1
|
Krivitskaya VZ, Sorokin EV, Tsareva TR, Sergeeva MV, Kadyrova RA, Romanovskaya-Roman’ko EA, Shaldzhyan AA, Petrov SV, Petrova ER, Konovalova NI, Petrova PA. Generation and Characterization of the Monoclonal Antibody Panel Specific to the NS1 Protein of the Influenza A Virus. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683818070049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Teo SHC, Wu JP, Mok CK, Tan YJ. A NS1-binding monoclonal antibody interacts with two residues that are highly conserved in seasonal as well as newly emerged influenza A virus. Pathog Dis 2019; 77:5370084. [PMID: 30839053 PMCID: PMC7273928 DOI: 10.1093/femspd/ftz012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/05/2019] [Indexed: 11/22/2022] Open
Abstract
The non-structural protein 1 (NS1) of influenza A virus (IAV) is a multifunctional protein that antagonizes host antiviral responses, modulating virus pathogenesis. As such, it serves as a good target for research and diagnostic assay development. In this study, we have generated a novel monoclonal antibody (mAb) 19H9 and epitope mapping revealed that two residues, P85 and Y89, of NS1 are essential for interacting with this mAb. Furthermore, residues P85 and Y89 are found to be highly conserved across different IAV subtypes, namely seasonal H1N1 and H3N2, as well as the highly pathogenic H5N1 and H5N6 avian strains. Indeed, mAb 19H9 exhibits broad cross-reactivity with IAV strains of different subtypes. The binding of mAb 19H9 to residue Y89 was further confirmed by the abrogation of interaction between NS1 and p85β. Additionally, mAb 19H9 also detected NS1 proteins expressed in IAV-infected cells, showing NS1 intracellular localization in the cytoplasm and nucleolus. To our knowledge, mAb 19H9 is the first murine mAb to bind at the juxtaposition between the N-terminal RNA-binding domain and C-terminal effector domain of NS1. It could serve as a useful research tool for studying the conformational plasticity and dynamic changes in NS1.
Collapse
Affiliation(s)
- Su Hui Catherine Teo
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, MD4, 5 Science Drive 2, Singapore 117545
| | - Jian-Ping Wu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, MD4, 5 Science Drive 2, Singapore 117545
| | - Chee-Keng Mok
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, MD4, 5 Science Drive 2, Singapore 117545
| | - Yee-Joo Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, MD4, 5 Science Drive 2, Singapore 117545
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Dr, Singapore 138673
- Correspondence author: Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, MD4, 5 Science Drive 2, Singapore 117545. Tel: +65 65163692; E-mail:
| |
Collapse
|
3
|
Franz KM, Neidermyer WJ, Tan YJ, Whelan SPJ, Kagan JC. STING-dependent translation inhibition restricts RNA virus replication. Proc Natl Acad Sci U S A 2018; 115:E2058-E2067. [PMID: 29440426 PMCID: PMC5834695 DOI: 10.1073/pnas.1716937115] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In mammalian cells, IFN responses that occur during RNA and DNA virus infections are activated by distinct signaling pathways. The RIG-I-like-receptors (RLRs) bind viral RNA and engage the adaptor MAVS (mitochondrial antiviral signaling) to promote IFN expression, whereas cGAS (cGMP-AMP synthase) binds viral DNA and activates an analogous pathway via the protein STING (stimulator of IFN genes). In this study, we confirm that STING is not necessary to induce IFN expression during RNA virus infection but also find that STING is required to restrict the replication of diverse RNA viruses. The antiviral activities of STING were not linked to its ability to regulate basal expression of IFN-stimulated genes, activate transcription, or autophagy. Using vesicular stomatitis virus as a model, we identified a requirement of STING to inhibit translation during infection and upon transfection of synthetic RLR ligands. This inhibition occurs at the level of translation initiation and restricts the production of viral and host proteins. The inability to restrict translation rendered STING-deficient cells 100 times more likely to support productive viral infections than wild-type counterparts. Genetic analysis linked RNA sensing by RLRs to STING-dependent translation inhibition, independent of MAVS. Thus, STING has dual functions in host defense, regulating protein synthesis to prevent RNA virus infection and regulating IFN expression to restrict DNA viruses.
Collapse
Affiliation(s)
- Kate M Franz
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - William J Neidermyer
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Yee-Joo Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117545
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore 138673
| | - Sean P J Whelan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
4
|
Wu J, Mok CK, Chow VTK, Yuan YA, Tan YJ. Biochemical and structural characterization of the interface mediating interaction between the influenza A virus non-structural protein-1 and a monoclonal antibody. Sci Rep 2016; 6:33382. [PMID: 27633136 PMCID: PMC5025888 DOI: 10.1038/srep33382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/25/2016] [Indexed: 01/04/2023] Open
Abstract
We have previously shown that a non-structural protein 1 (NS1)-binding monoclonal antibody, termed as 2H6, can significantly reduce influenza A virus (IAV) replication when expressed intracellularly. In this study, we further showed that 2H6 binds stronger to the NS1 of H5N1 than A/Puerto Rico/8/1934(H1N1) because of an amino acid difference at residue 48. A crystal structure of 2H6 fragment antigen-binding (Fab) has also been solved and docked onto the NS1 structure to reveal the contacts between specific residues at the interface of antibody-antigen complex. In one of the models, the predicted molecular contacts between residues in NS1 and 2H6-Fab correlate well with biochemical results. Taken together, residues N48 and T49 in H5N1 NS1 act cooperatively to maintain a strong interaction with mAb 2H6 by forming hydrogen bonds with residues found in the heavy chain of the antibody. Interestingly, the pandemic H1N1-2009 and the majority of seasonal H3N2 circulating in humans since 1968 has N48 in NS1, suggesting that mAb 2H6 could bind to most of the currently circulating seasonal influenza A virus strains. Consistent with the involvement of residue T49, which is well-conserved, in RNA binding, mAb 2H6 was also found to inhibit the interaction between NS1 and double-stranded RNA.
Collapse
Affiliation(s)
- Jianping Wu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Chee-Keng Mok
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Vincent Tak Kwong Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Y Adam Yuan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou Industrial Park, Jiangsu 215123, China
| | - Yee-Joo Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| |
Collapse
|
5
|
Barnwal B, Karlberg H, Mirazimi A, Tan YJ. The Non-structural Protein of Crimean-Congo Hemorrhagic Fever Virus Disrupts the Mitochondrial Membrane Potential and Induces Apoptosis. J Biol Chem 2015; 291:582-92. [PMID: 26574543 DOI: 10.1074/jbc.m115.667436] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 11/06/2022] Open
Abstract
Viruses have developed distinct strategies to overcome the host defense system. Regulation of apoptosis in response to viral infection is important for virus survival and dissemination. Like other viruses, Crimean-Congo hemorrhagic fever virus (CCHFV) is known to regulate apoptosis. This study, for the first time, suggests that the non-structural protein NSs of CCHFV, a member of the genus Nairovirus, induces apoptosis. In this report, we demonstrated the expression of CCHFV NSs, which contains 150 amino acid residues, in CCHFV-infected cells. CCHFV NSs undergoes active degradation during infection. We further demonstrated that ectopic expression of CCHFV NSs induces apoptosis, as reflected by caspase-3/7 activity and cleaved poly(ADP-ribose) polymerase, in different cell lines that support CCHFV replication. Using specific inhibitors, we showed that CCHFV NSs induces apoptosis via both intrinsic and extrinsic pathways. The minimal active region of the CCHFV NSs protein was determined to be 93-140 amino acid residues. Using alanine scanning, we demonstrated that Leu-127 and Leu-135 are the key residues for NSs-induced apoptosis. Interestingly, CCHFV NSs co-localizes in mitochondria and also disrupts the mitochondrial membrane potential. We also demonstrated that Leu-127 and Leu-135 are important residues for disruption of the mitochondrial membrane potential by NSs. Therefore, these results indicate that the C terminus of CCHFV NSs triggers mitochondrial membrane permeabilization, leading to activation of caspases, which, ultimately, leads to apoptosis. Given that multiple factors contribute to apoptosis during CCHFV infection, further studies are needed to define the involvement of CCHFV NSs in regulating apoptosis in infected cells.
Collapse
Affiliation(s)
- Bhaskar Barnwal
- From the Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, the Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore
| | | | - Ali Mirazimi
- the Public Health Agency of Sweden, 17182 Solna, Sweden, the Karolinska Institute, 17177 Stockholm, Sweden, and the National Veterinary Institute, 75651 Uppsala, Sweden
| | - Yee-Joo Tan
- From the Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, the Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore,
| |
Collapse
|
6
|
Beggs NF, Dobrovolny HM. Determining drug efficacy parameters for mathematical models of influenza. JOURNAL OF BIOLOGICAL DYNAMICS 2015; 9 Suppl 1:332-346. [PMID: 26056712 DOI: 10.1080/17513758.2015.1052764] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Antivirals are the first line of defence against influenza, so drug efficacy should be re-evaluated for each new strain. However, due to the time and expense involved in assessing the efficacy of drug treatments both in vitro and in vivo, treatment regimens are largely not re-evaluated even when strains are found to be resistant to antivirals. Mathematical models of the infection process can help in this assessment, but for accurate model predictions, we need to measure model parameters characterizing the efficacy of antivirals. We use computer simulations to explore whether in vitro experiments can be used to extract drug efficacy parameters for use in viral kinetics models. We find that the efficacy of neuraminidase inhibitors can be determined by measuring viral load during a single cycle assay, while the efficacy of adamantanes can be determined by measuring infected cells during the preparation stage for the single cycle assay.
Collapse
Affiliation(s)
- Noah F Beggs
- a Department of Biology , Hendrix College , Conway , AR , USA
| | | |
Collapse
|
7
|
Barnwal B, Mok CK, Wu J, Diwakar MK, Gupta G, Zeng Q, Chow VTK, Song J, Yuan YA, Tan YJ. A monoclonal antibody binds to threonine 49 in the non-structural 1 protein of influenza A virus and interferes with its ability to modulate viral replication. Antiviral Res 2015; 116:55-61. [PMID: 25666762 PMCID: PMC7113856 DOI: 10.1016/j.antiviral.2015.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/10/2014] [Accepted: 01/30/2015] [Indexed: 01/01/2023]
Abstract
The emergence of resistant influenza A viruses highlights the continuous requirement of new antiviral drugs that can treat the viral infection. Non-structural 1 (NS1) protein, an indispensable component for efficient virus replication, can be used as a potential target for generating new antiviral agents. Here, we study the interaction of 2H6 monoclonal antibody with NS1 protein and also determine whether influenza virus replication can be inhibited by blocking NS1. The 2H6-antigen binding fragment (Fab) forms a multimeric complex with the NS1 RNA-binding domain (RBD). T49, a residue which forms a direct hydrogen bond with double stranded RNA, in NS1 protein was found to be critical for its interaction with 2H6 antibody. NS1(RBD) has high affinity to 2H6 with KD of 43.5±4.24nM whereas NS1(RBD)-T49A has more than 250 times lower affinity towards 2H6. Interestingly, the intracellular expression of 2H6-single-chain variable fragment (scFv) in mammalian cells caused a reduction in viral growth and the M1 viral protein level was significantly reduced in 2H6-scFv transfected cells in comparison to vector transfected cells at 12h post infection. These results indicate that the tight binding of 2H6 to NS1 could lead to reduction in viral replication and release of progeny virus. In future, 2H6 antibody in combination with other neutralizing antibodies can be used to increase the potency of viral inhibition.
Collapse
Affiliation(s)
- Bhaskar Barnwal
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Chee-Keng Mok
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Jianping Wu
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Mandakhalikar Kedar Diwakar
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Garvita Gupta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| | - Vincent Tak Kwong Chow
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Y Adam Yuan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou Industrial Park, Jiangsu 215123, China
| | - Yee-Joo Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore.
| |
Collapse
|
8
|
Aweya JJ, Sze CW, Bayega A, Mohd-Ismail NK, Deng L, Hotta H, Tan YJ. NS5B induces up-regulation of the BH3-only protein, BIK, essential for the hepatitis C virus RNA replication and viral release. Virology 2014; 474:41-51. [PMID: 25463603 PMCID: PMC7127593 DOI: 10.1016/j.virol.2014.10.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) induces cytopathic effects in the form of hepatocytes apoptosis thought to be resulted from the interaction between viral proteins and host factors. Using pathway specific PCR array, we identified 9 apoptosis-related genes that are dysregulated during HCV infection, of which the BH3-only pro-apoptotic Bcl-2 family protein, BIK, was consistently up-regulated at the mRNA and protein levels. Depletion of BIK protected host cells from HCV-induced caspase-3/7 activation but not the inhibitory effect of HCV on cell viability. Furthermore, viral RNA replication and release were significantly suppressed in BIK-depleted cells and over-expression of the RNA-dependent RNA polymerase, NS5B, was able to induce BIK expression. Immunofluorescence and co-immunoprecipitation assays showed co-localization and interaction of BIK and NS5B, suggesting that BIK may be interacting with the HCV replication complex through NS5B. These results imply that BIK is essential for HCV replication and that NS5B is able to induce BIK expression.
Collapse
Affiliation(s)
- Jude Juventus Aweya
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Ching Wooen Sze
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Anthony Bayega
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A⁎STAR), Singapore 138673, Singapore
| | - Nur Khairiah Mohd-Ismail
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A⁎STAR), Singapore 138673, Singapore
| | - Lin Deng
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Hak Hotta
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Yee-Joo Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A⁎STAR), Singapore 138673, Singapore.
| |
Collapse
|
9
|
Lalime EN, Pekosz A. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization. Virology 2014; 458-459:33-42. [PMID: 24928037 DOI: 10.1016/j.virol.2014.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/05/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 in addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization.
Collapse
Affiliation(s)
- Erin N Lalime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, 615 North Wolfe Street, Suite E5132, Baltimore, MD 21205-2103, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, 615 North Wolfe Street, Suite E5132, Baltimore, MD 21205-2103, USA.
| |
Collapse
|
10
|
Abstract
Influenza viruses cause recurring epidemic outbreaks every year associated with high morbidity and mortality. Despite extensive research and surveillance efforts to control influenza outbreaks, the primary mitigation treatment for influenza is the development of yearly vaccine mixes targeted for the most prevalent virus strains. Consequently, the focus of many detection technologies has evolved toward accurate identification of subtype and understanding the evolution and molecular determinants of novel and pathogenic forms of influenza. The recent availability of potential antiviral treatments are only effective if rapid and accurate diagnostic tests for influenza epidemic management are available; thus, early detection of influenza infection is still important for prevention, containment, patient management, and infection control. This review discusses the current and emerging technologies for detection and strain identification of influenza virus and their specific gene targets, as well as their implications in patient management.
Collapse
Affiliation(s)
- Anthony P Malanoski
- Center for Bio/Molecular Science and Engineering, U. S. Naval Research Laboratory, 4555 Overlook Avenue, S. W., Code 6900, Washington, DC, 20375, USA
| | | |
Collapse
|
11
|
Preparation of monoclonal antibodies against poor immunogenic avian influenza virus proteins. J Immunol Methods 2013; 387:43-50. [DOI: 10.1016/j.jim.2012.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/05/2012] [Accepted: 09/19/2012] [Indexed: 11/21/2022]
|
12
|
Rahim MN, Selman M, Sauder PJ, Forbes NE, Stecho W, Xu W, Lebar M, Brown EG, Coombs KM. Generation and characterization of a new panel of broadly reactive anti-NS1 mAbs for detection of influenza A virus. J Gen Virol 2012; 94:593-605. [PMID: 23223621 DOI: 10.1099/vir.0.046649-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Influenza A virus (IAV) non-structural protein 1 (NS1) has multiple functions, is essential for virus replication and may be a good target for IAV diagnosis. To generate broadly cross-reactive NS1-specific mAbs, mice were immunized with A/Hong Kong/1/1968 (H3N2) 6×His-tagged NS1 and hybridomas were screened with glutathione S-transferase-conjugated NS1 of A/Puerto Rico/8/1934 (H1N1). mAbs were isotyped and numerous IgG-type clones were characterized further. Most clones specifically recognized NS1 from various H1N1 and H3N2 IAV types by both immunoblot and immunofluorescence microscopy in mouse M1, canine Madin-Darby canine kidney and human A549 cells. mAb epitopes were mapped by overlapping peptides and selective reactivity to the newly described viral NS3 protein. These mAbs detected NS1 in both the cytoplasm and nucleus by immunostaining, and some detected NS1 as early as 5 h post-infection, suggesting their potential diagnostic use for tracking productive IAV replication and characterizing NS1 structure and function. It was also demonstrated that the newly identified NS3 protein is localized in the cytoplasm to high levels.
Collapse
Affiliation(s)
- Md Niaz Rahim
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J6, Canada
| | - Mohammed Selman
- Emerging Pathogens Research Centre, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Patricia J Sauder
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
| | - Nicole E Forbes
- Emerging Pathogens Research Centre, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - William Stecho
- Emerging Pathogens Research Centre, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Wanhong Xu
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J6, Canada
| | - Mark Lebar
- Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J6, Canada
| | - Earl G Brown
- Emerging Pathogens Research Centre, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kevin M Coombs
- Manitoba Institute of Child Health, Room 513, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Manitoba Centre for Proteomics and Systems Biology, Room 799, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada.,Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J6, Canada
| |
Collapse
|
13
|
The NS1 protein of influenza A virus interacts with cellular processing bodies and stress granules through RNA-associated protein 55 (RAP55) during virus infection. J Virol 2012; 86:12695-707. [PMID: 22973032 DOI: 10.1128/jvi.00647-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nonstructural protein (NS1) of influenza A virus performs multiple functions in the virus life cycle. Proteomic screening for cellular proteins which interact with NS1 identified the cellular protein RAP55, which is one of the components of cellular processing bodies (P-bodies) and stress granules. To verify whether NS1 interacts with cellular P-bodies, interactions between NS1, RAP55, and other P-body-associated proteins (Ago1, Ago2, and DCP1a) were confirmed using coimmunoprecipitation and cellular colocalization assays. Overexpression of RAP55 induced RAP55-associated stress granule formation and suppressed virus replication. Knockdown of RAP55 with small interfering RNA (siRNA) or expression of a dominant-negative mutant RAP55 protein with defective interaction with P-bodies blocked NS1 colocalization to P-bodies in cells. Expression of NS1 inhibited RAP55 expression and formation of RAP55-associated P-bodies/stress granules. The viral nucleoprotein (NP) was found to be targeted to stress granules in the absence of NS1 but localized to P-bodies when NS1 was coexpressed. Restriction of virus replication via P-bodies occurred in the early phases of infection, as the number of RAP55-associated P-bodies in cells diminished over the course of virus infection. NS1 interaction with RAP55-associated P-bodies/stress granules was associated with RNA binding and mediated via a protein kinase R (PKR)-interacting viral element. Mutations introduced into either RNA binding sites (R38 and K41) or PKR interaction sites (I123, M124, K126, and N127) caused NS1 proteins to lose the ability to interact with RAP55 and to inhibit stress granules. These results reveal an interplay between virus and host during virus replication in which NP is targeted to P-bodies/stress granules while NS1 counteracts this host restriction mechanism.
Collapse
|
14
|
Variability of NS1 proteins among H9N2 avian influenza viruses isolated in Israel during 2000-2009. Virus Genes 2010; 41:396-405. [PMID: 20721688 DOI: 10.1007/s11262-010-0522-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
The main aims of the present study were to characterize NS1 protein from H9N2 avian influenza viruses (AIVs) isolated in Israel and to investigate the possibility to use NS1-based indirect ELISA. To achieve these purposes, the non-structural gene (NS1) of 79 AIVs of the H9N2 subtype isolated in Israel in 2000-2009 was sequenced and genetically analyzed. The phylogenetic analysis demonstrated that four distinct introductions of H9N2 occurred in Israel during this period. Analysis of the inferred amino acid sequences of the NS1 proteins showed high, about 10%, differences between viruses of the 3rd and 4th introductions. Antibodies against NS1 protein in immune sera were tested by means of indirect ELISA using recombinant NS1 as antigen. Immune sera were obtained from experimentally H9N2-infected chicken after infection on 4, 7, 10, 14, and 21 days. All sera from chickens experimentally infected with 3rd- or 4th-introduction AIV contained anti-NS1 antibodies that were detected by enzyme-linked immunosorbent assay (NS1-ELISA) even though the recombinant NS1 used as antigen for NS1-ELISA differed significantly in its amino acid sequences from the NS1 protein of AIV that caused infection in experimental birds. These findings indicate that the sites of the NS1 protein by which viruses belonging to 3rd and 4th introduction are out of antigenic epitope positions were responsible for the results of NS1-based iELISA.
Collapse
|