1
|
Wang TT, Hirons A, Doerflinger M, Morris KV, Ledger S, Purcell DFJ, Kelleher AD, Ahlenstiel CL. Current State of Therapeutics for HTLV-1. Viruses 2024; 16:1616. [PMID: 39459949 PMCID: PMC11512412 DOI: 10.3390/v16101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Human T cell leukaemia virus type-1 (HTLV-1) is an oncogenic retrovirus that causes lifelong infection in ~5-10 million individuals globally. It is endemic to certain First Nations populations of Northern and Central Australia, Japan, South and Central America, Africa, and the Caribbean region. HTLV-1 preferentially infects CD4+ T cells and remains in a state of reduced transcription, often being asymptomatic in the beginning of infection, with symptoms developing later in life. HTLV-1 infection is implicated in the development of adult T cell leukaemia/lymphoma (ATL) and HTLV-1-associated myelopathies (HAM), amongst other immune-related disorders. With no preventive or curative interventions, infected individuals have limited treatment options, most of which manage symptoms. The clinical burden and lack of treatment options directs the need for alternative treatment strategies for HTLV-1 infection. Recent advances have been made in the development of RNA-based antiviral therapeutics for Human Immunodeficiency Virus Type-1 (HIV-1), an analogous retrovirus that shares modes of transmission with HTLV-1. This review highlights past and ongoing efforts in the development of HTLV-1 therapeutics and vaccines, with a focus on the potential for gene therapy as a new treatment modality in light of its successes in HIV-1, as well as animal models that may help the advancement of novel antiviral and anticancer interventions.
Collapse
Affiliation(s)
- Tiana T. Wang
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Ashley Hirons
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Kevin V. Morris
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Scott Ledger
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Damian F. J. Purcell
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Anthony D. Kelleher
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chantelle L. Ahlenstiel
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Molecular targeting for treatment of human T-lymphotropic virus type 1 infection. Biomed Pharmacother 2019; 109:770-778. [DOI: 10.1016/j.biopha.2018.10.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
|
3
|
El-Araby AM, Fouad AA, Hanbal AM, Abdelwahab SM, Qassem OM, El-Araby ME. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises. Arch Pharm (Weinheim) 2016; 349:73-90. [PMID: 26754591 DOI: 10.1002/ardp.201500375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 01/19/2023]
Abstract
Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed.
Collapse
Affiliation(s)
- Amr M El-Araby
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | | | - Amr M Hanbal
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | | | - Omar M Qassem
- Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| | - Moustafa E El-Araby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanya, Jeddah, Saudi Arabia.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
4
|
Fletcher M, Biglarbegian M, Neethirajan S. Intelligent system design for bionanorobots in drug delivery. Cancer Nanotechnol 2013; 4:117-125. [PMID: 26069507 PMCID: PMC4452041 DOI: 10.1007/s12645-013-0044-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/02/2013] [Indexed: 11/30/2022] Open
Abstract
A nanorobot is defined as any smart structure which is capable of actuation, sensing, manipulation, intelligence, and swarm behavior at the nanoscale. In this study, we designed an intelligent system using fuzzy logic for diagnosis and treatment of tumors inside the human body using bionanorobots. We utilize fuzzy logic and a combination of thermal, magnetic, optical, and chemical nanosensors to interpret the uncertainty associated with the sensory information. Two different fuzzy logic structures, for diagnosis (Mamdani structure) and for cure (Takagi–Sugeno structure), were developed to efficiently identify the tumors and treat them through delivery of effective dosages of a drug. Validation of the designed system with simulated conditions proved that the drug delivery of bionanorobots was robust to reasonable noise that may occur in the bionanorobot sensors during navigation, diagnosis, and curing of the cancer cells. Bionanorobots represent a great hope for successful cancer therapy in the near future.
Collapse
Affiliation(s)
- Mark Fletcher
- Biomedical Engineering, University of Guelph, Guelph, Ontario Canada
| | | | - Suresh Neethirajan
- Biomedical Engineering, University of Guelph, Guelph, Ontario Canada ; BioNano Laboratory, School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 Canada
| |
Collapse
|
5
|
Bagossi P, Bander P, Bozóki B, Tözsér J. Discovery and significance of new human T-lymphotropic viruses: HTLV-3 and HTLV-4. Expert Rev Anti Infect Ther 2010; 7:1235-49. [PMID: 19968515 DOI: 10.1586/eri.09.97] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) were discovered approximately 30 years ago and they are associated with various lymphoproliferative and neurological diseases. The estimated number of infected people is 10-20 million worldwide. In 2005, two new HTLV-1/HTLV-2-related viruses were detected, HTLV-3 and HTLV-4, from the same geographical area of Africa. In the last 4 years, their complete genomic sequences were determined and some of their characteristic features were studied in detail. These newly discovered retroviruses alongside their human (HTLV-1 and -2) and animal relatives (simian T-lymphotropic virus type 1-3) are reviewed. The potential risks associated with these viruses and the potential antiretroviral therapies are also discussed.
Collapse
Affiliation(s)
- Péter Bagossi
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.
| | | | | | | |
Collapse
|
6
|
Cyclosporine-induced immune suppression alters establishment of HTLV-1 infection in a rabbit model. Blood 2009; 115:815-23. [PMID: 19965683 DOI: 10.1182/blood-2009-07-230912] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) infection causes adult T-cell leukemia and several lymphocyte-mediated inflammatory diseases. Persistent HTLV-1 infection is determined by a balance between host immune responses and virus spread. Immunomodulatory therapy involving HTLV-1-infected patients occurs in a variety of clinical settings. Knowledge of how these treatments influence host-virus relationships is not understood. In this study, we examined the effects of cyclosporine A (CsA)-induced immune suppression during early infection of HTLV-1. Twenty-four New Zealand white rabbits were split into 4 groups. Three groups were treated with either 10 or 20 mg/kg CsA or saline before infection. The fourth group was treated with 20 mg/kg CsA 1 week after infection. Immune suppression, plasma CsA concentration, ex vivo lymphocyte HTLV-1 p19 production, anti-HTLV-1 serologic responses, and proviral load levels were measured during infection. Our data indicated that CsA treatment before HTLV-1 infection enhanced early viral expression compared with untreated HTLV-1-infected rabbits, and altered long-term viral expression parameters. However, CsA treatment 1 week after infection diminished HTLV-1 expression throughout the 10-week study course. Collectively, these data indicate immunologic control is a key determinant of early HTLV-1 spread and have important implications for therapeutic intervention during HTLV-1-associated diseases.
Collapse
|