1
|
Zaid AB, Almady SK, Awad SM, Elabd MG, Saied SA, Saied AA, Elmalawany AM. Sofosbuvir (+) daclatasvir (+) ribavirin in Egyptian patients with hepatitis C virus: Therapeutic outcomes and the prognostic role of natural killer cells. Curr Res Transl Med 2024; 72:103443. [PMID: 38447269 DOI: 10.1016/j.retram.2024.103443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/02/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND One of the prominent causes of chronic liver disease worldwide is the hepatitis C virus (HCV). HCV believed that innate immunity contributes to a sustained virological response (SVR) to the treatment of Sofosbuvir (SOF) (+) Daclatasvir (DCV) (+) Ribavirin (RBV). This study aimed to evaluate the impact of SOF (+) DCV (+) RBV therapy and persistent HCV infection on the subset of natural killer cells (NK) in HCV genotype four patients from Egypt. MATERIALS AND METHODS One hundred and ten patients with persistent HCV infections requiring SOF (+) DCV (+) RBV therapy were grouped, and a flow cytometry (FCM) study of the NK cell subset in peripheral blood was performed. The assessment was performed before and after three and/or six months of the cessation of viral suppression therapy when a patient had a long-term viral response (SVR). One hundred and ten volunteers from the National Liver Institute's (NLI) blood bank were selected as controls. RESULTS Patients with chronic HCV infection before therapy had considerably lower CD16+ and CD3- CD56+ cells than controls. Their levels increase during SOF (+) DCV (+) RBV therapy. In patients with SVR during treatment, CD16+ and CD3- CD56+ cells increased significantly compared to those who did not get SVR. Furthermore, CD56+ cells were significantly higher in patients with persistent infection before treatment than controls but diminished with the response to treatment. CONCLUSION NK cell activation following SOF (+) DCV (+) RBV therapy and polarization to cytotoxicity occurred early in HCV antiviral therapy and was elevated in the respondents. Our data illustrated that establishing an inhibitory cytotoxic NK profile is related to therapeutic outcomes.
Collapse
Affiliation(s)
- Ahmed B Zaid
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Shibin Elkom 32511, Egypt
| | - Shimaa K Almady
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shibin-Elkom 32511, Egypt
| | - Samah M Awad
- Department of Clinical Microbiology, National Liver Institute, Menoufia University, Shibin Elkom 32511, Egypt
| | - Mona G Elabd
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Shibin Elkom 32511, Egypt
| | - Sara A Saied
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Shibin Elkom 32511, Egypt
| | | | - Alshimaa M Elmalawany
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Shibin Elkom 32511, Egypt.
| |
Collapse
|
2
|
Bjorgen JC, Dick JK, Cromarty R, Hart GT, Rhein J. NK cell subsets and dysfunction during viral infection: a new avenue for therapeutics? Front Immunol 2023; 14:1267774. [PMID: 37928543 PMCID: PMC10620977 DOI: 10.3389/fimmu.2023.1267774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
In the setting of viral challenge, natural killer (NK) cells play an important role as an early immune responder against infection. During this response, significant changes in the NK cell population occur, particularly in terms of their frequency, location, and subtype prevalence. In this review, changes in the NK cell repertoire associated with several pathogenic viral infections are summarized, with a particular focus placed on changes that contribute to NK cell dysregulation in these settings. This dysregulation, in turn, can contribute to host pathology either by causing NK cells to be hyperresponsive or hyporesponsive. Hyperresponsive NK cells mediate significant host cell death and contribute to generating a hyperinflammatory environment. Hyporesponsive NK cell populations shift toward exhaustion and often fail to limit viral pathogenesis, possibly enabling viral persistence. Several emerging therapeutic approaches aimed at addressing NK cell dysregulation have arisen in the last three decades in the setting of cancer and may prove to hold promise in treating viral diseases. However, the application of such therapeutics to treat viral infections remains critically underexplored. This review briefly explores several therapeutic approaches, including the administration of TGF-β inhibitors, immune checkpoint inhibitors, adoptive NK cell therapies, CAR NK cells, and NK cell engagers among other therapeutics.
Collapse
Affiliation(s)
- Jacob C. Bjorgen
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ross Cromarty
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
Cocker ATH, Guethlein LA, Parham P. The CD56-CD16+ NK cell subset in chronic infections. Biochem Soc Trans 2023:233017. [PMID: 37140380 DOI: 10.1042/bst20221374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Long-term human diseases can shape the immune system, and natural killer (NK) cells have been documented to differentiate into distinct subsets specifically associated with chronic virus infections. One of these subsets found in large frequencies in HIV-1 are the CD56-CD16+ NK cells, and this population's association with chronic virus infections is the subject of this review. Human NK cells are classically defined by CD56 expression, yet increasing evidence supports the NK cell status of the CD56-CD16+ subset which we discuss herein. We then discuss the evidence linking CD56-CD16+ NK cells to chronic virus infections, and the potential immunological pathways that are altered by long-term infection that could be inducing the population's differentiation. An important aspect of NK cell regulation is their interaction with human leukocyte antigen (HLA) class-I molecules, and we highlight work that indicates both virus and genetic-mediated variations in HLA expression that have been linked to CD56-CD16+ NK cell frequencies. Finally, we offer a perspective on CD56-CD16+ NK cell function, taking into account recent work that implies the subset is comparable to CD56+CD16+ NK cell functionality in antibody-dependent cell cytotoxicity response, and the definition of CD56-CD16+ NK cell subpopulations with varying degranulation capacity against target cells.
Collapse
Affiliation(s)
- Alexander T H Cocker
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, U.S.A
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, U.S.A
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, U.S.A
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, U.S.A
| |
Collapse
|
4
|
Cocker ATH, Liu F, Djaoud Z, Guethlein LA, Parham P. CD56-negative NK cells: Frequency in peripheral blood, expansion during HIV-1 infection, functional capacity, and KIR expression. Front Immunol 2022; 13:992723. [PMID: 36211403 PMCID: PMC9539804 DOI: 10.3389/fimmu.2022.992723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Human NK cells are usually defined as CD3-CD56+ lymphocytes. However, a CD56-CD16+ (CD56neg) lymphocyte population that displays NK-associated markers expands during chronic viral infections such as HIV-1 and HCV, and, to lesser extent, in herpesvirus infections. This CD56neg NK cell subset has been understudied because it requires the exclusion of other lymphocytes to accurately identify its presence. Many questions remain regarding the origin, development, phenotype, and function of the CD56neg NK cell population. Our objective was to determine the frequency of this NK subset in healthy controls and its alteration in viral infections by performing a meta-analysis. In addition to this, we analyzed deposited CyTOF and scRNAseq datasets to define the phenotype and subsets of the CD56neg NK cell population, as well as their functional variation. We found in 757 individuals, from a combined 28 studies and 6 datasets, that the CD56neg subset constitutes 5.67% of NK cells in healthy peripheral blood, while HIV-1 infection increases this population by a mean difference of 10.69%. Meta-analysis of surface marker expression between NK subsets showed no evidence of increased exhaustion or decreased proliferation within the CD56neg subset. CD56neg NK cells have a distinctive pattern of KIR expression, implying they have a unique potential for KIR-mediated education. A perforin-CD94-NKG2C-NKp30- CD56neg population exhibited different gene expression and degranulation responses against K562 cells compared to other CD56neg cells. This analysis distinguishes two functionally distinct subsets of CD56neg NK cells. They are phenotypically diverse and have differing capacity for education by HLA class-I interactions with KIRs.
Collapse
Affiliation(s)
- Alexander T. H. Cocker
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Alexander T. H. Cocker,
| | - Fuguo Liu
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
- Laboratory Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Zakia Djaoud
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Lisbeth A. Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
5
|
Haider P, Hoberstorfer T, Salzmann M, Fischer MB, Speidl WS, Wojta J, Hohensinner PJ. Quantitative and Functional Assessment of the Influence of Routinely Used Cryopreservation Media on Mononuclear Leukocytes for Medical Research. Int J Mol Sci 2022; 23:ijms23031881. [PMID: 35163803 PMCID: PMC8837123 DOI: 10.3390/ijms23031881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Quantitative and functional analysis of mononuclear leukocyte populations is an invaluable tool to understand the role of the immune system in the pathogenesis of a disease. Cryopreservation of mononuclear cells (MNCs) is routinely used to guarantee similar experimental conditions. Immune cells react differently to cryopreservation, and populations and functions of immune cells change during the process of freeze–thawing. To allow for a setup that preserves cell number and function optimally, we tested four different cryopreservation media. MNCs from 15 human individuals were analyzed. Before freezing and after thawing, the distribution of leukocytes was quantified by flow cytometry. Cultured cells were stimulated using lipopolysaccharide, and their immune response was quantified by flow cytometry, quantitative polymerase chain reaction (qPCR), and enzyme-linked immunosorbent assay (ELISA). Ultimately, the performance of the cryopreservation media was ranked. Cell recovery and viability were different between the media. Cryopreservation led to changes in the relative number of monocytes, T cells, B cells, and their subsets. The inflammatory response of MNCs was altered by cryopreservation, enhancing the basal production of inflammatory cytokines. Different cryopreservation media induce biases, which needs to be considered when designing a study relying on cryopreservation. Here, we provide an overview of four different cryopreservation media for choosing the optimal medium for a specific task.
Collapse
Affiliation(s)
- Patrick Haider
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (T.H.); (M.S.); (W.S.S.)
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Timothy Hoberstorfer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (T.H.); (M.S.); (W.S.S.)
| | - Manuel Salzmann
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (T.H.); (M.S.); (W.S.S.)
| | - Michael B. Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Walter S. Speidl
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (T.H.); (M.S.); (W.S.S.)
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Johann Wojta
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (T.H.); (M.S.); (W.S.S.)
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, 1090 Vienna, Austria;
- Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40400-73500
| | - Philipp J. Hohensinner
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, 1090 Vienna, Austria;
- Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
6
|
B cells were related to HBsAg seroconversion in inactive HBsAg carriers following peginterferon therapy. PLoS One 2020; 15:e0242559. [PMID: 33264330 PMCID: PMC7710096 DOI: 10.1371/journal.pone.0242559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Our recent study showed high rate of HBsAg seroconversion achieved in inactive HBsAg carriers (IHCs) treated with peginterferon (PEG-IFN). To better understand the immune-mediated component to the HBsAg seroconversion, we investigated the role of B cells in this study. A total of 44 IHCs were given 48 weeks of PEG-IFN. Fifteen cases achieve HBsAg seroconversion (R group), whereas 29 failed (NR group). The proportion of total B cells and plasma B cells were measured before and during treatment. We found that the proportion of total B cells and plasma B cells was no significant between R group and NR group at baseline, but significantly higher in R group than NR group during PEG-IFN treatment, even when the exact age-, sex-, and treatment period-match was made. In conclusion, we demonstrated the increase of total B cell and plasma B cells during PEG-IFN treatment favored HBsAg seroconversion for IHC, and B cells may play a role in HBV seroconversion.
Collapse
|
7
|
Orrantia A, Terrén I, Izquierdo-Lafuente A, Alonso-Cabrera JA, Sandá V, Vitallé J, Moreno S, Tasias M, Uranga A, González C, Mateos JJ, García-Ruiz JC, Zenarruzabeitia O, Borrego F. A NKp80-Based Identification Strategy Reveals that CD56 neg NK Cells Are Not Completely Dysfunctional in Health and Disease. iScience 2020; 23:101298. [PMID: 32622268 PMCID: PMC7334412 DOI: 10.1016/j.isci.2020.101298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/07/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells are usually identified by the absence of other lineage markers, due to the lack of cell-surface-specific receptors. CD56neg NK cells, classically identified as CD56negCD16+, are very scarce in the peripheral blood of healthy people but they expand in some pathological conditions. However, studies on CD56neg NK cells had revealed different results regarding the phenotype and functionality. This could be due to, among others, the unstable expression of CD16, which hinders CD56neg NK cells' proper identification. Hence, we aim to determine an alternative surface marker to CD16 to better identify CD56neg NK cells. We have found that NKp80 is superior to CD16. Furthermore, we found differences between the functionality of CD56negNKp80+ and CD56negCD16+, suggesting that the effector functions of CD56neg NK cells are not as diminished as previously thought. We proposed NKp80 as a noteworthy marker to identify and accurately re-characterize human CD56neg NK cells.
Collapse
Affiliation(s)
- Ane Orrantia
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo 48903, Spain
| | - Iñigo Terrén
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo 48903, Spain
| | | | | | - Victor Sandá
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo 48903, Spain
| | - Joana Vitallé
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo 48903, Spain
| | - Santiago Moreno
- Ramón y Cajal Health Research Institute (IRYCIS), Ramón y Cajal University Hospital, Madrid 28034, Spain
| | - María Tasias
- Hospital Universitari i Politecnic La Fe, Valencia 46026, Spain
| | - Alasne Uranga
- Biodonostia Health Research Institute, Donostia University Hospital, Donostia-San Sebastián 20014, Spain
| | - Carmen González
- Biodonostia Health Research Institute, Donostia University Hospital, Donostia-San Sebastián 20014, Spain
| | - Juan J Mateos
- Biocruces Bizkaia Health Research Institute, Hematological Cancer Group, Cruces University Hospital, Barakaldo 48903, Spain
| | - Juan C García-Ruiz
- Biocruces Bizkaia Health Research Institute, Hematological Cancer Group, Cruces University Hospital, Barakaldo 48903, Spain
| | - Olatz Zenarruzabeitia
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo 48903, Spain
| | - Francisco Borrego
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo 48903, Spain; Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain.
| |
Collapse
|
8
|
Decreased peripheral natural killer cells activity in the immune activated stage of chronic hepatitis B. PLoS One 2014; 9:e86927. [PMID: 24520324 PMCID: PMC3919705 DOI: 10.1371/journal.pone.0086927] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 12/20/2013] [Indexed: 02/06/2023] Open
Abstract
Background & Aims The natural course of chronic hepatitis B virus (HBV) infection is characterized by different immune responses, ranging from immune tolerant (IT) to immune activated (IA) stages. In our study, we investigated the natural killer (NK) cells activity in patients at different immunological stages of chronic HBV infection. Methods Blood samples obtained from 57 HBeAg positive patients with chronic hepatitis B (CHB), including 15 patients in the immune tolerant (IT) stage, 42 patients in the immune activated (IA) stage, and 18 healthy individuals (HI). The analyses included flow cytometry to detect NK cells, the determination of cytokine levels as well as of surface receptor expression and cytotoxicity. Results NK cells in peripheral blood were significantly lower in patients in the IA stage of CHB compared to HI (p<0.05). Patients in the IA stage of CHB had lower levels of NK cells activating receptor NKp30 and NKG2D expression, cytokine interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) production, as compared to patients in the IT stage and HI, respectively (p<0.05). Cytotoxicity of NK cells was lower in patients in the IA stage of CHB compared to patients in the IT stage and HI, respectively (p<0.05). The level of IFN-γ but not level of TNF-α and cytotoxicity of NK cells was inversely correlated with serum HBV load in patients with CHB. Peripheral NK cells activity did not correlate with ALT level. Conclusion NK cells activity was lower in CHB patients, especially in those in the IA stage.
Collapse
|
9
|
Jacobson A, Bell F, Lejarcegui N, Mitchell C, Frenkel L, Horton H. Healthy Neonates Possess a CD56-Negative NK Cell Population with Reduced Anti-Viral Activity. PLoS One 2013; 8:e67700. [PMID: 23805324 PMCID: PMC3689709 DOI: 10.1371/journal.pone.0067700] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 05/22/2013] [Indexed: 01/23/2023] Open
Abstract
Background Neonatal Natural Killer (NK) cells show functional impairment and expansion of a CD56 negative population of uncertain significance. Methods NK cells were isolated from cord blood and from adult donors. NK subpopulations were identified as positive or negative for the expression of CD56 and characterized for expression of granzyme B and surface markers by multi-parameter flow cytometry. Cell function was assessed by viral suppression and cytokine production using autologous lymphocytes infected with HIV. Activating (NKp30, NKp46) and inhibitory (Siglec-7) markers in healthy infants and adults were compared with viremic HIV-infected adults. Results Cord blood contained increased frequencies of CD56 negative (CD56neg) NK cells with reduced expression of granzyme B and reduced production of IFNγ and the CC-class chemokines RANTES, MIP1α and MIP1β upon stimulation. Both CD56pos and CD56neg NK subpopulations showed impaired viral suppression in cord blood, with impairment most marked in the CD56neg subset. CD56neg NK cells from cord blood and HIV-infected adults shared decreased inhibitory and activating receptor expression when compared with CD56pos cells. Conclusions CD56neg NK cells are increased in number in normal infants and these effectors show reduced anti-viral activity. Like the expanded CD56neg population described in HIV-infected adults, these NK cells demonstrate functional impairments which may reflect inadequate development or activation.
Collapse
Affiliation(s)
- Amanda Jacobson
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America,
| | - Frank Bell
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America,
- Seattle Children's Hospital, Seattle, Washington, United States of America
- Departments of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Nicholas Lejarcegui
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America,
| | - Caroline Mitchell
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Lisa Frenkel
- Seattle Children's Hospital, Seattle, Washington, United States of America
- Departments of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Department of Lab Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Helen Horton
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America,
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
10
|
Howell J, Visvanathan K. The role of natural killer cells in hepatitis C infection. Antivir Ther 2013; 18:853-65. [PMID: 23559549 DOI: 10.3851/imp2565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2013] [Indexed: 12/15/2022]
Abstract
HCV infection is an exponentially growing health burden worldwide, with an estimated 170 million people infected. Although therapies for HCV are continually improving, there remain a considerable proportion of patients who do not achieve viral eradication and develop liver disease. Natural killer (NK) cells are crucial for T-cell activation and are one of the first-line sentinel cell responders to viral infection. A recent explosion in studies exploring the role of NK cells in HCV infection has yielded important mechanistic information and intriguing potential therapeutic options for HCV infection. This review provides a general overview of normal NK cell function and outlines some of the important mechanisms characterizing the immune interplay between NK cells and HCV infection.
Collapse
Affiliation(s)
- Jessica Howell
- Liver Transplant Unit, Austin Hospital, Melbourne, Australia.
| | | |
Collapse
|
11
|
Mamessier E, Pradel LC, Thibult ML, Drevet C, Zouine A, Jacquemier J, Houvenaeghel G, Bertucci F, Birnbaum D, Olive D. Peripheral blood NK cells from breast cancer patients are tumor-induced composite subsets. THE JOURNAL OF IMMUNOLOGY 2013; 190:2424-36. [PMID: 23359508 DOI: 10.4049/jimmunol.1200140] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human NK lymphocytes are involved in antitumor immunity. The therapeutic potential of this population against cancers has stimulated their study and led to the discovery of several NK cell subsets, each of which is endowed with different immunoregulatory functions. We have previously reported that NK cell functions are profoundly altered in advanced breast cancer patients. In this study, we show that these tumor-mediated alterations also variably affect NK cell subsets. We found that in addition to the known human CD56(dim)CD16(+), CD56(bright)CD16(-), and CD56(-)CD16(+) NK cell subsets, two additional subsets, namely the CD56(bright)CD16(+) and CD56(dim)CD16(-) subsets, were increased in the peripheral blood of patients with advanced invasive breast cancers. These subsets corresponded to the main two subsets found at the tumor site. The extensive phenotype of these subsets revealed an "à la carte" pattern of expression for the various NK receptors, functional molecules, adhesion molecules, and chemokine receptors, depending on the subset. We next compared these subsets to known NK cell populations endowed with specific phenotypic characteristics, but also with functional properties. Our data show that advanced breast cancer patients have an increased proportion of more immature and noncytotoxic NK cell subsets in their peripheral blood, which might account for at least part of the low cytotoxic functions observed in these patients. They reveal a major heterogeneity and plasticity of the NK cell compartment, which are both tightly linked to the microenvironment. The identification of NK cell subsets endowed with particular functional capabilities might help monitor residual antitumor NK cell-mediated responses in breast cancer patients.
Collapse
Affiliation(s)
- Emilie Mamessier
- Centre de Recherche en Cancérologie de Marseille, INSERM Unité Mixte de Recherche 1068, 13009 Marseille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Souza-Fonseca-Guimaraes F, Parlato M, Philippart F, Misset B, Cavaillon JM, Adib-Conquy M. Toll-like receptors expression and interferon-γ production by NK cells in human sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R206. [PMID: 23098236 PMCID: PMC3682310 DOI: 10.1186/cc11838] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/23/2012] [Indexed: 12/19/2022]
Abstract
Introduction During the course of infection, natural killer (NK) cells contribute to innate immunity by producing cytokines, particularly interferon-gamma (IFN-γ). In addition to their beneficial effects against infection, NK cells may play a detrimental role during systemic inflammation, causing lethality during sepsis. Little is known on the immune status of NK cells in patients with systemic inflammatory response syndrome (SIRS) or sepsis in terms of cell surface markers expression and IFN-γ production. Methods We investigated 27 sepsis patients and 11 patients with non-infectious SIRS. CD56bright and CD56dim NK cell subsets were identified by flow cytometry and Toll-like receptor (TLR)2, TLR4, TLR9, CX3CR1, CD16 and CD69 expression were analyzed, as well as ex vivo IFN-γ production by NK cells in whole blood samples. Results We first showed that in NK cells from healthy controls, TLR2 and TLR4 expression is mainly intracellular, similarly to TLR9. Intracellular levels of TLR2 and TLR4, in both CD56bright and CD56dim NK cell subsets from sepsis patients, were increased compared to healthy subjects. In addition, the percentage of CD69+ cells was higher among NK cells of sepsis patients. No difference was observed for TLR9, CX3CR1, and CD16 expression. The ex vivo stimulation by TLR4 or TLR9 agonists, or whole bacteria in synergy with accessory cytokines (IL-15+IL-18), resulted in significant production of IFN-γ by NK cells of healthy controls. In contrast, for SIRS and sepsis patients this response was dramatically reduced. Conclusions This study reports for the first time an intracellular expression of TLR2 and TLR4 in human NK cells. Surface TLR4 expression allows discriminating sepsis and SIRS. Furthermore, during these pathologies, NK cells undergo an alteration of their immune status characterized by a profound reduction of their capacity to release IFN-γ.
Collapse
|
13
|
Luevano M, Daryouzeh M, Alnabhan R, Querol S, Khakoo S, Madrigal A, Saudemont A. The unique profile of cord blood natural killer cells balances incomplete maturation and effective killing function upon activation. Hum Immunol 2012; 73:248-57. [DOI: 10.1016/j.humimm.2011.12.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 12/13/2011] [Accepted: 12/21/2011] [Indexed: 10/14/2022]
|
14
|
Martin R. Anti-CD25 (daclizumab) monoclonal antibody therapy in relapsing-remitting multiple sclerosis. Clin Immunol 2011; 142:9-14. [PMID: 22284868 DOI: 10.1016/j.clim.2011.10.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 10/28/2011] [Accepted: 10/30/2011] [Indexed: 11/25/2022]
Abstract
Following the recent approval of the first oral therapy for multiple sclerosis (MS), fingolimod, multiple other oral compounds, and also a number of monoclonal antibodies (mab) are currently in phase III clinical testing. One of these is daclizumab, a humanized mab against the interleukin-2 receptor alpha chain (IL2RA or CD25). Efficacy to block clinical and inflammatory activity of relapsing-remitting MS (RR-MS) has been shown for daclizumab in several small phase IIa studies and one large phase IIb clinical trial, and phase III testing is ongoing. Different from prior expectations about its mechanism of action that anticipated that daclizumab would block the activation and expansion of autoreactive T cells, we and others have shown that the expansion of regulatory natural killer (NK) cells, which express high levels of the marker CD56, appears to be the most important biological effect of CD25 blockade. From these data CD25 inhibition is one of the most promising upcoming treatments of RR-MS and possibly also other autoimmune conditions. Clinical and mechanistic data will be summarized in this short review.
Collapse
Affiliation(s)
- Roland Martin
- Department of Neuroimmunology and Multiple Sclerosis Research, Neurology Clinic, University Hospital, University Zürich, Zürich, Switzerland.
| |
Collapse
|
15
|
Farag MMS, Weigand K, Encke J, Momburg F. Activation of natural killer cells by hepatitis C virus particles in vitro. Clin Exp Immunol 2011; 165:352-62. [PMID: 21682720 DOI: 10.1111/j.1365-2249.2011.04431.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Little is known about the ability of hepatitis C virus (HCV) to alter early innate immune responses in infected patients. Previous studies have shown that natural killer (NK) cells are functionally impaired after interaction of recombinant HCV glycoprotein E2 with the co-stimulatory CD81 molecule in vitro; however, the functional consequences of a prolonged contact of NK cells with HCV particles have remained unclear. We have examined the phenotypes of purified, interleukin-2-activated NK cells from healthy donors and HCV genotype 1b patients after culture for 5 days with HCV pseudoparticles (HCVpp) and serum samples containing HCV genotype 1b. NK cells from healthy donors and chronic HCV patients were found to up-regulate receptors associated with activation (NKp46, NKp44, NKp30, NKG2D), while NK receptors from the killer cell immunoglobulin-like receptor family (KIR/CD158), predominantly having an inhibitory function, were significantly down-modulated after culture in the presence of HCV particles compared with control cultures of NK cells. HCV-infected sera and HCVpp elicited significantly higher secretion of the NK effector lymphokines interferon-γ and tumour necrosis factor-α. Furthermore, HCV stimulated the cytotoxic potential of NK cells from normal donors and patients. The enhanced activation of NK cells after prolonged culture with HCVpp or HCV-containing sera for 5 days suggests that these innate effector cells may play an important role in viral control during early phases of HCV infection.
Collapse
Affiliation(s)
- M M S Farag
- Department of Gastroenterology and Hepatology, Medical Clinic IV, University Hospital of Heidelberg, Heidelberg, Germany
| | | | | | | |
Collapse
|
16
|
Papewalis C, Jacobs B, Baran AM, Ehlers M, Stoecklein NH, Willenberg HS, Schinner S, Anlauf M, Raffel A, Cupisti K, Fenk R, Scherbaum WA, Schott M. Increased numbers of tumor-lysing monocytes in cancer patients. Mol Cell Endocrinol 2011; 337:52-61. [PMID: 21291954 DOI: 10.1016/j.mce.2011.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/14/2010] [Accepted: 01/26/2011] [Indexed: 12/11/2022]
Abstract
Lymphatic infiltration is a well known phenomenon in different tumors including endocrine malignancies. However, little is known about the role of antigen-presenting cells and T cell activation in this context. The aim of our study was to investigate the quantity and function of CD14+/CD56+ monocytes in tumor patients including endocrine malignancies. First, these cells were characterized in peripheral blood of endocrine and non-endocrine cancer patients as well as in tumor tissue samples. Cancer patients had in mean 3.7 times more CD14+/CD56+ monocytes in the peripheral blood compared to healthy controls (p≤0.0001), while the highest frequencies were seen in patients with heavy tumor load. Importantly, these cells additionally expressed several NK cell markers. A proof of CD14+/CD56+ infiltrations into papillary thyroid carcinoma was shown by immunohistochemical analyses. Functional analyses revealed an apoptosis inducing capacity in vitro after IFN-α re-stimulation. Our data indicate the importance of tumor-lysing monocytes in antitumor immunity.
Collapse
Affiliation(s)
- Claudia Papewalis
- Endocrine Tumor Center, Department of Endocrinology, Diabetes and Rheumatology, University Hospital Duesseldorf, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
De Angelis C, Mancusi A, Ruggeri L, Capanni M, Urbani E, Velardi A, Stern M. Expansion of CD56-negative, CD16-positive, KIR-expressing natural killer cells after T cell-depleted haploidentical hematopoietic stem cell transplantation. Acta Haematol 2011; 126:13-20. [PMID: 21411985 DOI: 10.1159/000323661] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2010] [Indexed: 12/19/2022]
Abstract
The main functions of natural killer (NK) cells are early protection against viruses or tumor cells and production of cytokines that regulate immune functions. The present study assessed the role of different NK subsets in exerting graft-versus-leukemia effects in recipients of human leukocyte antigen (HLA) haploidentical hematopoietic transplants and monitored for the first time CD3-/CD56- lymphocyte expansion. CD3-/CD56- cells expressed NK cell-associated molecules, such as CD16, NKp46, NKp30, CD244 (2B4), CD161, and killer cell immunoglobulin-like receptors. CD3-/CD56- cells further exhibited the classical functional characteristics of NK cells: cytolysis of target cells lacking HLA class I, antibody-dependent cellular cytotoxicity and cytokine production. These results demonstrate that CD56- NK cells are functional, recognize missing self and, like their CD56+ counterparts, may contribute to graft-versus-leukemia reactions.
Collapse
Affiliation(s)
- Claudia De Angelis
- Division of Hematology and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Vukicevic M, Chalandon Y, Helg C, Matthes T, Dantin C, Huard B, Chizzolini C, Passweg J, Roosnek E. CD56bright NK cells after hematopoietic stem cell transplantation are activated mature NK cells that expand in patients with low numbers of T cells. Eur J Immunol 2010; 40:3246-54. [PMID: 20957748 DOI: 10.1002/eji.200940016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 06/22/2010] [Accepted: 08/20/2010] [Indexed: 12/22/2022]
Abstract
We studied early NK-cell recovery in 29 allografted patients undergoing different lymphoreductive regimens. Already at 2 wk after graft take, the number of NK cells had reached (supra)normal levels but NK-cell subsets were skewed. The number of CD56(dim) CD16(bright) NK cells was low and correlated strongly with the level of hematopoiesis, whereas the number of the more abundant NK cells expressing high levels of CD56 did not. Post-transplant CD56(bright) NK cells (ptCD56(bright)) differed from CD56(bright) NK cells in normal controls (CD56(bright)) in being HLA-DR- and perforin-positive, CCR7(-), CD27(-), CD127(-) and mostly c-kit(-). CD56(bright) from normal controls stimulated by IL-15 in vitro (NK(IL-15)) acquired all the characteristics distinguishing CD56(bright) from ptCD56(bright). IL-2 exerted similar effects. Moreover, when cultured without cytokines, ptCD56(bright), CD56(bright) and NK(IL-15) responded similarly by upregulating CD127 and c-kit but not CCR7. IL-12 stimulated IFN-γ production in ptCD56(bright), whereas CD56(bright) responded only to IL-12 plus IL-15. Hence, ptCD56(bright) have all the features of cytokine-stimulated CD56(bright). Because only patients with low numbers of T cells had high numbers of ptCD56(bright), we conclude that ptCD56(bright) are activated CD56(bright) that expand while competing with T cells for the elevated post-transplant level of IL-15.
Collapse
Affiliation(s)
- Marija Vukicevic
- Division of Hematology, Department of Internal Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kim YJ, Broxmeyer HE. Immune regulatory cells in umbilical cord blood and their potential roles in transplantation tolerance. Crit Rev Oncol Hematol 2010; 79:112-26. [PMID: 20727784 DOI: 10.1016/j.critrevonc.2010.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/08/2010] [Accepted: 07/14/2010] [Indexed: 12/13/2022] Open
Abstract
Umbilical cord blood (UCB) is a source of primitive hematopoietic stem (HSC) and progenitor cells, that served as an alternative to bone marrow (BM) for effective transplantation therapy. Success of HSC transplantation (HSCT) is limited in part by graft-versus-host disease (GVHD), graft rejection and delayed immune reconstitution, which all relate to immunological complications. GVHD after UCB transplantation is lower compared to that of BM HSCT. This may relate to the tolerogenic nature of T cells, mononuclear cells (MNCs) and especially immune regulatory cells existing in UCB. UCB contains limiting numbers of HSC or CD34(+) cell dose for adult patients resulting in delayed engraftment after UCB transplantation (UCBT). This needs to be improved for optimal transplantation outcomes. Approaches have been undertaken to promote HSC engraftment, including co-infusion of multiple units of UCB cells. These new methods however added additional immunological complications. Herein, we describe current knowledge on features of UCB immune cells, including regulatory T cells (Tregs) and mesenchymal stem/stromal cells (MSCs) and their potential future usage to reduce GVHD.
Collapse
Affiliation(s)
- Young-June Kim
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | |
Collapse
|
20
|
Phenotypically and functionally distinct subsets contribute to the expansion of CD56-/CD16+ natural killer cells in HIV infection. AIDS 2010; 24:1823-34. [PMID: 20543659 DOI: 10.1097/qad.0b013e32833b556f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Chronic HIV infection has been associated with activation and increased turnover of natural killer (NK) cells as well as with disturbed homeostasis of the NK cell compartment, including loss of CD56(+) NK cells and accumulation of dysfunctional CD56(-)/CD16(+) NK cells. We performed a comprehensive phenotypical and functional characterization of this population. DESIGN A cross-sectional study was performed to analyze CD56(-)/CD16(+) NK cells from 34 untreated HIV-infected and 15 seronegative individuals. METHODS NK cells were analyzed by flow cytometry. Degranulation was assessed by measuring their expression of CD107a after stimulation with K562 cells, interleukin-12 and interleukin-15. RESULTS CD56(-)/CD16(+) NK cells are heterogeneous and composed of two populations, namely CD122(-)/CCR7(+) cells and CD122(-)/CCR7(+) cells. We show that expanded CD122(+) but not CCR7(+) cells in HIV-seropositive individuals are characterized by expression of senescence marker CD57 similarly to CD56(dim)/CD16(+) NK cells along with expression of KIRs, CD8, perforin and granzyme B. Despite expression of perforin and granzyme B, CD57 expressing cells exhibited less numbers of degranulating cells as measured by CD107a, indicating their functional impairment. However, there was no correlation between expansion of total CD56(-)/CD16(+) NK cells or the distinct subpopulations and viral load or CD4 cell count. CONCLUSION These data indicate that expansion of CD56(-)/CD16(+) cells in HIV infection is driven by a distinct subset within this population with high expression of terminal differentiation marker with a phenotype resembling CD56(-)/CD16(+) NK cells.
Collapse
|
21
|
Interferon therapy shifts natural killer subsets among Egyptian patients with chronic hepatitis C. Braz J Infect Dis 2010. [DOI: 10.1016/s1413-8670(10)70082-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Immunologic characterization of posthepatitis cirrhosis caused by HBV and HCV infection. J Biomed Biotechnol 2010; 2010:138237. [PMID: 20617133 PMCID: PMC2896621 DOI: 10.1155/2010/138237] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 04/14/2010] [Indexed: 12/19/2022] Open
Abstract
No specific treatment can reverse the liver injury in cirrhosis. This study aims to characterize immune status and correlations between cirrhosis induced by HBV and HCV. Phenotypes of peripheral blood lymphocyte subsets (T, NK, regulatory T cells) and Th cytokine secretion were analyzed using flow cytometry in 42 HBV-cirrhotic and 40 HCV-cirrhotic patients. Cirrhotic patients had a lower proportion of CD3+CD8+T cells and NK cells, while the proportion of CD3+CD4+T cells and Treg cells were higher than those of healthy controls. The levels of Th2 cytokine (IL-6) in cirrhotic patients were increased, while only the Th1 cytokine (IFN-γ) increased in HBV-cirrhotic patients. These findings show that there is no difference between the cirrhotic groups except in the IFN-γ level. In cirrhosis, defects in innate, adaptive immune cells are likely regardless of which virus is involved. A cytokine imbalance may play a role in the development of posthepatitic cirrhosis.
Collapse
|
23
|
Lee S, Watson MW, Flexman JP, Cheng W, Hammond T, Price P. Increased proportion of the CD56(bright) NK cell subset in patients chronically infected with hepatitis C virus (HCV) receiving interferon-alpha and ribavirin therapy. J Med Virol 2010; 82:568-74. [PMID: 20166183 DOI: 10.1002/jmv.21742] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Natural killer (NK) cells are implicated in the regulation of a protective immune response in patients chronically infected with hepatitis C virus (HCV), but effects of interferon-alpha/ribavirin therapy on NK cell subsets and the consequences of viral clearance during therapy remain unclear. Samples were collected from chronically infected patients (n = 34) at baseline and from a subset after 3-10 months on pegylated interferon-alpha and ribavirin therapy (n = 19). NK cells present in cryopreserved PBMC were characterized by flow cytometry. Before therapy, the frequency of CD3-CD56+ NK cells was lower in patients than uninfected controls. Therapy increased proportions of CD56(bright) NK cells. Frequencies of CD56(dim) NK cells declined slightly while perforin and CD16 expression on CD56(dim) NK cells decreased compared to baseline samples. Evaluation of NK cell subsets at baseline did not identify patients able to achieve sustained virological response following therapy. However, therapy may promote the expansion of NK cells able to produce interferon-gamma, while minimizing cytotoxicity to limit liver damage.
Collapse
Affiliation(s)
- Silvia Lee
- Department of Microbiology and Infectious Disease, Royal Perth Hospital, Perth, Western Australia, Australia.
| | | | | | | | | | | |
Collapse
|
24
|
Verneris MR, Miller JS. The phenotypic and functional characteristics of umbilical cord blood and peripheral blood natural killer cells. Br J Haematol 2010; 147:185-91. [PMID: 19796267 DOI: 10.1111/j.1365-2141.2009.07768.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allogeneic hematopoietic cell transplantation can be curative for patients with high-risk acute leukaemia. Umbilical cord blood (UCB) is an increasingly used source of allogeneic stem cells for patients who are in need of a transplant, but do not have a sibling donor. This review highlights the similarities and differences between the natural killer (NK) cells obtained from adult peripheral blood (PB) and UCB. These two cell sources show similar percentages of NK cells, including the major CD56(dim) and CD56(bright) subpopulations. UCB also contains an additional CD56-CD16+ subset, not typically found in PB. In addition, there are a number of progenitor cell populations in UCB that can give rise to NK cells. Some studies showed that UCB NK cells express a relatively higher percentage of inhibitory receptors (CD94/NKG2A and killer-cell immunoglobulin-like receptors) and less adhesion molecules. Resting UCB NK cells also show significantly less cytotoxicity compared to PB NK cells. However, following cytokine stimulation, the cytotoxicity of UCB NK cells can be rapidly increased to levels that are comparable to PB NK cells. Activation and expansion protocols for UCB NK cells are briefly reviewed. Lastly, we outline the early use of UCB NK cells in clinical trials.
Collapse
Affiliation(s)
- Michael R Verneris
- Department of Paediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA.
| | | |
Collapse
|
25
|
Zúñiga J, Romero V, Azocar J, Terreros D, Vargas-Rojas MI, Torres-García D, Jiménez-Alvarez L, Vargas-Alarcón G, Granados-Montiel J, Husain Z, Chung RT, Alper CA, Yunis EJ. Protective KIR-HLA interactions for HCV infection in intravenous drug users. Mol Immunol 2009; 46:2723-7. [PMID: 19552960 DOI: 10.1016/j.molimm.2009.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/06/2009] [Accepted: 05/14/2009] [Indexed: 02/08/2023]
Abstract
Intravenous drug use has become the principal route of hepatitis C virus (HCV) transmission due to the sharing of infected needles. In this study, we analyzed the distribution of HLA-KIR genotypes among 160 Puerto Rican intravenous drug users (IDUs) with HCV infection and 92 HCV-negative Puerto Rican IDUs. We found a significant association between the presence of different combinations of KIR inhibitory receptor genes (KIR2DL2 and/or KIR2DL3, pC=0.01, OR=0.07; KIR2DL2 and/or KIR2DL3+KIR2DS4, pC=0.01, OR=0.39) and HLA-C1 homozygous genotypes (HLA-C1+KIR2DS4, pC=0.02, OR=0.43; HLA-C1+KIR2DL2+KIR2DS4, pC=0.02, OR=0.40) together with the activating receptor KIR2DS4 (HLA-C1+KIR2DS4+KIR2DL3 and/or KIR2DL2, pC=0.004, OR=0.38) with protection from HCV infection. Our findings in HCV-infected and non-infected IDUs suggest an important role for KIRs (KIR2DL2 and KIR2DL3) with group HLA-C1 molecules, in the presence of activating KIR2DS4, in protection from HCV infection. These results support the hypothesis that activator signaling, mediated by KIR2DS4, plays a determinant role in the regulation of NK cell antiviral-activity.
Collapse
Affiliation(s)
- Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|