1
|
Isorce N, Lucifora J, Zoulim F, Durantel D. Immune-modulators to combat hepatitis B virus infection: From IFN-α to novel investigational immunotherapeutic strategies. Antiviral Res 2015; 122:69-81. [PMID: 26275801 DOI: 10.1016/j.antiviral.2015.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B virus (HBV) infection remains a major challenge for clinicians, as there are only two types of approved therapies: interferon-alpha (IFN-α) or its pegylated form, Peg-IFN-α and nucleoside analogs (e.g. tenofovir, entecavir...). The first are used as finite-duration treatments of around 48-52 weeks, while the second must be taken life-long to prevent rebound. Other immune-modulators, including other types of recombinant IFNs and cytokines/chemokines, could be developed for treating chronic hepatitis B. Alternatively, strategies aimed either at restoring or favoring the endogenous production of IFNs, cytokines and/or chemokines, or at alleviating HBV-mediated inhibitory processes could also be envisaged. In this article, we review current investigational, preclinical and clinical efforts to implement immune-modulatory components in the therapy of chronic hepatitis B. This review forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B".
Collapse
Affiliation(s)
- Nathalie Isorce
- INSERM, U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), Lyon, France; University of Lyon, Université Claude Bernard (UCBL), Lyon, France
| | - Julie Lucifora
- INSERM, U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), Lyon, France; University of Lyon, Université Claude Bernard (UCBL), Lyon, France
| | - Fabien Zoulim
- INSERM, U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), Lyon, France; University of Lyon, Université Claude Bernard (UCBL), Lyon, France; Labex DEVweCAN, Lyon, France; Hospices Civils de Lyon (HCL), Croix-Rousse Hospital, Lyon, France
| | - David Durantel
- INSERM, U1052, CNRS UMR_5286, Cancer Research Centre of Lyon (CRCL), Lyon, France; University of Lyon, Université Claude Bernard (UCBL), Lyon, France; Labex DEVweCAN, Lyon, France.
| |
Collapse
|
2
|
Anti-TNF therapy in patients with HBV infection--analysis of 87 patients with inflammatory arthritis. Clin Rheumatol 2014; 33:119-23. [PMID: 24077913 DOI: 10.1007/s10067-013-2385-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 08/13/2013] [Accepted: 08/31/2013] [Indexed: 12/15/2022]
Abstract
This study aims to investigate the incidence of hepatitis B virus (HBV) reactivation in inflammatory arthritis (IA) patients with HBV infection using anti-tumor necrosis factor (TNF) agents and evaluate the efficacy of antiviral therapy in reducing the risk of viral reactivation in chronic HBV infection. IA patients using anti-TNF agents from six centers were enrolled. Their HBV infection conditions and ALT and HBV-DNA levels were monitored periodically. Among the six chronic hepatitis B patients, HBV reactivation was found in two patients without antivirus prophylaxis and no viral replication was detected in the other four patients with antivirus prophylaxis. In the 31 inactive carriers, the increase of viral load was detected in 6 of 22 (27.3 %) patients without antiviral prophylaxis, and there was no viral reactivation in the other 9 patients with antiviral prophylaxis. HBV reactivation was not found in the 50 patients with resolved HBV infection. It is suggested that anti-TNF therapy might increase the risk of HBV reactivation in patients with chronic HBV infection, and antiviral prophylaxis could effectively decrease the risk. Anti-TNF agents seem to be safe in patients with resolved HBV infection.
Collapse
|
3
|
Li Z, Yao H, Ma Y, Dong Q, Chen Y, Peng Y, Zheng BJ, Huang JD, Chan CY, Lin MC, Sung JJ, Yuen KY, Kung HF, He ML. Inhibition of HBV gene expression and replication by stably expressed interferon-alpha1 via adeno-associated viral vectors. J Gene Med 2008; 10:619-27. [PMID: 18383553 PMCID: PMC7166674 DOI: 10.1002/jgm.1174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Interferon‐α2 (IFNα2) is routinely used for anti‐hepatitis B virus (HBV) treatment. However, the therapeutic efficiency is unsatisfactory, particularly in East Asia. Such inefficiency might be a result of the short half‐life, relatively low local concentration and strong side‐effects of interferons. Frequent and repeated injection is also a big burden for patients. In the present study, a single dose of vector‐delivered IFNα1 was tested for its anti‐HBV effects. Methods Adeno‐associated viral vector (AAV‐IFNα1) was generated to deliver the IFNα1 gene into hepatocytes. IFNα1, hepatitis B surface (HBsAg) and e (HBeAg) antigens were measured by enzyme‐linked immunosorbent assay and/or western blotting. The level of viral DNA was measured by quantitative real‐time polymerase chain reaction. Results AAV‐IFNα1 effectively transduced HBV‐producing cells (HepAD38) and mouse hepatocytes, where IFNα1 was expressed in a stable manner. Both intracellular and extracellular HBsAg and HBeAg were significantly reduced in vitro. In the HBV‐producing mice, the concentration of IFNα1 in the liver was eight‐fold higher than that in plasma. Compared with control groups, HBeAg/HBsAg antigen levels were reduced by more than ten‐fold from day 1–5, and dropped to an undetectable level on day 9 in the AAV‐IFNα1 group. Concurrently, the level of viral DNA decreased over 30‐fold for several weeks. Conclusions A single dose administration of AAV‐IFNα1 viral vector displayed prolonged transgene expression and superior antiviral effects both in vitro and in vivo. Therefore, the use of AAV‐IFNα1 might be a potential alternative strategy for anti‐HBV therapy. Copyright © 2008 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zhi Li
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Jost S, Turelli P, Mangeat B, Protzer U, Trono D. Induction of antiviral cytidine deaminases does not explain the inhibition of hepatitis B virus replication by interferons. J Virol 2007; 81:10588-96. [PMID: 17652382 PMCID: PMC2045472 DOI: 10.1128/jvi.02489-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interferons (IFNs) play a major role in the control of hepatitis B virus (HBV), whether as endogenous cytokines limiting the spread of the virus during the acute phase of the infection or as drugs for the treatment of its chronic phase. However, the mechanism by which IFNs inhibit HBV replication has so far remained elusive. Here, we show that type I and II IFN treatment of human hepatocytes induces the production of APOBEC3G (A3G) and, to a lesser extent, that of APOBEC3F (A3F) and APOBEC3B (A3B) but not that of two other cytidine deaminases also endowed with anti-HBV activity, activation-induced cytidine deaminase (AID), and APOBEC1. Most importantly, we reveal that blocking A3B, A3F, and A3G by combining RNA interference and the virion infectivity factor (Vif) protein of human immunodeficiency virus does not abrogate the inhibitory effect of IFNs on HBV. We conclude that these cytidine deaminases are not essential effectors of IFN in its action against this pathogen.
Collapse
Affiliation(s)
- Stéphanie Jost
- School of Life Sciences and Frontiers in Genetics National Center for Competence in Research, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
5
|
Marcello T, Grakoui A, Barba-Spaeth G, Machlin ES, Kotenko SV, MacDonald MR, Rice CM. Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 2006; 131:1887-98. [PMID: 17087946 DOI: 10.1053/j.gastro.2006.09.052] [Citation(s) in RCA: 463] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Accepted: 09/07/2006] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) is a major cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma. Current therapy with pegylated interferon alpha (IFN-alpha) in combination with ribavirin is associated with adverse effects and often fails to induce a sustained response. IFN-lambdas, recently discovered IFN gene family members, exhibit antiviral and cell stimulatory activities similar to IFN-alpha. We aimed to determine whether IFN-lambda exhibits antiviral activity toward HCV and to compare the signal transduction and effector gene pathways with those of IFN-alpha. METHODS Using the HCV replicon system and cell culture infectious reporter virus, we compared IFN-alpha and IFN-lambda effects on HCV RNA replication and protein expression, as measured by quantitative reverse-transcriptase polymerase chain reaction, luciferase expression, and Western blot. Receptor expression and signaling pathways were explored using flow cytometry and Western blot. IFN-alpha- and IFN-lambda-mediated gene expression changes were compared using microarray analyses. RESULTS IFN-lambda exhibited dose- and time-dependent HCV inhibition, independent of types I and II IFN receptors. The kinetics of IFN-lambda-mediated signal transducers and activators of transcription (STAT) activation and induction of potential effector genes were distinct from those of IFN-alpha. IFN-lambda induced steady increases in levels of known interferon stimulated genes (ISGs), whereas IFN-alpha ISGs peaked early and declined rapidly. IFN-lambda inhibited replication of HCV genotypes 1 and 2 and enhanced the antiviral efficacy of subsaturating levels of IFN-alpha. CONCLUSIONS These results demonstrate distinct differences in IFN-lambda- and IFN-alpha-induced antiviral states. Understanding these differences may prove useful for developing new HCV treatment strategies.
Collapse
Affiliation(s)
- Tobias Marcello
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Takehara T, Suzuki T, Ohkawa K, Hosui A, Jinushi M, Miyagi T, Tatsumi T, Kanazawa Y, Hayashi N. Viral covalently closed circular DNA in a non-transgenic mouse model for chronic hepatitis B virus replication. J Hepatol 2006; 44:267-74. [PMID: 16226822 DOI: 10.1016/j.jhep.2005.07.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 07/27/2005] [Accepted: 07/29/2005] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIMS The lack of small animal models supporting chronic hepatitis B virus (HBV) infection impedes the assessment of anti-viral drugs in the whole animal. Although transgenic mice have been used for this purpose, these models are clearly different from natural infection, because HBV is produced from the integrated HBV sequence harbored in all hepatocytes. METHODS Balb/cA nude mice were hydrodynamically injected with a plasmid having 1.5-fold over-length of HBV DNA and analyzed for HBV replication. RESULTS Hydrodynamically injected mice showed substantial levels of antigenemia and viremia for more than 1 year. Covalently closed circular DNA (cccDNA), the template of viral replication in natural infection, was produced in the livers and was critically involved in the long-term HBV production, because disruption of the pol gene of the inoculated DNA resulted in transient expression of HBV genes for less than 2 months. Administration of the IFNalpha gene transiently suppressed HBV DNA replication, but was not capable of eliminating HBV in this model. CONCLUSIONS In vivo gene transfer of a plasmid encoding HBV DNA can establish chronic viral replication in mice, which involves, at least in part, new synthesis of the HBV cccDNA episome, thus recapitulating a part of human HBV infection.
Collapse
Affiliation(s)
- Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chuang E, Del Vecchio A, Smolinski S, Song XY, Sarisky RT. Biomedicines to reduce inflammation but not viral load in chronic HCV--what's the sense? Trends Biotechnol 2005; 22:517-23. [PMID: 15450745 DOI: 10.1016/j.tibtech.2004.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although cytokines and cytotoxic T lymphocytes (CTL) are among the predominant mechanisms of host defense against viral pathogens, they can induce an inflammatory response that often leads to tissue injury. Hepatitis C virus (HCV) infection, a major cause of liver-related disease, results in the induction of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), and CTL activity, followed by liver injury. Although inflammation facilitates the wound healing process, chronic persistence over several decades results in scar accumulation, fibrosis and often cirrhosis. This review summarizes biological data implicating a cause-and-effect relationship between TNF-alpha levels and the progression of fibrosis in chronic HCV infections, in contrast to the role of TNF-alpha in hepatitis B virus infections. Furthermore, an overview of therapeutic approaches to halting the inflammatory cascade in individuals with chronic HCV, including the use of agents to reduce the level of TNF-alpha, is presented.
Collapse
Affiliation(s)
- Emil Chuang
- Clinical Research, Centocor, 145 King of Prussia Road, R-4-1, Malvern, PA 19355, USA
| | | | | | | | | |
Collapse
|
8
|
Fellig Y, Almogy G, Galun E, Ketzinel-Gilad M. A hepatocellular carcinoma cell line producing mature hepatitis B viral particles. Biochem Biophys Res Commun 2004; 321:269-74. [PMID: 15358171 DOI: 10.1016/j.bbrc.2004.06.148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Indexed: 12/12/2022]
Abstract
Current in vitro models for hepatitis B virus (HBV) are based on human hepatoblastoma cell lines transfected with HBV genome. The objective of this work was to develop an in vitro, hepatocellular carcinoma (HCC)-based system supporting HBV full replication and producing mature viral particles. The FLC4 human HCC cell line was stably transfected with a plasmid carrying a head-to-tail dimer of the adwHBV genome. One of the clones, FLC4A10II, exhibited prolonged expression of HBV, as was demonstrated by secreted levels of HBsAg, HBeAg, and HBV DNA in the culture medium of the growing cells. Furthermore, the cells produced HBV particles that were detected by a cesium chloride density gradient performed on the culture medium. Analysis by Southern blot revealed that HBV DNA has integrated into the FLC4A10II cell genome. The presence of HBV in the FLC4A10II cells did not cause alterations in cell morphology and the cells continued to resemble mature hepatocytes. They do exhibit a high mitotic activity. The new HBV stably transfected cell line, FLC4A10II, can serve as an important tool for further exploration of HBV host-pathogen interaction, viral life cycle, and for assessing new antiviral agents.
Collapse
Affiliation(s)
- Yakov Fellig
- Department of Pathology, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | |
Collapse
|
9
|
Ader DB, Celluzzi C, Bisbing J, Gilmore L, Gunther V, Peachman KK, Rao M, Barvir D, Sun W, Palmer DR. Modulation of dengue virus infection of dendritic cells by Aedes aegypti saliva. Viral Immunol 2004; 17:252-65. [PMID: 15279703 DOI: 10.1089/0882824041310496] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dengue virus (DV) is a flavivirus carried by the Aedes aegypti mosquito that causes a spectrum of illnesses in the tropics, including dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. Dendritic cells (DCs) are professional antigen presenting cells recently shown to be permissive for DV, and implicated as the primary targets of initial DV infection. DV is transmitted to human host by infected mosquitoes during a blood meal, but it is currently unknown whether transmission is modified by vector saliva that is also deposited in the host's skin during feeding. Previous studies evaluated only the outcome of DV infection of DCs, and did not address the influence of mosquito saliva. To more fully characterize natural transmission of DV, we evaluated the effects of Ae. aegypti saliva on DV infection of human myeloid DCs. We found that saliva inhibited DV infection in DCs. Moreover, pre-sensitization of DCs with saliva, prior to DV infection, enhanced inhibition. In addition, enhanced production of IL-12p70 and TNF-alpha were detected in DV-infected DC cultures exposed to mosquito saliva. The proportion of dead cells was also significantly reduced in these cultures. These data contribute to the overall understanding of the natural pathogenesis of DV infection and suggest that there is a protective role for mosquito saliva that limits viral uptake by DCs.
Collapse
Affiliation(s)
- Daniel B Ader
- Department of Virus Diseases, Walter Reed Army Institute of Research, Silver Spring, Maryland 20810, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Suzuki T, Takehara T, Ohkawa K, Ishida H, Jinushi M, Miyagi T, Sasaki Y, Hayashi N. Intravenous injection of naked plasmid DNA encoding hepatitis B virus (HBV) produces HBV and induces humoral immune response in mice. Biochem Biophys Res Commun 2003; 300:784-8. [PMID: 12507519 DOI: 10.1016/s0006-291x(02)02889-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatitis B virus (HBV) infection is highly specific to primates. To cross the species barrier, we injected naked plasmid DNA containing a 1.5-fold-overlength genome of HBV into immunocompetent mice via the tail vein with acute circulatory overload. The injection resulted in production of viral transcripts specifically in the liver and expression of hepatitis B core protein in approximately 3% of the hepatocytes. HBV was secreted into the blood, evidenced by the presence of DNase I-resistant HBV sequence in fractionated serum at a density of 1.21g/ml. The HBV DNA positivity in the serum persisted for 1 week. Most mice became positive for hepatitis B surface antigen for 2 weeks and later seropositive for anti-hepatitis B surface antibody. This simple and efficient HBV replication system in mice could be useful for investigating whether viral mutations as well as host genetic background may affect viral replication and induction of immune response.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Department of Molecular Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Pien GC, Biron CA. Compartmental differences in NK cell responsiveness to IL-12 during lymphocytic choriomeningitis virus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:994-1001. [PMID: 10623849 DOI: 10.4049/jimmunol.164.2.994] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Some, but not all, viral infections induce endogenous IL-12 to drive NK cell IFN-gamma production and downstream antiviral defenses during innate immune responses. Even though lymphocytic choriomeningitis virus (LCMV) can be sensitive to IFN-gamma-mediated antiviral effects, infections with this agent do not elicit IL-12 or early IFN-gamma in immunocompetent hosts. Studies presented here demonstrate that LCMV infections of mice not only fail to induce IL-12, but also modify responsiveness to exogenous IL-12 for IFN-gamma production. IFN-gamma responses induced by IL-12 administration were greatly diminished in splenic populations, but significantly increased in serum and hepatic leukocytes, during the early course of LCMV infections. The IFN-gamma production was NK cell dependent, and the compartmental dichotomy between spleen and liver was also demonstrated in response to in vitro IL-12 stimulation. Although infections did increase proportions and numbers of liver NK cells, changes in responsiveness for IFN-gamma expression could not be explained by cell redistribution. Corroborating changes in proportions of NK cells induced to express intracellular IFN-gamma protein within the compartments were observed. The reduction in ability of splenic populations to produce IL-12-induced IFN-gamma after infection by LCMV was associated with decreased efficacy of administered IL-12 for promoting IFN-gamma-dependent antiviral effects in the spleen. Concomitantly, the maintenance of hepatic population IFN-gamma production was associated with preserved efficacy of administered IL-12 to elicit IFN-gamma-dependent antiviral effects in the liver. Taken together, these results demonstrate modifications of compartmental responses to IL-12 by viral infections and the consequences of these changes for efficacy of cytokine therapy.
Collapse
Affiliation(s)
- G C Pien
- Department of Molecular Microbiology, Division of Biology, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
12
|
Yamamoto M, Hayashi N, Takehara T, Ueda K, Mita E, Tatsumi T, Sasaki Y, Kasahara A, Hori M. Intracellular single-chain antibody against hepatitis B virus core protein inhibits the replication of hepatitis B virus in cultured cells. Hepatology 1999; 30:300-7. [PMID: 10385671 DOI: 10.1002/hep.510300105] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepatitis B virus (HBV) is one of the major causes of chronic liver diseases and hepatocellular carcinoma. In this study, we used a single chain antibody (sFv), which is a man-made antibody with a strong affinity of immunoglobulin, to inhibit HBV replication. Because HBV replication can only take place in the viral nucleocapsid made of HBV core protein (HBc), we generated anti-HBc sFv and examined whether intracellular anti-HBc sFv could inhibit viral replication in the human hepatoblastoma-derived cell line that produces HBV (HB611). With respect to HBV replication intermediates, both single-stranded and partially double-stranded DNA intermediates were markedly suppressed in the cells expressing anti-HBc sFv, although HBV RNA intermediates were not affected. This suggested that intracellular anti-HBc sFv inhibited HBV DNA replication by inhibiting reverse transcription from HBV pregenome RNA to single-stranded DNA. Because the sFv-HBc complex was detected in the cells expressing anti-HBc sFv by immunoprecipitation analysis but the quantity of intracellular HBc was not affected, the anti-HBc sFv was suggested to inhibit HBV DNA replication by interfering with the function of HBc. These results indicate that intracellular sFv against HBc might be effective as a novel active molecule for gene therapy of hepatitis B.
Collapse
Affiliation(s)
- M Yamamoto
- Department of Internal Medicine and Therapeutics, Osaka University School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schnittler HJ, Feldmann H. Molecular pathogenesis of filovirus infections: role of macrophages and endothelial cells. Curr Top Microbiol Immunol 1999; 235:175-204. [PMID: 9893384 DOI: 10.1007/978-3-642-59949-1_10] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- H J Schnittler
- Institut für Physiologie, Westfälische Friedrich-Wilhelms-Universität, Münster, Germany
| | | |
Collapse
|