are commonly used for compound characterization and obtaining structural information; in the field of metabonomics, these two analytical techniques are often combined to characterize unknown endogenous or exogenous metabolites present in complex biological samples. Since the structures of a majority of these metabolites are not actually identified, the result of most metabonomic studies is a list of m/z values and retention times. However, without knowing actual structures, the biological significance of these 'features' cannot be determined. The process of identifying the structures of unknown compounds can be time intensive, costly and frequently requires the use of multiple orthogonal analytical techniques - this laborious procedure seems insurmountable for the long lists of unknowns that must be identified for each study. In addition, the limited sample volume and the extremely low concentration of most endogenous analytes frequently make purification and identification by other instrumentation nearly impossible. This review is intended to explore the problems and progress with current tools that are available for MS-based structure identification for both endogenous and exogenous metabolites.
Collapse
|
21
|
Sztáray J, Memboeuf A, Drahos L, Vékey K. Leucine enkephalin--a mass spectrometry standard. MASS SPECTROMETRY REVIEWS 2011; 30:298-320. [PMID: 20669325 DOI: 10.1002/mas.20279] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 10/31/2009] [Accepted: 10/31/2009] [Indexed: 05/29/2023]
Abstract
The present article reviews the mass spectrometric fragmentation processes and fragmentation energetics of leucine enkephalin, a commonly used peptide, which has been studied in detail and has often been used as a standard or reference compound to test novel instrumentation, new methodologies, or to tune instruments. The main purpose of the article is to facilitate its use as a reference material; therefore, all available mass spectrometry-related information on leucine enkephalin has been critically reviewed and summarized. The fragmentation mechanism of leucine enkephalin is typical for a small peptide; but is understood far better than that of most other compounds. Because ion ratios in the MS/MS spectra indicate the degree of excitation, leucine enkephalin is often used as a thermometer molecule in electrospray or matrix-assisted laser desorption ionization (ESI or MALDI). Other parameters described for leucine enkephalin include collisional cross-section and energy transfer; proton affinity and gas-phase basicity; radiative cooling rate; and vibrational frequencies. The lowest-energy fragmentation channel of leucine enkephalin is the MH(+) → b(4) process. All available data for this process have been re-evaluated. It was found that, although the published E(a) values were significantly different, the corresponding Gibbs free energy change showed good agreement (1.32 ± 0.07 eV) in various studies. Temperature- and energy-dependent rate constants were re-evaluated with an Arrhenius plot. The plot showed good linear correlation among all data (R(2) = 0.97), spanned over a 9 orders of magnitude range in the rate constants and yielded 1.14 eV activation energy and 10(11.0) sec(-1) pre-exponential factor. Accuracy (including random and systematic errors, with a 95% confidence interval) is ±0.05 eV and 10(±0.5) sec(-1), respectively. The activation entropy at 470 K that corresponds to this reaction is -38.1 ± 9.6 J mol(-1) K(-1). We believe that these re-evaluated values are by far the most accurate activation parameters available at present for a protonated peptide and can be considered as "consensus" values; results on other processes might be compared to this reference value.
Collapse
Affiliation(s)
- Judit Sztáray
- Institute of Structural Chemistry, Chemical Research Center Hungarian Academy of Sciences, 1025 Budapest, Pusztaszeri ut 59-67, Hungary
| | | | | | | |
Collapse
|
22
|
Rondeau D, Galland N, Zins EL, Pepe C, Drahos L, Vékey K. Non-thermal internal energy distribution of ions observed in an electrospray source interfaced with a sector mass spectrometer. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:100-111. [PMID: 21254312 DOI: 10.1002/jms.1873] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 11/16/2010] [Indexed: 05/30/2023]
Abstract
The internal energy distribution P(E(int)) of ions emitted in an electrospray (ESI) source interfaced with a sector mass spectrometer is evaluated by using the experimental survival yield (SY) method including the kinetic shift. This method is based on the relationship between the degree of fragmentation of an ion and its amount of internal energy and uses benzylpyridinium cations due to their simple fragmentation scheme. Quantum chemical calculations are performed, namely at G3(MP2)//B3LYP and QCISD/MP2 levels of theory. The results show that the internal energy distribution of the ions emitted in the ESI source interfaced with a sector analyzer is very narrow. The MassKinetics software is used to confirm these observations. The P(E(int)) is the parameter that allows to fit the experimental SY of each substituted benzylpyridinium cation with theoretical mass spectra generated by the MassKinetics software. The resulting internal energy distributions are similar to the ones obtained with the experimental SY method. This indicates that in the present experimental conditions, P(E(int)) cannot be compared with a 'thermal-like' Boltzmann distribution. In addition, it appears that with the sector analyzer, increasing the collision energy in the first pumping stage of the ESI source does not correspond to a warm-up of the produced ions.
Collapse
Affiliation(s)
- David Rondeau
- Laboratoire de Chimie, Électrochimie Moléculaires et Chimie Analytique, CEMCA UMR CNRS 6521, Université Européenne de Bretagne à Brest, UFR Sciences et Techniques, 6 Avenue Victor Le Gorgeu-C.S. 93837, 29238 Brest Cedex 3, France.
| | | | | | | | | | | |
Collapse
|
23
|
Song J, Memboeuf A, Heeren R, Vékey K, van den Brink OF. Discrimination between charge-catalyzed and charge-independent fragmentation processes of cationized poly(n-butyl acrylate). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:3214-3216. [PMID: 20941770 DOI: 10.1002/rcm.4764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
24
|
Kuki A, Nagy L, Memboeuf A, Drahos L, Vékey K, Zsuga M, Kéki S. Energy-dependent collision-induced dissociation of lithiated polytetrahydrofuran: effect of the size on the fragmentation properties. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1753-1761. [PMID: 20659805 DOI: 10.1016/j.jasms.2010.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/16/2010] [Accepted: 06/19/2010] [Indexed: 05/29/2023]
Abstract
The fragmentation properties of singly and doubly lithiated polytetrahydrofuran (PTHF) were studied using energy-dependent collision-induced dissociation. The product ion spectrum of [PTHF + Li](+) showed the formation of three different series corresponding to product ions with hydroxyl, aldehyde and vinyl end-groups. Interestingly, besides these series, two additional, non-lithiated product ions C(4)H(9)O(+) and C(4)H(7)(+) were identified in the MS/MS spectra. The MS/MS of the doubly lithiated PTHF ([PTHF + 2Li](2+)) with a number of repeat units ranging from 8 to 27 showed the formation of product ions similar to those of the singly lithiated series, however, doubly lithiated product ions and product ions formed by the loss of one Li(+)-ion from the precursor ion also appeared with significant abundances. Analysis of the breakdown curves for the singly and doubly charged PTHF indicated that the series A ions are formed most probably together with the series B ions, while members of the series C ions appeared at significantly higher collision energies. The fragmentation properties of [PTHF + Li](+) and [PTHF + 2Li](2+) were also interpreted using the survival yield method. It was found that the collision energy/voltage necessary to obtain 50% fragmentation (CV(50)) was dependent linearly on the number of the repeat units, i.e., on the size, or the number of degrees of freedom (DOF).
Collapse
Affiliation(s)
- Akos Kuki
- Department of Applied Chemistry, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
25
|
Memboeuf A, Nasioudis A, Indelicato S, Pollreisz F, Kuki A, Kéki S, van den Brink OF, Vékey K, Drahos L. Size effect on fragmentation in tandem mass spectrometry. Anal Chem 2010; 82:2294-302. [PMID: 20151701 DOI: 10.1021/ac902463q] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The collision energy or collision voltage necessary to obtain 50% fragmentation (characteristic collision energy/voltage, CCE or CCV) has been systematically determined for different types of molecules [poly(ethylene glycols) (PEG), poly(tetrahydrofuran) (PTHF), and peptides] over a wide mass (degrees of freedom) range. In the case of lithium-cationized PEGs a clear linear correlation (R(2) > 0.996) has been found between CCE and precursor ion mass on various instrument types up to 4.5 kDa. A similar linear correlation was observed between CCV and the mass-to-charge ratio. For singly and multiply charged polymers studied under a variety of experimental conditions and on several instruments, all data were plotted together and showed correlation coefficient R(2) = 0.991. A prerequisite to observe such a good linear correlation is that the energy and entropy of activation in a class of polymers is likely to remain constant. When compounds of different structure are compared, the CCV will depend not only on the molecular mass but the activation energy and entropy as well. This finding has both theoretical and practical importance. From a theoretical point of view it suggests fast energy randomization up to at least 4.5 kDa so that statistical rate theories are applicable in this range. These results also suggest an easy method for instrument tuning for high-throughput structural characterization through tandem MS: after a standard compound is measured, the optimum excitation voltage is in a simple proportion with the mass of any structurally similar analyte at constant experimental conditions.
Collapse
Affiliation(s)
- Antony Memboeuf
- Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri ut 59-67, 1025 Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kertesz TM, Hall LH, Hill DW, Grant DF. CE50: quantifying collision induced dissociation energy for small molecule characterization and identification. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1759-1767. [PMID: 19616966 DOI: 10.1016/j.jasms.2009.06.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/28/2009] [Accepted: 06/02/2009] [Indexed: 05/28/2023]
Abstract
Survival yield analysis is routinely used in mass spectroscopy as a tool for assessing precursor ion stability and internal energy. Because ion internal energy and decomposition reaction rates are dependent on chemical structure, we reasoned that survival yield curves should be compound-specific and therefore useful for chemical identification. In this study, a quantitative approach for analyzing the correlation between survival yield and collision energy was developed and validated. This method is based on determining the collision energy (CE) at which the survival yield is 50% (CE(50)) and, further, provides slope and intercept values for each survival yield curve. In initial experiments using a defined set of homologous compounds, we found that CE(50) values were easily determined, quantitative, highly reproducible, and could discriminate between structural and even positional isomers. Further analysis demonstrated that CE(50) values were independent of cone potential and orthogonal to compound mass. Experimentally determined CE(50) values for a diverse set of 54 compounds were correlated to Molconn molecular structure descriptors. The resulting model yielded a statistically significant linear correlation between experimental and calculated CE(50) values and identified several structural characteristics related to precursor ion stability and fragmentation mechanism. Thus, the CE(50) is a promising method for compound identification and discrimination.
Collapse
Affiliation(s)
- Tzipporah M Kertesz
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092, USA
| | | | | | | |
Collapse
|
27
|
Mayer PM, Poon C. The mechanisms of collisional activation of ions in mass spectrometry. MASS SPECTROMETRY REVIEWS 2009; 28:608-639. [PMID: 19326436 DOI: 10.1002/mas.20225] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This article is a review of the mechanisms responsible for collisional activation of ions in mass spectrometers. Part I gives a general introduction to the processes occurring when a projectile ion and neutral target collide. The theoretical background to the physical phenomena of curve-crossing excitation (for electronic and vibrational excitation), impulsive collisions (for direct translational to vibrational energy transfer), and the formation of long-lived collision intermediates is presented. Part II highlights the experimental and computational investigations that have been made into collisional activation for four experimental conditions: high (>100 eV) and intermediate (1-100 eV) center-of-mass collision energies, slow heating collisions (multiple low-energy collisions) and collisions with surfaces. The emphasis in this section is on the derived post-collision internal energy distributions that have been found to be typical for projectile ions undergoing collisions in these regimes.
Collapse
Affiliation(s)
- Paul M Mayer
- Chemistry Department, University of Ottawa, Ottawa, Canada K1N 6N5.
| | | |
Collapse
|
28
|
Peltz C, Drahos L, Vékey K. SORI excitation: collisional and radiative processes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:2119-26. [PMID: 17959388 DOI: 10.1016/j.jasms.2007.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 09/18/2007] [Accepted: 09/18/2007] [Indexed: 05/11/2023]
Abstract
Theoretical modeling of sustained off-resonance irradiation collision-induced dissociation (SORI-CID) experiments in Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry is described in the present paper. Manipulation of various analytical expressions yield the result that the average laboratory frame collision energy is equal to 2/3 of the maximum kinetic energy in SORI. Survival yields (the fraction of nondecomposed molecular ions) as a function of excitation time, collision energy, and source temperature have been considered: results of MassKinetics-type reaction kinetics modeling were compared with experimental results obtained by Guo et al. (Int. J. Mass Spectrom.2003, 225, 71-82). The results show that radiative cooling has a major influence in SORI-CID. They also suggest that collisional cooling is significant only at very low (less than 0.02 eV) center of mass collision energy; therefore it has a very small influence on the SORI process. Survival yield curves showed excellent agreement between experiments and calculations optimizing two parameters only (collisional energy-transfer efficiency and radiative cooling rate). Using leucine enkephalin as a model compound, the results indicate 0.128 +/- 0.021 energy deposition in a single collision and 7.5 +/- 0.5 s(-1) infrared cooling rate. We also present that these two physical parameters cannot be properly deconvoluted. This effect shows the importance of the parallel consideration of different physical processes.
Collapse
Affiliation(s)
- Csaba Peltz
- Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
29
|
Chen L, Martin S, Bernard J, Brédy R. Direct measurement of internal energy of fragmented C60. PHYSICAL REVIEW LETTERS 2007; 98:193401. [PMID: 17677619 DOI: 10.1103/physrevlett.98.193401] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Indexed: 05/16/2023]
Abstract
A new experimental approach has been investigated to measure directly the internal energy of fragmented C60. Doubly charged C60{2+*} prepared in collisions H++C60-->H- +C60{2+*} decay by evaporation of C2 units. We have measured the internal energy distribution of the transient C60{2+*} for each decay channel by analyzing the kinetic energy loss of the scattered anion H-. This method offers an experimental opportunity for studying the fragmentation dynamics of more complex systems such as larger clusters and biomolecules under internal energy controlled conditions.
Collapse
Affiliation(s)
- L Chen
- Université Lyon 1; CNRS; LASIM UMR 5579, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | | | | | | |
Collapse
|
30
|
Nibbering NMM. Four decades of joy in mass spectrometry. MASS SPECTROMETRY REVIEWS 2006; 25:962-1017. [PMID: 16736509 DOI: 10.1002/mas.20099] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Tremendous developments in mass spectrometry have taken place in the last 40 years. This holds for both the science and the instrumental revolutions in this field. In chemistry the research was heavily focused on organic molecules that upon electron ionization fragmented via complex mechanistic pathways as shown by isotopic labeling experiments. These studies, including ion structure determinations, were performed with use of double focusing mass spectrometers of both conventional and reversed geometry, and equipped with various types of metastable ion scanning and collision-induced dissociation techniques developed by physical and analytical chemists. Time-resolved mass spectrometry by use of the field ionization kinetics method, developed by physical chemists, was another powerful way to unravel details of unimolecular gas phase ion dissociations. Then the development of new ionization methods, such as desorption chemical ionization, field desorption, and fast atom bombardment permitted not only to analyze unvolatile, thermally labile and higher molecular weight compounds, but also to study their chemical behavior in the gas phase, initially with use of double focusing instruments and later on with multisector and hybrid mass spectrometers. These ionization methods also enabled to study organometallic compounds and increasingly the field of medium-sized to large biomolecules, the latter being exploded in the last decade by the development of electrospray- and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. Another area of research concerned the bimolecular chemistry of organic ions with organic molecules in the gas phase. Initially this was performed with use of among others drift-cell ion cyclotron resonance spectroscopy, that later on was replaced by the developed method of ion trapping and Fourier transform ion cyclotron resonance. Combination of the latter with the afore-mentioned ionization methods has shifted also in this case the research on organic molecules to organometallic/inorganic systems, and predominantly to biomolecules in the last decade. This invited review will describe the research efforts made by the author's group over the last 40 years together with some personal experiences during his career.
Collapse
Affiliation(s)
- Nico M M Nibbering
- Physical Chemistry, Laser Center, Division Chemistry, Faculty of Exact Sciences, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Pittelkow M, Nielsen CB, Broeren MAC, van Dongen JLJ, van Genderen MHP, Meijer EW, Christensen JB. Molecular Recognition: Comparative Study of a Tunable Host-Guest System by Using a Fluorescent Model System and Collision-Induced Dissociation Mass Spectrometry on Dendrimers. Chemistry 2005; 11:5126-35. [PMID: 15991204 DOI: 10.1002/chem.200401230] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Host-guest interactions between the periphery of adamantylurea-functionalized dendrimers (host) and ureido acetic acid derivatives (guest) were shown to be specific, strong and spatially well-defined. The binding becomes stronger when using phosphonic or sulfonic acid derivatives. In the present work we have quantified the binding constants for the host-guest interactions between two different host motifs and six different guest molecules. The host molecules, which resemble the periphery of a poly(propylene imine) dendrimer, have been fitted with an anthracene-based fluorescent probe. The two host motifs differ in terms of the length of the spacer between a tertiary amine and two ureido functionalities. The guest molecules all contain an acidic moiety (either a carboxylic acid, a phosphonic acid, or a sulfonic acid) and three of them also contain an ureido moiety capable of forming multiple hydrogen bonds to the hosts. The binding constants for all 12 host-guest complexes have been determined by using fluorescence titrations by monitoring the increase in fluorescence of the host upon protonation by the addition of the guest. The binding constants could be tuned by changing the design of the acidic part of the guest. The formation of hydrogen bonds gives, in all cases, higher association constants, demonstrating that the host is more than a proton sensor. The host with the longer spacer (propyl) shows higher association constants than the host with the shorter spacer (ethyl). The gain in association constants are higher when the urea function is added to the guests for the host with the longer spacer, indicating a better fit. Collision-induced dissociation mass spectrometry (CID-MS) is used to study the stability of the six motifs using the corresponding third generation dendrimer. A similar trend is found when the six different guests are compared.
Collapse
Affiliation(s)
- Michael Pittelkow
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Denmark
| | | | | | | | | | | | | |
Collapse
|
32
|
Naban-Maillet J, Lesage D, Bossée A, Gimbert Y, Sztáray J, Vékey K, Tabet JC. Internal energy distribution in electrospray ionization. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1-8. [PMID: 15584007 DOI: 10.1002/jms.773] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Internal energies and energy distributions were studied using the 'survival yield' method developed previously. In addition to conventional benzylpyridinium salts, protonated esters (fragmenting by rearrangement) and protonated leucine enkephalin were also used, extending the validity of the technique. Fragmentation processes were studied in the cone voltage region and modeled by the RRKM-based MassKinetics program. The results show that the shapes of the energy distributions are similar to thermal distributions. The mean internal energies are very similar for all compound classes studied, and show a linear increase with collision energy in the 10-50 eV region.
Collapse
Affiliation(s)
- Jessie Naban-Maillet
- Synthèse, Structure et Fonction de Molécules Bioactives, CNRS-UMR 7613, 4 place Jussieu, 75252 Paris cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Tolmachev AV, Vilkov AN, Bogdanov B, Pasa-Tolić L, Masselon CD, Smith RD. Collisional activation of ions in RF ion traps and ion guides: the effective ion temperature treatment. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:1616-28. [PMID: 15519229 DOI: 10.1016/j.jasms.2004.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 07/21/2004] [Accepted: 07/22/2004] [Indexed: 05/12/2023]
Abstract
Ion transfer and storage using inhomogeneous radio frequency (RF) electric fields in combination with gas-assisted ion cooling and focusing constitutes one of the basic techniques in mass spectrometry today. The RF motion of ions in the bath gas environment involves a large number of ion-neutral collisions that leads to the internal activation of ions and their effective "heating" (when a thermal distribution of internal energies results). The degree of ion activation required in various applications may range from a minimum level (e.g., slightly raising the average internal energy) to an intense level resulting in ion fragmentation. Several research groups proposed using the effective temperature as a measure of ion activation under conditions of multiple ion-neutral collisions. Here we present approximate relationships for the effective ion temperature relevant to typical operation modes of RF multipole devices. We show that RF ion activation results in near-thermal energies for ions occupying an equilibrium position at the center of an RF trap, whereas increased ion activation can be produced by shifting ions off-center, e.g., by means of an external DC electric field. The ion dissociation in the linear quadrupole ion trap using the dipolar DC ion activation has been observed experimentally and interpreted in terms of the effective ion temperature.
Collapse
|
34
|
Gömöry A, Végh P, Sztáray J, Drahos L, Vékey K. Kinetic energy release of protonated methanol clusters using the low-temperature fast-atom bombardment: experiment and theory combined. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2004; 10:213-220. [PMID: 15103098 DOI: 10.1255/ejms.640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Low-temperature fast-atom bombardment was found to be an excellent method for generating large protonated methanol clusters, (CH(3)OH)(n)H(+) (n = 2 to 15). Metastable dissociations of these clusters, involving elimination of one methanol molecule, were studied using mass-analyzed ion kinetic energy spectra (MIKES). From metastable peak profiles kinetic energy release (KER) distributions were obtained, even for clusters as large as (CH(3)OH)(15)H(+). The results were analyzed by a simple thermal model, by the finite heat bath theory (FHBT) and by the RRKM-based MassKinetics algorithm. The KER distribution was shown to correspond to a three-dimensional translational energy distribution, implying statistical energy partitioning in the transition state. The mean KER values and transition state temperatures were found to increase with cluster size, reaching 25 meV and approximately 210 K for large clusters (n = 10).
Collapse
Affiliation(s)
- Agnes Gömöry
- Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri 59-67, H-1025 Budapest, Hungary
| | | | | | | | | |
Collapse
|
35
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:905-916. [PMID: 12938112 DOI: 10.1002/jms.411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
36
|
Jo SC, Cooks RG. Translational to vibrational energy conversion during surface-induced dissociation of n-butylbenzene molecular ions colliding at self-assembled monolayer surfaces. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2003; 9:237-4. [PMID: 12939476 DOI: 10.1255/ejms.554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Translational to vibrational (T-->V) energy conversion in the course of inelastic collisions of n-butylbenzene molecular ions with thiolate self-assembled monolayer (SAM) gold surfaces is studied to better understand internal energy uptake by the hyperthermal projectile ions. The projectile ion is selected by a mass spectrometer of BE configuration and product ions are analyzed using a quadrupole mass analyzer after kinetic energy selection with an electric sector. The branching ratio for formation of the fragment ions m/z 91 and m/z 92, measured over a range of collision energies, is used to estimate the average internal energy with the aid of calculations based on unimolecular dissociation kinetics [Rice-Ramsperger-Kassel-Marcus (RRKM) theory]. The measured T-->V conversion efficiencies (the fraction of the laboratory kinetic energy converted into internal energy) are 11 approximately 12% for dodecanethiolate SAM (H-SAM) and 19 approximately 20% for 2-perfluorooctylethanethiolate SAM (F-SAM), respectively, over ranges of a few 10s of eV. The values are similar to those reported earlier for other thermometer molecules undergoing surface collisions. Chemical sputtering leading to ionization of the surface is a prominent feature of the surface-induced dissociation (SID) spectra of n-butylbenzene acquired using the H-SAM surface but not the F-SAM surface because of the lower ionization energy of the former.
Collapse
Affiliation(s)
- Sung-Chan Jo
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|