1
|
Abstract
Dengue virus (DENV) belongs to the family Flaviviridae, genus Flavivirus. It is a single-stranded positive-sense ribonucleic acid virus with 10,700 bases. The genus Flavivirus includes other arthropod borne viruses such as yellow fever virus, West Nile virus, Zika virus, tick-borne encephalitis virus. It infects ~50–200 million people annually, putting over 3.6 billion people living in tropical regions at risk and causing ~20,000 deaths annually. The expansion of dengue is attributed to factors such as the modern dynamics of climate change, globalization, travel, trade, socioeconomics, settlement, and also viral evolution. There are four antigenically different serotypes of DENV based on the differences in their viral structural and nonstructural proteins. DENV infection causes a spectrum of illness ranging from asymptomatic to dengue fever to severe dengue shock syndrome. Infection with one serotype confers lifelong immunity against that serotype, but heterologus infection leads to severe dengue hemorrhagic fever due to antibody-dependent enhancement. Diagnosis of dengue infections is based mainly on serological detection of either antigen in acute cases or antibodies in both acute and chronic infection. Viral detection and real-time PCR detection though helpful is not feasible in resource poor setup. Treatment of dengue depends on symptomatic management along with fluid resuscitation and may require platelet transfusion. Although vaccine development is in late stages of development, developing a single vaccine against four serotypes often causes serious challenges to researchers; hence, the main stay of prevention is vector control and management.
Collapse
|
2
|
Auerswald H, de Jesus A, Seixas G, Nazareth T, In S, Mao S, Duong V, Silva AC, Paul R, Dussart P, Sousa CA. First dengue virus seroprevalence study on Madeira Island after the 2012 outbreak indicates unreported dengue circulation. Parasit Vectors 2019; 12:103. [PMID: 30867031 PMCID: PMC6417143 DOI: 10.1186/s13071-019-3357-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/26/2019] [Indexed: 02/06/2023] Open
Abstract
Background In 2012, the first dengue virus outbreak was reported on the Portuguese island of Madeira with 1080 confirmed cases. Dengue virus of serotype 1 (DENV-1), probably imported from Venezuela, caused this outbreak with autochthonous transmission by invasive Aedes aegypti mosquitoes. Results We investigated the seroprevalence among the population on Madeira Island four years after the outbreak. Study participants (n = 358), representative of the island population regarding their age and gender, were enrolled in 2012 in a cross-sectional study. Dengue antibodies were detected with an in-house enzyme-linked immunosorbent assay (ELISA) using the dimer of domain III (ED3) of the DENV-1 envelope protein as well as commercial Panbio indirect and capture IgG ELISAs. Positive ELISA results were validated with a neutralization test. The overall seroprevalence was found to be 7.8% (28/358) with the in-house ELISA, whereas the commercial DENV indirect ELISA detected IgG antibodies in 8.9% of the individuals (32/358). The results of the foci reduction neutralization test confirmed DENV-1 imported from South America as the causative agent of the 2012 epidemic. Additionally, we found a higher seroprevalence in study participants with an age above 60 years old and probable secondary DENV infected individuals indicating unreported dengue circulation before or after 2012 on Madeira Island. Conclusions This study revealed that the number of infections might have been much higher than estimated from only confirmed cases in 2012/2013. These mainly DENV-1 immune individuals are not protected from a secondary DENV infection and the majority of the population of Madeira Island is still naïve for DENV. Surveillance of mosquitoes and arboviruses should be continued on Madeira Island as well as in other European areas where invasive vector mosquitoes are present. Electronic supplementary material The online version of this article (10.1186/s13071-019-3357-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heidi Auerswald
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, PO Box 983, Phnom Penh, Cambodia
| | - Ana de Jesus
- GHTM-Global Health and Tropical Medicine, 1349-008, Lisbon, Portugal.,UEI Medical Parasitology, Institute of Hygiene and Tropical Medicine of Lisbon, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Gonçalo Seixas
- GHTM-Global Health and Tropical Medicine, 1349-008, Lisbon, Portugal.,UEI Medical Parasitology, Institute of Hygiene and Tropical Medicine of Lisbon, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Teresa Nazareth
- GHTM-Global Health and Tropical Medicine, 1349-008, Lisbon, Portugal.,UEI Medical Parasitology, Institute of Hygiene and Tropical Medicine of Lisbon, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Saraden In
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, PO Box 983, Phnom Penh, Cambodia
| | - Sokthearom Mao
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, PO Box 983, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, PO Box 983, Phnom Penh, Cambodia
| | - Ana Clara Silva
- Departamento de Saúde, Planeamento e Administração Geral, Instituto de Administração da Saúde e Assuntos Sociais, IP-RAM, Funchal, Madeira, Portugal.,Madeira Regional Government, Institute of Health and Social Affairs, Av. Zarco, Funchal, Madeira, Portugal
| | - Richard Paul
- Functional Genetics of Infectious Diseases Unit, Department of Genomes and Genetics, Institut Pasteur, 75015, Paris, France.,Génomique évolutive, modélisation et santé UMR 2000, Centre National de la Recherche Scientifique (CNRS), 75724, Paris Cedex 15, France
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, PO Box 983, Phnom Penh, Cambodia.
| | - Carla Alexandra Sousa
- GHTM-Global Health and Tropical Medicine, 1349-008, Lisbon, Portugal.,UEI Medical Parasitology, Institute of Hygiene and Tropical Medicine of Lisbon, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Hanley KA, Guerbois M, Kautz TF, Brown M, Whitehead SS, Weaver SC, Vasilakis N, Marx PA. Infection dynamics of sylvatic dengue virus in a natural primate host, the African Green Monkey. Am J Trop Med Hyg 2014; 91:672-6. [PMID: 25092823 DOI: 10.4269/ajtmh.13-0492] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The four serotypes of mosquito-borne dengue virus (DENV-1, -2, -3, and -4) that circulate in humans each emerged from an enzootic, sylvatic cycle in non-human primates. Herein, we present the first study of sylvatic DENV infection dynamics in a primate. Three African green monkeys were inoculated with 10(5) plaque-forming units (pfu) DENV-2 strain PM33974 from the sylvatic cycle, and one African green monkey was inoculated with 10(5) pfu DENV-2 strain New Guinea C from the human cycle. All four monkeys seroconverted (more than fourfold rise in 80% plaque reduction neutralization titer [PRNT80]) against the strain of DENV with which they were inoculated; only one (33%) of three monkeys infected with sylvatic DENV showed a neutralizing antibody response against human-endemic DENV. Virus was detected in two of three monkeys inoculated with sylvatic DENV at low titer (≤ 1.3 log10pfu/mL) and brief duration (≤ 2 days). Clinical signs included rash and elevated aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels.
Collapse
Affiliation(s)
- Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico; Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland; Center for Tropical Diseases, Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Tulane National Primate Research Center, Tulane University, Covington, Louisiana
| | - Mathilde Guerbois
- Department of Biology, New Mexico State University, Las Cruces, New Mexico; Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland; Center for Tropical Diseases, Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Tulane National Primate Research Center, Tulane University, Covington, Louisiana
| | - Tiffany F Kautz
- Department of Biology, New Mexico State University, Las Cruces, New Mexico; Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland; Center for Tropical Diseases, Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Tulane National Primate Research Center, Tulane University, Covington, Louisiana
| | - Meredith Brown
- Department of Biology, New Mexico State University, Las Cruces, New Mexico; Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland; Center for Tropical Diseases, Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Tulane National Primate Research Center, Tulane University, Covington, Louisiana
| | - Stephen S Whitehead
- Department of Biology, New Mexico State University, Las Cruces, New Mexico; Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland; Center for Tropical Diseases, Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Tulane National Primate Research Center, Tulane University, Covington, Louisiana
| | - Scott C Weaver
- Department of Biology, New Mexico State University, Las Cruces, New Mexico; Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland; Center for Tropical Diseases, Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Tulane National Primate Research Center, Tulane University, Covington, Louisiana
| | - Nikos Vasilakis
- Department of Biology, New Mexico State University, Las Cruces, New Mexico; Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland; Center for Tropical Diseases, Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Tulane National Primate Research Center, Tulane University, Covington, Louisiana
| | - Preston A Marx
- Department of Biology, New Mexico State University, Las Cruces, New Mexico; Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland; Center for Tropical Diseases, Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas; Tulane National Primate Research Center, Tulane University, Covington, Louisiana
| |
Collapse
|
4
|
McArthur MA, Sztein MB, Edelman R. Dengue vaccines: recent developments, ongoing challenges and current candidates. Expert Rev Vaccines 2013; 12:933-53. [PMID: 23984962 PMCID: PMC3773977 DOI: 10.1586/14760584.2013.815412] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dengue is among the most prevalent and important arbovirus diseases of humans. To effectively control this rapidly spreading disease, control of the vector mosquito and a safe and efficacious vaccine are critical. Despite considerable efforts, the development of a successful vaccine has remained elusive. Multiple factors have complicated the creation of a successful vaccine, not the least of which are the complex, immune-mediated responses against four antigenically distinct serotypes necessitating a tetravalent vaccine providing long-lasting protective immunity. Despite the multiple impediments, there are currently many promising vaccine candidates in preclinical and clinical development. Here, the recent advances in dengue virus vaccine development are reviewed and the challenges associated with the use of these vaccines as a public health tool are briefly discussed.
Collapse
Affiliation(s)
- Monica A. McArthur
- Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA
| | - Marcelo B. Sztein
- Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA
| | - Robert Edelman
- Department of Medicine, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Rodriguez-Roche R, Gould EA. Understanding the dengue viruses and progress towards their control. BIOMED RESEARCH INTERNATIONAL 2013; 2013:690835. [PMID: 23936833 PMCID: PMC3722981 DOI: 10.1155/2013/690835] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/08/2013] [Indexed: 01/12/2023]
Abstract
Traditionally, the four dengue virus serotypes have been associated with fever, rash, and the more severe forms, haemorrhagic fever and shock syndrome. As our knowledge as well as understanding of these viruses increases, we now recognise not only that they are causing increasing numbers of human infections but also that they may cause neurological and other clinical complications, with sequelae or fatal consequences. In this review we attempt to highlight some of these features in the context of dengue virus pathogenesis. We also examine some of the efforts currently underway to control this "scourge" of the tropical and subtropical world.
Collapse
Affiliation(s)
- Rosmari Rodriguez-Roche
- Pedro Kouri Tropical Medicine Institute, WHO/PAHO Collaborating Centre for the Study of Dengue and Its Vector, Havana, Cuba.
| | | |
Collapse
|
6
|
White LJ, Sariol CA, Mattocks MD, Wahala M P B W, Yingsiwaphat V, Collier ML, Whitley J, Mikkelsen R, Rodriguez IV, Martinez MI, de Silva A, Johnston RE. An alphavirus vector-based tetravalent dengue vaccine induces a rapid and protective immune response in macaques that differs qualitatively from immunity induced by live virus infection. J Virol 2013; 87:3409-24. [PMID: 23302884 PMCID: PMC3592161 DOI: 10.1128/jvi.02298-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/03/2013] [Indexed: 11/20/2022] Open
Abstract
Despite many years of research, a dengue vaccine is not available, and the more advanced live attenuated vaccine candidate in clinical trials requires multiple immunizations with long interdose periods and provides low protective efficacy. Here, we report important contributions to the development of a second-generation dengue vaccine. First, we demonstrate that a nonpropagating vaccine vector based on Venezuelan equine encephalitis virus replicon particles (VRP) expressing two configurations of dengue virus E antigen (subviral particles [prME] and soluble E dimers [E85]) successfully immunized and protected macaques against dengue virus, while antivector antibodies did not interfere with a booster immunization. Second, compared to prME-VRP, E85-VRP induced neutralizing antibodies faster, to higher titers, and with improved protective efficacy. Third, this study is the first to map antigenic domains and specificities targeted by vaccination versus natural infection, revealing that, unlike prME-VRP and live virus, E85-VRP induced only serotype-specific antibodies, which predominantly targeted EDIII, suggesting a protective mechanism different from that induced by live virus and possibly live attenuated vaccines. Fourth, a tetravalent E85-VRP dengue vaccine induced a simultaneous and protective response to all 4 serotypes after 2 doses given 6 weeks apart. Balanced responses and protection in macaques provided further support for exploring the immunogenicity and safety of this vaccine candidate in humans.
Collapse
Affiliation(s)
- Laura J White
- Global Vaccines Inc., Research Triangle Park, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Austin SK, Dowd KA, Shrestha B, Nelson CA, Edeling MA, Johnson S, Pierson TC, Diamond MS, Fremont DH. Structural basis of differential neutralization of DENV-1 genotypes by an antibody that recognizes a cryptic epitope. PLoS Pathog 2012; 8:e1002930. [PMID: 23055922 PMCID: PMC3464233 DOI: 10.1371/journal.ppat.1002930] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/13/2012] [Indexed: 01/07/2023] Open
Abstract
We previously developed a panel of neutralizing monoclonal antibodies against Dengue virus (DENV)-1, of which few exhibited inhibitory activity against all DENV-1 genotypes. This finding is consistent with reports observing variable neutralization of different DENV strains and genotypes using serum from individuals that experienced natural infection or immunization. Herein, we describe the crystal structures of DENV1-E111 bound to a novel CC' loop epitope on domain III (DIII) of the E protein from two different DENV-1 genotypes. Docking of our structure onto the available cryo-electron microscopy models of DENV virions revealed that the DENV1-E111 epitope was inaccessible, suggesting that this antibody recognizes an uncharacterized virus conformation. While the affinity of binding between DENV1-E111 and DIII varied by genotype, we observed limited correlation with inhibitory activity. Instead, our results support the conclusion that potent neutralization depends on genotype-dependent exposure of the CC' loop epitope. These findings establish new structural complexity of the DENV virion, which may be relevant for the choice of DENV strain for induction or analysis of neutralizing antibodies in the context of vaccine development.
Collapse
Affiliation(s)
- S. Kyle Austin
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Kimberly A. Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bimmi Shrestha
- Department of Medicine (Infectious Diseases), Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Christopher A. Nelson
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Melissa A. Edeling
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Syd Johnson
- MacroGenics, Rockville, Maryland, United States of America
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Medicine (Infectious Diseases), Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail: (MSD); (DHF)
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail: (MSD); (DHF)
| |
Collapse
|
8
|
Rainwater-Lovett K, Rodriguez-Barraquer I, Cummings DAT, Lessler J. Variation in dengue virus plaque reduction neutralization testing: systematic review and pooled analysis. BMC Infect Dis 2012; 12:233. [PMID: 23020074 PMCID: PMC3519720 DOI: 10.1186/1471-2334-12-233] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 09/25/2012] [Indexed: 11/24/2022] Open
Abstract
Background The plaque reduction neutralization test (PRNT) remains the gold standard for the detection of serologic immune responses to dengue virus (DENV). While the basic concept of the PRNT remains constant, this test has evolved in multiple laboratories, introducing variation in materials and methods. Despite the importance of laboratory-to-laboratory comparability in DENV vaccine development, the effects of differing PRNT techniques on assay results, particularly the use of different dengue strains within a serotype, have not been fully characterized. Methods We conducted a systematic review and pooled analysis of published literature reporting individual-level PRNT titers to identify factors associated with heterogeneity in PRNT results and compared variation between strains within DENV serotypes and between articles using hierarchical models. Results The literature search and selection criteria identified 8 vaccine trials and 25 natural exposure studies reporting 4,411 titers from 605 individuals using 4 different neutralization percentages, 3 cell lines, 12 virus concentrations and 51 strains. Of 1,057 titers from primary DENV exposure, titers to the exposure serotype were consistently higher than titers to non-exposure serotypes. In contrast, titers from secondary DENV exposures (n = 628) demonstrated high titers to exposure and non-exposure serotypes. Additionally, PRNT titers from different strains within a serotype varied substantially. A pooled analysis of 1,689 titers demonstrated strain choice accounted for 8.04% (90% credible interval [CrI]: 3.05%, 15.7%) of between-titer variation after adjusting for secondary exposure, time since DENV exposure, vaccination and neutralization percentage. Differences between articles (a proxy for inter-laboratory differences) accounted for 50.7% (90% CrI: 30.8%, 71.6%) of between-titer variance. Conclusions As promising vaccine candidates arise, the lack of standardized assays among diagnostic and research laboratories make unbiased inferences about vaccine-induced protection difficult. Clearly defined, widely accessible reference reagents, proficiency testing or algorithms to adjust for protocol differences would be a useful first step in improving dengue PRNT comparability and quality assurance.
Collapse
Affiliation(s)
- Kaitlin Rainwater-Lovett
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
9
|
Messer WB, Yount B, Hacker KE, Donaldson EF, Huynh JP, de Silva AM, Baric RS. Development and characterization of a reverse genetic system for studying dengue virus serotype 3 strain variation and neutralization. PLoS Negl Trop Dis 2012; 6:e1486. [PMID: 22389731 PMCID: PMC3289595 DOI: 10.1371/journal.pntd.0001486] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 12/07/2011] [Indexed: 12/15/2022] Open
Abstract
Dengue viruses (DENV) are enveloped single-stranded positive-sense RNA viruses transmitted by Aedes spp. mosquitoes. There are four genetically distinct serotypes designated DENV-1 through DENV-4, each further subdivided into distinct genotypes. The dengue scientific community has long contended that infection with one serotype confers lifelong protection against subsequent infection with the same serotype, irrespective of virus genotype. However this hypothesis is under increased scrutiny and the role of DENV genotypic variation in protection from repeated infection is less certain. As dengue vaccine trials move increasingly into field-testing, there is an urgent need to develop tools to better define the role of genotypic variation in DENV infection and immunity. To better understand genotypic variation in DENV-3 neutralization and protection, we designed and constructed a panel of isogenic, recombinant DENV-3 infectious clones, each expressing an envelope glycoprotein from a different DENV-3 genotype; Philippines 1982 (genotype I), Thailand 1995 (genotype II), Sri Lanka 1989 and Cuba 2002 (genotype III) and Puerto Rico 1977 (genotype IV). We used the panel to explore how natural envelope variation influences DENV-polyclonal serum interactions. When the recombinant viruses were tested in neutralization assays using immune sera from primary DENV infections, neutralization titers varied by as much as ∼19-fold, depending on the expressed envelope glycoprotein. The observed variability in neutralization titers suggests that relatively few residue changes in the E glycoprotein may have significant effects on DENV specific humoral immunity and influence antibody mediated protection or disease enhancement in the setting of both natural infection and vaccination. These genotypic differences are also likely to be important in temporal and spatial microevolution of DENV-3 in the background of heterotypic neutralization. The recombinant and synthetic tools described here are valuable for testing hypotheses on genetic determinants of DENV-3 immunopathogenesis.
Collapse
Affiliation(s)
- William B. Messer
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Boyd Yount
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kari E. Hacker
- Department of Microbiology and Immunology, and Southeast Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Eric F. Donaldson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeremy P. Huynh
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, and Southeast Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
10
|
Guzman MG, Vazquez S. The complexity of antibody-dependent enhancement of dengue virus infection. Viruses 2010; 2:2649-62. [PMID: 21994635 PMCID: PMC3185591 DOI: 10.3390/v2122649] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/22/2010] [Accepted: 11/22/2010] [Indexed: 12/30/2022] Open
Abstract
Antibody-dependent enhancement (ADE) has been proposed as a mechanism to explain dengue hemorrhagic fever (DHF) in the course of a secondary dengue infection. Very recently, Dejnirattisai et al., 2010 [1], published an important article supporting the involvement of anti-prM antibodies in the ADE phenomenon. The complexity of ADE in the context of a secondary dengue infection is discussed here.
Collapse
Affiliation(s)
- Maria G. Guzman
- Department of Virology, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, “Pedro Kouri” Tropical Medicine Institute of Havana, Cuba; E-Mail:
| | - Susana Vazquez
- Department of Virology, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, “Pedro Kouri” Tropical Medicine Institute of Havana, Cuba; E-Mail:
| |
Collapse
|
11
|
Antibodies induced by dengue virus type 1 and 2 envelope domain III recombinant proteins in monkeys neutralize strains with different genotypes. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1829-31. [PMID: 19726617 DOI: 10.1128/cvi.00191-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present work, we evaluated the neutralizing capacity of the antibodies induced by dengue virus type 1 and 2 envelope domain III recombinant proteins in monkeys against strains of different dengue virus type 1 and 2 genotypes. Here we demonstrated that dengue virus type 1 and 2 recombinant proteins induced high titers of neutralizing antibodies against different genotype strains.
Collapse
|
12
|
Amarilla AA, de Almeida FT, Jorge DM, Alfonso HL, de Castro-Jorge LA, Nogueira NA, Figueiredo LT, Aquino VH. Genetic diversity of the E protein of dengue type 3 virus. Virol J 2009; 6:113. [PMID: 19627608 PMCID: PMC2720943 DOI: 10.1186/1743-422x-6-113] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 07/23/2009] [Indexed: 11/29/2022] Open
Abstract
Background Dengue is the most important arbovirus disease in tropical and subtropical countries. The viral envelope (E) protein is responsible for cell receptor binding and is the main target of neutralizing antibodies. The aim of this study was to analyze the diversity of the E protein gene of DENV-3. E protein gene sequences of 20 new viruses isolated in Ribeirao Preto, Brazil, and 427 sequences retrieved from GenBank were aligned for diversity and phylogenetic analysis. Results Comparison of the E protein gene sequences revealed the presence of 47 variable sites distributed in the protein; most of those amino acids changes are located on the viral surface. The phylogenetic analysis showed the distribution of DENV-3 in four genotypes. Genotypes I, II and III revealed internal groups that we have called lineages and sub-lineages. All amino acids that characterize a group (genotype, lineage, or sub-lineage) are located in the 47 variable sites of the E protein. Conclusion Our results provide information about the most frequent amino acid changes and diversity of the E protein of DENV-3.
Collapse
Affiliation(s)
- Alberto A Amarilla
- Virology Research Center, School of Medicine of Ribeirão Preto/USP, Ribeirão Preto - SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|