1
|
Malik YS, Ansari MI, Karikalan M, Sircar S, Selvaraj I, Ghosh S, Singh K. Molecular Characterization of Rotavirus C from Rescued Sloth Bears, India: Evidence of Zooanthroponotic Transmission. Pathogens 2023; 12:934. [PMID: 37513781 PMCID: PMC10384673 DOI: 10.3390/pathogens12070934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The present study reports the detection and molecular characterisation of rotavirus C (RVC) in sloth bears (Melursus ursinus) rescued from urban areas in India. Based on an RVC VP6 gene-targeted diagnostic RT-PCR assay, 48.3% (42/87) of sloth bears tested positive for RVC infection. The VP6, VP7, and NSP4 genes of three sloth bear RVC isolates (UP-SB19, 21, and 37) were further analysed. The VP6 genes of RVC UP-SB21 and 37 isolates were only 37% identical. The sequence identity, TM-score from structure alignment, and selection pressure (dN/dS) of VP6 UP-SB37 with pig and human RVCs isolates were (99.67%, 0.97, and 1.718) and (99.01%, 0.93, and 0.0340), respectively. However, VP6 UP-SB21 has an identity, TM-score, and dN/dS of (84.38%, 1.0, and 0.0648) and (99.63%, 1.0, and 3.7696) with human and pig RVC isolates, respectively. The VP7 genes from UP-SB19 and 37 RVC isolates were 79.98% identical and shared identity, TM-score, and dN/dS of 88.4%, 0.76, and 5.3210, along with 77.98%, 0.77, and 4.7483 with pig and human RVC isolates, respectively. The NSP4 gene of UP-SB37 RVC isolates has an identity, TM-score, and dN/dS of 98.95%, 0.76, and 0.2907, along with 83.12%, 0.34, and 0.2133 with pig and human RVC isolates, respectively. Phylogenetic analysis of the nucleotide sequences of the sloth bear RVC isolates assigned the isolate UP-SB37 to genotype G12, I2 for RVC structural genes VP7 and VP6, and E1 for NSP4 genes, respectively, while isolates UP-SB19 and UP-SB21 were classified as genotype G13 and GI7 based on the structural gene VP7, respectively. The study suggests that the RVCs circulating in the Indian sloth bear population are highly divergent and might have originated from pigs or humans, and further investigation focusing on the whole genome sequencing of the sloth bear RVC isolate may shed light on the virus origin and evolution.
Collapse
Affiliation(s)
- Yashpal Singh Malik
- ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| | - Mohd Ikram Ansari
- ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
- Department of Biosciences, Integral University, Lucknow 226026, India
| | - Mathesh Karikalan
- Centre for Wildlife Conservation Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - Shubhankar Sircar
- ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA
| | | | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Kalpana Singh
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| |
Collapse
|
2
|
Truong TC, Nguyen TH, Kim W. Multiple reassortment and interspecies transmission events contribute to the diversity of porcine-like human rotavirus C strains detected in South Korea. Arch Virol 2022; 167:2163-2171. [PMID: 35840863 DOI: 10.1007/s00705-022-05528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/25/2022] [Indexed: 11/02/2022]
Abstract
Globally, rotavirus C (RVC) causes diarrhoeal outbreaks, mainly in swine, with sporadic incidents in human, bovine, and canine populations. In this study, two human RVC strains, RVC/Human-wt/KOR/CAU13-1-77/2013 and RVC/Human-wt/KOR/CAU14-1-242/2014, were isolated in South Korea, and their complete genome sequences were compared with those of other human- and animal-origin RVC strains found worldwide. Genetic analysis revealed that these viruses have a G4-P[2]-I2-R2-C2-M3-A2-N2-T2-E2-H2 genotype constellation. Phylogenetic analysis indicated that these Korean RVC strains belong to the M3 lineage of the VP3 gene in human RVC from Japan and China and porcine RVC from Japan. These results suggest that RVC circulates in northeast Asia in both the human and porcine populations. These results also provide evidence of interspecies RVC reassortment events.
Collapse
Affiliation(s)
- Thoi Cong Truong
- Department of Microbiology, Chung-Ang University College of Medicine, 06974, Seoul, South Korea
| | | | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, 06974, Seoul, South Korea.
| |
Collapse
|
3
|
Souza YFVPD, Souza EVD, Azevedo LSD, Medeiros RS, Timenetsky MDCST, Luchs A. Enteric adenovirus epidemiology from historical fecal samples in Brazil (1998-2005): Pre-rotavirus vaccine era. INFECTION GENETICS AND EVOLUTION 2021; 94:105007. [PMID: 34293482 DOI: 10.1016/j.meegid.2021.105007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023]
Abstract
Human adenovirus (HAdV) is recognized as frequent cause of acute gastroenteritis and enteric viruses can be preserved in frozen stored feces for long periods of times. The purpose of the present study was to investigate enteric HAdV genotypic diversity in archival fecal specimens stored from 1998 to 2005 in order to understand the natural history of HAdV in diarrheal patients in Brazil before rotavirus vaccine introduction. A total of 3346 specimens were tested for HAdV using conventional PCR. Genotypes were identified by sequencing. HAdV was detected in 6.8% (228/3346). Positivity was higher in children ≤ 5 years and males (p < 0.05). HAdV was most frequently observed during winter and spring seasons (p < 0.05). HAdV-F41 was the most prevalent genotype (59.2%;135/228), followed by HAdV-F40 (16.2%;37/228), HAdV-C1 (5.2%;12/228), HAdV-C2 (5.2%;12/228), HAdV-C5 (3.1%;7/228), HAdV-A12 (1.3%;3/228), HAdV-E4 (0.9%;2/228), HAdV-B3 (0.9%;2/228) and HAdV-B21 (0.4%;1/228). In 7.6% (17/228) only species D could be defined. HAdV-E4 strains were phylogenetic analyzed and classified as lineage (a)-like PG II. HAdV prevalence remained stable in Brazilian population, regardless rotavirus vaccine introduction. The predominant HAdV genotypes detected did not change over time, highlighting a high diversity of circulating strains in the country throughout decades. Due to the historical lack of HAdV genotyping surveillance in Brazil, HAdV-E4 epidemiology is virtually unknown in the country. The present study contributed significantly to the understanding of the natural history of HAdV in diarrheal patients in Brazil. The acquired data are important for clinical diagnosis, particularly for studies investigating enteric viruses' prevalence and molecular epidemiology of archival clinical specimens.
Collapse
Affiliation(s)
| | - Ellen Viana de Souza
- Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | | | | | | | - Adriana Luchs
- Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil.
| |
Collapse
|
4
|
Group C rotavirus infection in patients with acute gastroenteritis in outbreaks in western India between 2006 and 2014. Epidemiol Infect 2016; 145:310-315. [PMID: 27780494 DOI: 10.1017/s0950268816002363] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Faecal specimens collected from outbreak (n = 253) and sporadic (n = 147) cases of acute gastroenteritis that occurred in western India between 2006 and 2014 were tested for group C rotavirus (GCR) using partial VP6 gene-based RT-PCR. All specimens were tested previously for the presence of other viral and bacterial aetiological agents by conventional methods. The rate of GCR detection was 8·6% and 0·7% in outbreak and sporadic cases, respectively. GCR infections prevailed in outbreaks reported from rural areas (10·9%) compared to urban areas (1·6%). Clinical severity score of the patients with GCR infection (n = 23) indicated severe disease in the majority (70%) of cases. The age distribution analysis indicated 52·1% of GCR infections in children aged <10 years. The male:female ratio in GCR-positive patients was 2·3:1. Of the 23 GCR-positive cases, 17 (73·9%) had a sole GCR infection and six had mixed infections with other viral and/or bacterial agents. Phylogenetic analysis of nucleotide sequences classified GCR strains of the study in to I2 genotype of the VP6 gene. This is the first study to show the occurrence of GCR in gastroenteritis outbreaks in India.
Collapse
|
5
|
Niira K, Ito M, Masuda T, Saitou T, Abe T, Komoto S, Sato M, Yamasato H, Kishimoto M, Naoi Y, Sano K, Tuchiaka S, Okada T, Omatsu T, Furuya T, Aoki H, Katayama Y, Oba M, Shirai J, Taniguchi K, Mizutani T, Nagai M. Whole genome sequences of Japanese porcine species C rotaviruses reveal a high diversity of genotypes of individual genes and will contribute to a comprehensive, generally accepted classification system. INFECTION GENETICS AND EVOLUTION 2016; 44:106-113. [PMID: 27353186 DOI: 10.1016/j.meegid.2016.06.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 12/16/2022]
Abstract
Porcine rotavirus C (RVC) is distributed throughout the world and is thought to be a pathogenic agent of diarrhea in piglets. Although, the VP7, VP4, and VP6 gene sequences of Japanese porcine RVCs are currently available, there is no whole-genome sequence data of Japanese RVC. Furthermore, only one to three sequences are available for porcine RVC VP1-VP3 and NSP1-NSP3 genes. Therefore, we determined nearly full-length whole-genome sequences of nine Japanese porcine RVCs from seven piglets with diarrhea and two healthy pigs and compared them with published RVC sequences from a database. The VP7 genes of two Japanese RVCs from healthy pigs were highly divergent from other known RVC strains and were provisionally classified as G12 and G13 based on the 86% nucleotide identity cut-off value. Pairwise sequence identity calculations and phylogenetic analyses revealed that candidate novel genotypes of porcine Japanese RVC were identified in the NSP1, NSP2 and NSP3 encoding genes, respectively. Furthermore, VP3 of Japanese porcine RVCs was shown to be closely related to human RVCs, suggesting a gene reassortment event between porcine and human RVCs and past interspecies transmission. The present study demonstrated that porcine RVCs show greater genetic diversity among strains than human and bovine RVCs.
Collapse
Affiliation(s)
- Kazutaka Niira
- Tochigi Prefectural South District Animal Hygiene Service Center, Tochigi, Tochigi 328-0002, Japan
| | - Mika Ito
- Ishikawa Nanbu Livestock Hygiene Service Center, Kanazawa, Ishikawa 920-3101, Japan
| | - Tsuneyuki Masuda
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori 682-0017, Japan
| | - Toshiya Saitou
- Tochigi Prefectural Central District Animal Hygiene Service Center, Utsunomiya, Tochigi 321-0905, Japan
| | - Tadatsugu Abe
- Tochigi Prefectural Central District Animal Hygiene Service Center, Utsunomiya, Tochigi 321-0905, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Mitsuo Sato
- Tochigi Prefectural Central District Animal Hygiene Service Center, Utsunomiya, Tochigi 321-0905, Japan
| | - Hiroshi Yamasato
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori 682-0017, Japan
| | - Mai Kishimoto
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yuki Naoi
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kaori Sano
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Shinobu Tuchiaka
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Takashi Okada
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Furuya
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Hiroshi Aoki
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Mami Oba
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Junsuke Shirai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Makoto Nagai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
6
|
Zhirakovskaia E, Tikunov A, Klemesheva V, Loginovskikh N, Netesov S, Tikunova N. First genetic characterization of rotavirus C in Russia. INFECTION GENETICS AND EVOLUTION 2016; 39:1-8. [DOI: 10.1016/j.meegid.2016.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/18/2015] [Accepted: 01/04/2016] [Indexed: 11/26/2022]
|
7
|
Lobo PDS, Guerra SDFDS, Siqueira JAM, Soares LDS, Gabbay YB, Linhares AC, Mascarenhas JDP. Phylogenetic analysis of human group C rotavirus in hospitalized children with gastroenteritis in Belém, Brazil. J Med Virol 2015; 88:728-33. [PMID: 26369400 DOI: 10.1002/jmv.24379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2015] [Indexed: 11/10/2022]
Abstract
Group C rotavirus (RVC) is potentially an important pathogen associated with acute gastroenteritis (AG), especially in outbreaks. This study aims to detect and molecularly characterize RVC in hospitalized children with AG in Belém, Brazil. From May 2008 to April 2011, 279 stools were subjected to reverse-transcription polymerase chain reaction targeting VP7, VP6, VP4, and NSP4 genes. RVC positivity rate was 2.1% (6/279) and phylogenetic analysis of positive samples yields genotype G4-P[2]-I2-E2. No evidence of zoonotic transmission and VP7 gene demonstrated close relationship with Asian strains. RVC surveillance is worth to expand information on evolutionary and epidemiological features of this virus.
Collapse
|
8
|
Castro EDR, Germini MCBY, Mascarenhas JDP, Gabbay YB, de Lima ICG, Lobo PDS, Fraga VD, Conceição LM, Machado RLD, Rossit ARB. Enteropathogens detected in a daycare center, Southeastern Brazil: bacteria, virus, and parasite research. Rev Inst Med Trop Sao Paulo 2015; 57:27-32. [PMID: 25651323 PMCID: PMC4325520 DOI: 10.1590/s0036-46652015000100004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/13/2014] [Indexed: 11/27/2022] Open
Abstract
Introduction: The objective of this study was to determine the
prevalence and etiological profile of enteropathogens in children from a daycare
center. Methods: From October 2010 to February 2011 stool samples from 100
children enrolled in a government daycare center in the municipality of São José do
Rio Preto, in the state of São Paulo, were collected and analyzed. Results: A total of 246 bacteria were isolated in 99% of the fecal
samples; 129 were in the diarrheal group and 117 in the non-diarrheal group.
Seventy-three strains of Escherichia coli were isolated, 19 of
Enterobacter, one of Alcaligenes and one of
Proteus. There were 14 cases of mixed colonization with
Enterobacter and E. coli. Norovirus and
Astrovirus were detected in children with clinical signs suggestive of diarrhea.
These viruses were detected exclusively among children residing in urban areas. All
fecal samples were negative for the presence of the rotavirus species A and C. The
presence of Giardia lamblia, Entamoeba coli,
Endolimax nana and hookworm was observed. A significant
association was found between food consumption outside home and daycare center and
the presence of intestinal parasites. Conclusions: For children of this daycare center, intestinal infection
due to pathogens does not seem to have contributed to the occurrence of diarrhea or
other intestinal symptoms. The observed differences may be due to the wide diversity
of geographical, social and economic characteristics and the climate of Brazil, all
of which have been reported as critical factors in the modulation of the frequency of
different enteropathogens.
Collapse
|
9
|
Phylogenetic analysis of human group C rotavirus circulating in Brazil reveals a potential unique NSP4 genetic variant and high similarity with Asian strains. Mol Genet Genomics 2014; 290:969-86. [PMID: 25501310 DOI: 10.1007/s00438-014-0971-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/25/2014] [Indexed: 01/23/2023]
Abstract
Group C rotaviruses (RVC) cause gastroenteritis in humans and animals worldwide, and the evidence for a possible zoonotic role has been recently provided. To gain information on the genetic diversity and relationships between human and animal RVC, we sequenced the VP4, VP7, and NSP4 genes of 12, 19, and 15 human strains, respectively, detected in São Paulo state during historical (1988 and 1993) and recent (2007 and 2008) Brazilian rotavirus surveillance. All RVC strains analyzed in the present study grouped into human genotype (G4-P[2]-E2), and did not show any evidence of animal ancestry. Phylogenetic analysis showed that RVC samples detected in 1988 and 1993 clustered together with strains from distinct continents, indicating that historical RVC strains circulating in São Paulo were closely related to those strains circulating worldwide. All three genes (VP7, VP4 and NSP4) of São Paulo RVC strains isolated in 2007-2008 exhibited close phylogenetic relationship with human RVC strains isolated in China and Japan, suggesting that they are genetically linked, and that a gene flow could be occurring between this Asian countries and Brazil. We identified two distinct clusters in the NSP4 phylogenetic tree. One cluster formed exclusively by human Brazilian strains detected in 1997 and 2003-2004 in Rio de Janeiro, Bahia, and Rio Grande do Sul states (Subgroup II) previously described in a different study, that displayed low sequence identities to other human strains formerly published, and to the Brazilian RVC strains (Subgroup I) characterized in the present study. These data suggests the circulation of two genetic profiles of the NSP4 gene in Brazil. High sequence diversity in NSP4 gene was previously reported in Asia, and additional diversity in NSP4 RVC strains spreading in the world should be expected. More in-depth molecular and epidemiological analysis of human RVC throughout the world will be needed to understand their diversity and clarify their evolution, as well as to develop classifications schemes.
Collapse
|
10
|
Luchs A, Cilli A, Morillo SG, de Cassia Compagnoli Carmona R, do Carmo Sampaio Tavares Timenetsky M. Rotavirus in adults, Brazil, 2004–2011: G2P[4] dominance and potential impact on vaccination. Braz J Infect Dis 2014; 18:53-9. [PMID: 24076114 PMCID: PMC9425225 DOI: 10.1016/j.bjid.2013.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/04/2013] [Accepted: 05/09/2013] [Indexed: 11/30/2022] Open
Abstract
Objectives The aim of this study was to monitor rotavirus (RV) infections in adults >18 years with acute gastroenteritis during 2004–2011 national Brazilian RV surveillance. In addition, to characterize the RV group A (RVA) strains in order to gain insight into the supposed vaccine selective pressure imposed to Brazilian children population. Methods A total of 2102 convenient fecal specimens were investigated by ELISA, PAGE, and RT-PCR. Results RV was detected in 203 (9.6%) of 2102 specimens, and showed a marked peak of detection in September. RVA infection was detected in 9.4% (197/2102) and RV group C (RVC) in 0.3% (6/2102). The most frequent genotypes detected in 2004 and 2005 were G9P[8] (38.5%; 5/13) and G1P[8] (54.5%; 6/11), respectively. The dominant genotype identified from 2006 to 2011 was G2P[4] (64.4%; 116/180). Detection rate varied during the 8-year period of the study from 0.7% to 12.9%. Conclusion The high detection rate of G2P[4] in adults provides further evidence that its dominance reflects the seasonality of RVA strains instead of the supposed selective advantage created by vaccination program. It also can be suggested that adult infections may serve as a reservoir to maintain RVA strains in childhood gastroenteritis. Considering the detection rate, the evident reduction of RVA frequency observed in children after vaccine introduction was not present in adults.
Collapse
Affiliation(s)
- Adriana Luchs
- Adolfo Lutz Institute, Virology Center, Enteric Disease Laboratory, Av. Dr. Arnaldo, 355, São Paulo, SP, Brazil.
| | - Audrey Cilli
- Adolfo Lutz Institute, Virology Center, Enteric Disease Laboratory, Av. Dr. Arnaldo, 355, São Paulo, SP, Brazil
| | - Simone Guadagnucci Morillo
- Adolfo Lutz Institute, Virology Center, Enteric Disease Laboratory, Av. Dr. Arnaldo, 355, São Paulo, SP, Brazil
| | | | | |
Collapse
|
11
|
Kumazaki M, Usuku S. Epidemiological and genetic analysis of human group C rotaviruses isolated from outbreaks of acute gastroenteritis in Yokohama, Japan, between 2006 and 2012. Arch Virol 2013; 159:761-71. [PMID: 24154950 DOI: 10.1007/s00705-013-1894-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/10/2013] [Indexed: 02/01/2023]
Abstract
Group C rotavirus (GCRV) infection has been described in several parts of the world, predominantly as sporadic cases of acute gastroenteritis. Little is known about the yearly changes in the GCRV strains from diarrheal outbreaks. Stool samples collected from outbreaks of acute gastroenteritis in Yokohama, Japan, between 2006 and 2012 that were negative for norovirus, sapovirus, and group A rotavirus, were screened for GCRV using a reverse passive hemagglutination method. The GCRV strains were characterized by nucleotide sequence and phylogenetic analysis of their VP6, VP7, VP4, and NSP4 genes. Samples from nine of 735 outbreaks in Yokohama (1 %) contained GCRV, and eight of these outbreaks occurred in primary schools. The nucleotide sequences of the strains detected in this study were more closely related to Asian strains than to those from other regions of the world. The nucleotide sequences of the VP7 gene in these nine strains differed, and yearly changes were observed in the amino acid sequences of the VP4 genes. Phylogenetic trees constructed using the nucleotide sequences of the VP6, VP7, VP4, and NSP4 genes showed that sublineage S1 has divided into S1-1 and S1-2 in the VP4 gene only. Our results confirm that the prevalent strains of GCRV change yearly in Yokohama. This is the first study to demonstrate GCRV-associated gastroenteritis outbreaks in Yokohama, Japan.
Collapse
Affiliation(s)
- Makoto Kumazaki
- Department of Testing and Research, Yokohama City Institute of Health, Takigashira 1-2-17, Isogo-ku, Yokohama, Kanagawa, 235-0012, Japan,
| | | |
Collapse
|
12
|
Soma J, Tsunemitsu H, Miyamoto T, Suzuki G, Sasaki T, Suzuki T. Whole-genome analysis of two bovine rotavirus C strains: Shintoku and Toyama. J Gen Virol 2013; 94:128-135. [DOI: 10.1099/vir.0.046763-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rotavirus C (RVC) has been detected frequently in epidemic cases and/or outbreaks of diarrhoea in humans and animals worldwide. Because it is difficult to cultivate RVCs serially in cell culture, the sequence data available for RVCs are limited, despite their potential economical and epidemiological impact. Although whole-genome sequences of one porcine RVC and seven human RVC strains have been analysed, this has not yet been done for a bovine RVC strain. In the present study, we first determined the nucleotide sequences for five as-yet underresearched genes, including the NSP4 gene, from a cultivable bovine RVC, the Shintoku strain, identified in Hokkaido Prefecture, Japan, in 1991. In addition, we elucidated the ORF sequences of all segments from another bovine RVC, the Toyama strain, detected in Toyama Prefecture, Japan, in 2010, in order to investigate genetic divergence among bovine RVCs. Comparison of segmental nucleotide and deduced amino acid sequences among RVCs indicates high identity among bovine RVCs and low identity between human and porcine RVCs. Phylogenetic analysis of each gene showed that the two bovine RVCs belong to a cluster distinct from human and porcine RVCs. These data demonstrate that RVCs can be classified into different genotypes according to host species. Moreover, RVC NSP1, NSP2 and VP1 amino acid sequences contain a unique motif that is highly conserved among rotavirus A (RVA) strains and, hence, several proteins from bovine RVCs are suggested to play important roles that are similar to those of RVAs.
Collapse
Affiliation(s)
- Junichi Soma
- Research and Development Section, Institute of Animal Health, JA Zen-noh (National Federation of Agricultural Cooperative Associations), Chiba 285-0043, Japan
| | - Hiroshi Tsunemitsu
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305-0856, Japan
| | - Takeshi Miyamoto
- Toyama Prefectural Tobu Livestock Hygiene Service Center, Toyama 939-3536, Japan
| | - Goro Suzuki
- Research and Development Section, Institute of Animal Health, JA Zen-noh (National Federation of Agricultural Cooperative Associations), Chiba 285-0043, Japan
| | - Takashi Sasaki
- Research and Development Section, Institute of Animal Health, JA Zen-noh (National Federation of Agricultural Cooperative Associations), Chiba 285-0043, Japan
| | - Tohru Suzuki
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki 305-0856, Japan
| |
Collapse
|