1
|
D’Orso S, Pirronello M, Verdiani A, Rossini A, Guerrera G, Picozza M, Sambucci M, Misiti A, De Marco L, Salvia A, Caltagirone C, Giardina E, Battistini L, Borsellino G. Primary and Recall Immune Responses to SARS-CoV-2 in Breakthrough Infection. Vaccines (Basel) 2023; 11:1705. [PMID: 38006037 PMCID: PMC10675240 DOI: 10.3390/vaccines11111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Breakthrough infections in SARS-CoV-2 vaccinated individuals are an ideal circumstance for the simultaneous exploration of both the vaccine-induced memory reaction to the spike (S) protein and the primary response to the membrane (M) and nucleocapsid (N) proteins generated by natural infection. We monitored 15 healthcare workers who had been vaccinated with two doses of Pfizer BioNTech BNT162b2 and were then later infected with the SARS-CoV-2 B.1.617.2. (Delta) variant, analysing the antiviral humoral and cellular immune responses. Natural infection determined an immediate and sharp rise in anti-RBD antibody titres and in the frequency of both S-specific antibody secreting cells (ASCs) and memory B lymphocytes. T cells responded promptly to infection by activating and expanding already at 2-5 days. S-specific memory and emerging M- and N-specific T cells both expressed high levels of activation markers and showed effector capacity with similar kinetics but with different magnitude. The results show that natural infection with SARS-CoV-2 in vaccinated individuals induces fully functional and rapidly expanding T and B lymphocytes in concert with the emergence of novel virus-specific T cells. This swift and punctual response also covers viral variants and captures a paradigmatic case of a healthy adaptive immune reaction to infection with a mutating virus.
Collapse
Affiliation(s)
- Silvia D’Orso
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| | - Marta Pirronello
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| | - Alice Verdiani
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| | - Angelo Rossini
- Medical Services, Santa Lucia Foundation IRCCS, 00179 Rome, Italy; (A.R.); (A.S.)
| | - Gisella Guerrera
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| | - Mario Picozza
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| | - Manolo Sambucci
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| | - Andrea Misiti
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| | - Lorenzo De Marco
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| | - Antonino Salvia
- Medical Services, Santa Lucia Foundation IRCCS, 00179 Rome, Italy; (A.R.); (A.S.)
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, Santa Lucia Foundation IRCCS, 00179 Rome, Italy;
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy;
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Luca Battistini
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| | - Giovanna Borsellino
- Neuroimmunology Unit, Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (S.D.); (M.P.); (A.V.); (G.G.); (M.P.); (M.S.); (A.M.); (L.D.M.); (L.B.)
| |
Collapse
|
2
|
Rees-Spear C, McCoy LE. Vaccine responses in ageing and chronic viral infection. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab007. [PMID: 36845567 PMCID: PMC9914503 DOI: 10.1093/oxfimm/iqab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last few decades, changing population demographics have shown that there are a growing number of individuals living past the age of 60. With this expanding older population comes an increase in individuals that are more susceptible to chronic illness and disease. An important part of maintaining health in this population is through prophylactic vaccination, however, there is growing evidence that vaccines may be less effective in the elderly. Furthermore, with the success of anti-viral therapies, chronic infections such as HIV are becoming increasingly prevalent in older populations and present a relatively unstudied population with respect to the efficacy of vaccination. Here we will examine the evidence for age-associated reduction in antibody and cellular responsiveness to a variety of common vaccines and investigate the underlying causes attributed to this phenomenon, such as inflammation and senescence. We will also discuss the impact of chronic viral infections on immune responses in both young and elderly patients, particularly those living with HIV, and how this affects vaccinations in these populations.
Collapse
Affiliation(s)
- Chloe Rees-Spear
- Division of Infection and Immunity, University College London, London, UK
| | - Laura E McCoy
- Division of Infection and Immunity, University College London, London, UK,Correspondence address. Division of Infection and Immunity, University College London, London, UK. E-mail:
| |
Collapse
|
3
|
Acquisition of host-derived CD40L by HIV-1 in vivo and its functional consequences in the B-cell compartment. J Virol 2010; 85:2189-200. [PMID: 21177803 DOI: 10.1128/jvi.01993-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aberrant activation of the B-cell compartment and hypergammaglobulinemia were among the first recognized characteristics of HIV-1-infected patients in the early 1980s. It has been demonstrated previously that HIV-1 particles acquire the costimulatory molecule CD40L when budding from activated CD4(+) T cells. In this paper, we confirmed first that CD40L-bearing virions are detected in the plasma from untreated HIV-1-infected individuals. To define the biological functions of virus-associated CD40L and fully characterize its influence on the activation state of B cells, we conducted a large-scale gene expression analysis using microarray technology on B cells isolated from human tonsillar tissue. Comparative analyses of gene expression profiles revealed that CD40L-bearing virions induce a highly similar response to the one observed in samples treated with a CD40 agonist, indicating that virions bearing CD40L can efficiently activate B cells. Among modulated genes, many cytokines/chemokines (CCL17, CCL22), surface molecules (CD23, CD80, ICAM-1), members of the TNF superfamily (FAS, A20, TNIP1, CD40, lymphotoxin alpha, lymphotoxin beta), transcription factors and associated proteins (NFKB1, NFKBIA, NFKBIE), second messengers involved in CD40 signaling (TRAF1, TRAF3, MAP2K1, phosphatidylinositol 3-kinase), and the activation-induced cytidine deaminase (AID) were identified. Moreover, we show that soluble factors induced upon the exposure of B cells to CD40L-bearing virions can exert chemoattractant properties toward CD4(+) T cells. We thus propose that a positive feedback loop involving CD40L-bearing HIV-1 particles issued from CD4(+) T cells productively infected with HIV-1 play a role in the virus-induced dysfunction of humoral immunity by chronically activating B cells through sustained CD40 signaling.
Collapse
|
4
|
Nhan-Chang CL, Romero R, Kusanovic JP, Gotsch F, Edwin SS, Erez O, Mittal P, Kim CJ, Kim MJ, Espinoza J, Friel LA, Vaisbuch E, Than NG, Mazaki-Tovi S, Hassan SS. A role for CXCL13 (BCA-1) in pregnancy and intra-amniotic infection/inflammation. J Matern Fetal Neonatal Med 2008; 21:763-75. [PMID: 19031272 PMCID: PMC3169890 DOI: 10.1080/14767050802244946] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES CXCL13 is a potent chemokine, produced by mature and recently recruited macrophages to sites of inflammation, which has antimicrobial and anti-angiogenic properties. The purpose of this study was to: (1) determine whether CXCL13 is present in maternal serum, umbilical cord blood, and amniotic fluid (AF); (2) to determine if AF concentration changes with intra-amniotic infection/inflammation (IAI); and (3) to localize the production of CXCL13 in chorioamniotic membranes and umbilical cord. STUDY DESIGN A cross-sectional study on maternal serum was performed including patients in the following groups: (1) non-pregnant women (n = 20), (2) normal pregnant women (n = 49), (3) patients at term not in labor (n = 30), and (4) patients in spontaneous labor at term (n = 29). Umbilical cord blood was collected from term neonates with (n = 30) and without labor (n = 28). Amniotic fluid was obtained from patients in the following groups: (1) midtrimester (n = 65); (2) term not in labor (n = 22); (3) term in labor (n = 47); (4) preterm labor (PTL) with intact membranes leading to term delivery (n = 70); and (5) PTL leading to preterm delivery with IAI (n = 79) and without IAI (n = 60). CXCL13 concentrations were determined by enzyme-linked immunosorbent assay. Chorioamniotic membranes and umbilical cords were examined with immunohistochemistry. Non-parametric statistics were used for analysis. RESULTS (1) CXCL13 was present in 100% of serum and cord blood samples, and 99% of AF samples (339/343). (2) Serum CXCL13 concentration was significantly higher in pregnant women when compared to non-pregnant women (median 313.3 pg/mL (interquartile range (IQR) 197.2-646.9) vs. 40.5 pg/mL (IQR 29.5-93.5), respectively; p < 0.001). (3) Serum CXCL13 concentration decreased with advancing gestational age (Spearman's Rho = -0.424; p < 0.001). (4) There were no significant differences in the median serum CXCL13 concentration between women at term with and without labor (371.6 pg/mL (IQR 194.3-614.3) vs. 235.1 pg/mL (IQR 182.8-354.7), respectively; p = 0.6). (5) The concentration of CXCL13 in AF did not change with gestational age (p = 0.1). (6) Patients with PTL and delivery with IAI had a significantly higher median concentration of CXCL13 than those without IAI (median 513.2 pg/mL (IQR 199.7-2505.5) vs. 137.3 pg/mL (IQR 96.7-209.6), respectively; p < 0.001) and those who delivered at term (133.7 pg/mL (IQR 97.8-174.8); p < 0.001). (7) Spontaneous labor did not result in a change in the median AF concentration of CXCL13 (labor: 86.9 pg/mL (IQR 55.6-152.0) vs. no labor: 77.8 pg/mL (IQR 68.0-98.0); p = 0.8). (8) CXCL13 was immunolocalized to macrophages in fetal membranes and umbilical vein. CONCLUSIONS (1) We report for the first time the presence of CXCL13 in AF. (2) AF CXCL13 concentrations are dramatically increased in IAI. (3) Unlike other chemokines, AF and serum CXCL13 concentrations did not change with spontaneous parturition.
Collapse
Affiliation(s)
- Chia-Ling Nhan-Chang
- Perinatology Research Branch, Intramural Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Intramural Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, Intramural Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
| | - Francesca Gotsch
- Perinatology Research Branch, Intramural Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
| | - Samuel S. Edwin
- Perinatology Research Branch, Intramural Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Offer Erez
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| | - Pooja Mittal
- Perinatology Research Branch, Intramural Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| | - Chong Jai Kim
- Perinatology Research Branch, Intramural Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI
| | - Mi Jeong Kim
- Perinatology Research Branch, Intramural Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Jimmy Espinoza
- Perinatology Research Branch, Intramural Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| | - Lara A. Friel
- Perinatology Research Branch, Intramural Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| | - Edi Vaisbuch
- Perinatology Research Branch, Intramural Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
| | - Nandor Gabor Than
- Perinatology Research Branch, Intramural Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
| | - Shali Mazaki-Tovi
- Perinatology Research Branch, Intramural Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| | - Sonia S. Hassan
- Perinatology Research Branch, Intramural Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Hutzel Women’s Hospital, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women’s Hospital, Detroit, MI
| |
Collapse
|
5
|
Altered expression of the receptor-ligand pair CXCR5/CXCL13 in B cells during chronic HIV-1 infection. Blood 2008; 112:4401-10. [PMID: 18780835 DOI: 10.1182/blood-2008-02-140426] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
HIV-1 infection is associated with B-cell abnormalities, such as hypergammaglobulinemia, poor immunization responses, and loss of serologic memory. To determine whether altered expression of chemokine receptors and their ligands may play a role in B-cell dysfunctions during HIV-1 infection, the expression of CXC chemokine receptor 4 (CXCR4), CXCR5, and CC chemokine receptor 7 (CCR7) and their respective ligands on CD19(+) B cells were examined in HIV-1-infected patients and controls. We report a decreased CXCR5 expression on B cells from patients (P < .05), a phenomenon associated with a low CD4 T-cell count (< 350 cells/microL). Interestingly, an increased expression of CXC chemokine ligand 13 (CXCL13), the ligand for CXCR5, was found in peripheral B cells from HIV-1-infected patients. Moreover, on B-cell activation in vitro, CXCL13 was secreted in culture. CXCL13(+) B cells were also found in the lymph nodes of HIV-1-infected patients, but not in control tissue. B-cell migration toward CXCL13, CXCL12, and CC chemokine ligand 21 (CCL21), ligands for CXCR5, CXCR4, and CCR7 was also evaluated. In patients with a low CD4 T-cell count, migration toward all ligands was increased. Our findings indicate that altered expression of the chemokine receptor-ligand pair, CXCR5/CXCL13, may participate in the establishment of B-cell dysfunctions during HIV-1 infection.
Collapse
|
7
|
Régulier EG, Panemangalore R, Richardson MW, DeFranco JJ, Kocieda V, Gordon-Lyles DC, Silvera P, Khalili K, Zagury JF, Lewis MG, Rappaport J. Persistent anti-gag, -Nef, and -Rev IgM levels as markers of the impaired functions of CD4+ T-helper lymphocytes during SIVmac251 infection of cynomolgus macaques. J Acquir Immune Defic Syndr 2005; 40:1-11. [PMID: 16123674 DOI: 10.1097/01.qai.0000173702.05308.c4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study analyzed the antigen-specific (Gag, Nef, Rev, and Tat) IgM, IgG, and IgA humoral responses during the first 200 days of SIVmac251 infection in cynomolgus macaques. These responses were tested for correlation with the CD4(+) T-cell-related hematologic parameters and viral load throughout the course of the study (acute and chronic infection, during and after antiretroviral therapy). Strong inverse correlations were observed between the percentage of CD4(+) T cells at almost every timepoint of the study and the levels of IgM (but not IgG and IgA) against Gag, Nef, and Rev (but not Tat) measured after, but not during, the primary peak of IgM response. Significant levels of persistent antigen-specific IgMs may reflect the prevalence of mature plasma cells that have not undergone immunoglobulin class switching, possibly due to defects in helper T-cell function. Strong correlations were observed between the preinfection CD4(+) T-cell count or CD4/CD8 ratio and the same parameters measured throughout the study, suggesting the importance of preinfection immune status as a determinant of disease progression. The negative correlations between the post-acute-phase IgM levels and the percentage of CD4(+) T cells at later times during the study suggest the potential prognostic value of this measurement.
Collapse
Affiliation(s)
- Emmanuel G Régulier
- Center for Neurovirology and Cancer Biology, Temple University, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|