1
|
Raposo JV, Sarmento DJDS, Pinto RBDS, Lopes AO, Gallottini M, Tozetto-Mendoza TR, Braz-Silva PH, de Paula VS. Longitudinal study on oral shedding of human betaherpesviruses 6 and 7 in renal transplant recipients reveals active replication. J Oral Microbiol 2020; 12:1785801. [PMID: 32944150 PMCID: PMC7482732 DOI: 10.1080/20002297.2020.1785801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUNG Roseolovirus latency and persistence in salivary glands that are frequently reactivated after renal transplantation to cause infection have been reported. However, limited information is available on the persistence and excretion of HHV-6 and HHV-7 during and after transplant. METHODS 32 renal transplant recipients were followed up before (T1) and after transplant (T2 and T3) and viral replication (via assessment of mRNA) in oral fluid samples investigated. Roseolovirus DNA was detected and quantified via multiplex qPCR. For evaluation of mRNA replication, positive samples were subjected to nested RT-PCR. RESULTS Viral replication of HHV-7 was significantly increased during T3 (72.9%), compared to the pre-transplant period T1 (25%; McNemar Test, p= 0.001). Analysis of the viral replicative to quantitative ratio disclosed ahigher number of DNA copies (>106) in positive cases of replication (p < 0.001). Astrong positive correlation (Spearman correlation coefficient = 0.781; p< 0.001) was evident between viral quantities of Roseoloviruses. CONCLUSION Our findings consistently suggest that the salivary gland is an important site of active and persistent infection by roseoloviruses. In view of the increasing problem of Roseoloviruses, pre- and post-transplantation, viral surveillance and monitoring of active replication are pivotal steps for effective screening and treatment of renal transplant patients.
Collapse
Affiliation(s)
| | | | | | - Amanda Oliveira Lopes
- Instituto Oswaldo Cruz – IOC/FIOCRUZ – Fundação Oswaldo Cruz, Rio De Janeiro, Brasil
| | - Marina Gallottini
- Departamento de Estomatologia, Faculdade de Odontologia da Universidade de São Paulo – FOUSP, São Paulo, SP, Brasil
| | - Tânia Regina Tozetto-Mendoza
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo – IMTSP – Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | - Paulo Henrique Braz-Silva
- Departamento de Estomatologia, Faculdade de Odontologia da Universidade de São Paulo – FOUSP, São Paulo, SP, Brasil
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo – IMTSP – Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brasil
| | | |
Collapse
|
2
|
Denner J. Reduction of the survival time of pig xenotransplants by porcine cytomegalovirus. Virol J 2018; 15:171. [PMID: 30409210 PMCID: PMC6225623 DOI: 10.1186/s12985-018-1088-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/28/2018] [Indexed: 02/06/2023] Open
Abstract
Background Xenotransplantation using pig cells, tissues and organs may help to overcome the shortage of human tissues and organs for the treatment of tissue and organ failure. Progress in the prevention of immunological rejection using genetically modified pigs and new, more effective, immunosuppression regimens will allow clinical application of xenotransplantation in near future. However, xenotransplantation may be associated with the transmission of potentially zoonotic porcine microorganisms. Until now the only xenotransplantation-associated transmission was the transmission of the porcine cytomegalovirus (PCMV) into non-human primates. PCMV caused a significant reduction of the survival time of the pig transplant. Main body of the abstract Here the available publications were analysed in order to establish the mechanism how PCMV shortened the survival time of xenotransplants. PCMV is a herpesvirus related to the human cytomegalovirus and the human herpesviruses 6 and 7. These three human herpesviruses can cause serious disease among immunocompromised human individuals, including transplant recipients. It was shown that PCMV predominantly contributes to the reduction of transplant survival in non-human primates by disruption of the coagulation system and by suppression and exhaustion of the immune system. Conclusion Although it is still unknown whether PCMV infects primate cells including human cells, indirect mechanism of the virus infection may cause reduction of the xenotransplant survival in future clinical trials and therefore PCMV has to be eliminated from donor pigs.
Collapse
Affiliation(s)
- Joachim Denner
- Robert Koch Fellow, Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany.
| |
Collapse
|
3
|
Abstract
Human roseoloviruses include three different species, human herpesviruses 6A, 6B, and 7 (HHV-6A, HHV-6B, HHV-7), genetically related to human cytomegalovirus. They exhibit a wide cell tropism in vivo and, like other herpesviruses, induce a lifelong latent infection in humans. In about 1% of the general population, HHV-6 DNA is covalently integrated into the subtelomeric region of cell chromosomes (ciHHV-6). Many active infections, corresponding to primary infections, reactivations, or exogenous reinfections, are asymptomatic. They also may cause serious diseases, particularly in immunocompromised individuals, including hematopoietic stem-cell transplant (HSCT) and solid-organ transplant recipients, and acquired immunodeficiency syndrome (AIDS) patients. This opportunistic pathogenic role is formally established for HHV-6 infection and less clear for HHV-7. It mainly concerns the central-nervous system, bone marrow, lungs, gastrointestinal tract, skin, and liver. As the best example, HHV-6 causes both exanthema subitum, a benign disease associated with primary infection, and severe encephalitis associated with virus reactivations in HSCT recipients. Diagnosis using serologic and direct antigen-detection methods currently exhibits limitations. The most prominent technique is the quantification of viral DNA in blood, other body fluids, and organs by means of real-time polymerase-chain reaction (PCR). The antiviral compounds ganciclovir, foscarnet, and cidofovir are effective against active infections, but there is currently no consensus regarding the indications of treatment or specifics of drug administration. Numerous questions about HHV-6A, HHV-6B, HHV-7 are still pending, concerning in particular clinical impact and therapeutic options in immunocompromised patients.
Collapse
|
4
|
Ibrahim AA, Mohamed MA, Babiker BA, Musa MB, Musa HH. Serological markers of Epstein-Barr virus in renal transplant recipients. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Bella R, Dolci M, Ferraresso M, Ticozzi R, Ghio L, Rizzo J, Signorini L, Villani S, Elia F, Ferrante P, Delbue S. Human herpesvirus-6 and polyomaviruses DNAemia in children and young adult patients after kidney transplantation. Future Virol 2015. [DOI: 10.2217/fvl.15.98] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aims: Human herpesvirus-6 (HHV-6) and polyomaviruses (HPyV) establish latency and reactivate in immunocompromised hosts. The prevalence of their infections was investigated in pediatric and young adult kidney transplant recipients. Materials & methods: Blood was obtained from 83 patients. Quantitative real-time polymerase chain reactions were conducted to quantify HHV-6 and HPyV loads; nested PCR and reverse transcriptase-PCR assays were conducted to differentiate HHV-6A from 6B and to evaluate the presence of transcripts. Results: HHV-6 and HPyV DNAemia were detected in 19.3 and 18.1% patients, respectively. No association between HHV-6 and HPyV DNA presence, age of patients and time from transplant was observed. Conclusion: HHV-6 infection in immunosuppression setting was as common as those of HPyVs that are commonly recognized as opportunistic agents.
Collapse
Affiliation(s)
- Ramona Bella
- Department of Biomedical, Surgical & Dental Sciences, University of Milan, Milan, Italy
| | - Maria Dolci
- Department of Biomedical, Surgical & Dental Sciences, University of Milan, Milan, Italy
| | - Mariano Ferraresso
- Department of Clinical Sciences & Community Health, University of Milan, Milan, Italy
- Division of Kidney Transplantation, Fondazione Ca’ Granda-Ospedale Maggiore IRCCS, Milan, Italy
| | - Rosalia Ticozzi
- Department of Biomedical, Surgical & Dental Sciences, University of Milan, Milan, Italy
| | - Luciana Ghio
- Division of Kidney Transplantation, Fondazione Ca’ Granda-Ospedale Maggiore IRCCS, Milan, Italy
- Nephrology, Dialysis & Transplantation Unit, Clinica Pediatrica De Marchi, Milan, Italy
| | - Jacopo Rizzo
- Department of Clinical Sciences & Community Health, University of Milan, Milan, Italy
| | - Lucia Signorini
- Department of Biomedical, Surgical & Dental Sciences, University of Milan, Milan, Italy
| | - Sonia Villani
- Department of Biomedical, Surgical & Dental Sciences, University of Milan, Milan, Italy
| | - Francesca Elia
- Department of Biomedical, Surgical & Dental Sciences, University of Milan, Milan, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical & Dental Sciences, University of Milan, Milan, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical & Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Agut H, Bonnafous P, Gautheret-Dejean A. Laboratory and clinical aspects of human herpesvirus 6 infections. Clin Microbiol Rev 2015; 28:313-35. [PMID: 25762531 PMCID: PMC4402955 DOI: 10.1128/cmr.00122-14] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) is a widespread betaherpesvirus which is genetically related to human cytomegalovirus (HCMV) and now encompasses two different species: HHV-6A and HHV-6B. HHV-6 exhibits a wide cell tropism in vivo and, like other herpesviruses, induces a lifelong latent infection in humans. As a noticeable difference with respect to other human herpesviruses, genomic HHV-6 DNA is covalently integrated into the subtelomeric region of cell chromosomes (ciHHV-6) in about 1% of the general population. Although it is infrequent, this may be a confounding factor for the diagnosis of active viral infection. The diagnosis of HHV-6 infection is performed by both serologic and direct methods. The most prominent technique is the quantification of viral DNA in blood, other body fluids, and organs by means of real-time PCR. Many active HHV-6 infections, corresponding to primary infections, reactivations, or exogenous reinfections, are asymptomatic. However, the virus may be the cause of serious diseases, particularly in immunocompromised individuals. As emblematic examples of HHV-6 pathogenicity, exanthema subitum, a benign disease of infancy, is associated with primary infection, whereas further virus reactivations can induce severe encephalitis cases, particularly in hematopoietic stem cell transplant recipients. Generally speaking, the formal demonstration of the causative role of HHV-6 in many acute and chronic human diseases is difficult due to the ubiquitous nature of the virus, chronicity of infection, existence of two distinct species, and limitations of current investigational tools. The antiviral compounds ganciclovir, foscarnet, and cidofovir are effective against active HHV-6 infections, but the indications for treatment, as well as the conditions of drug administration, are not formally approved to date. There are still numerous pending questions about HHV-6 which should stimulate future research works on the pathophysiology, diagnosis, and therapy of this remarkable human virus.
Collapse
Affiliation(s)
- Henri Agut
- Sorbonne Universités, UPMC, CIMI-Paris UMRS CR7, PVI Team, Paris, France INSERM, CIMI-Paris U1135, PVI Team, Paris, France AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Service de Virologie, Paris, France
| | - Pascale Bonnafous
- Sorbonne Universités, UPMC, CIMI-Paris UMRS CR7, PVI Team, Paris, France INSERM, CIMI-Paris U1135, PVI Team, Paris, France
| | - Agnès Gautheret-Dejean
- Sorbonne Universités, UPMC, CIMI-Paris UMRS CR7, PVI Team, Paris, France INSERM, CIMI-Paris U1135, PVI Team, Paris, France AP-HP, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Service de Virologie, Paris, France Université René Descartes, Faculté de Pharmacie, Laboratoire de Microbiologie UPRES EA 4065, Paris, France
| |
Collapse
|
7
|
Evans CM, Kudesia G, McKendrick M. Management of herpesvirus infections. Int J Antimicrob Agents 2013; 42:119-28. [PMID: 23820015 DOI: 10.1016/j.ijantimicag.2013.04.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 12/19/2022]
Abstract
Management of human herpesviruses remains a considerable clinical challenge, in part due to their ability to cause both lytic and latent disease. Infection with the Herpesviridae results in lifelong infection, which can reactivate at any time. Control of herpesviruses is by the innate and adaptive immune systems. Herpesviruses must evade the host innate immune system to establish infection. Once infected, the adaptive immune response, primarily CD8(+) T-cells, is crucial in establishing and maintaining latency. Latent herpesviruses are characterised by the presence of viral DNA in infected cells and limited or no viral replication. These characteristics provide a challenge to clinicians and those developing antiviral agents. The scope of this review is two-fold. First, to provide an overview of all antivirals used against herpesviruses, including their mechanism of action, pharmacokinetics, side effects, resistance and clinical uses. And second, to address the management of each of the eight herpesviruses both in the immunocompetent and immunocompromised host, providing evidence for clinical management and therapeutic options, which is important to the clinician engaged in the management of these infections.
Collapse
Affiliation(s)
- Cariad M Evans
- Department of Virology, Northern General Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
| | | | | |
Collapse
|
8
|
Monitoring for HHV-6 infection after renal transplantation: evaluation of risk factors for sustained viral replication. Transplantation 2013; 95:842-6. [PMID: 23354300 DOI: 10.1097/tp.0b013e3182807ab7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Human herpesvirus-6 (HHV-6) is known to reactivate after renal transplantation and has been associated with several clinical manifestations. Risk factors for sustained viral replication, however, remain unclear. METHODS Thirty consecutive kidney transplant patients were prospectively followed for HHV-6 replication between February 2007 and February 2008. Plasma samples for DNA detection were collected from the donor and the recipient before transplantation and from the recipient weekly for the first 2 months after transplantation and then every 2 weeks for 2 additional months. HHV-6 active infection was defined as detection of viral DNA in plasma, by polymerase chain reaction, in at least two consecutive samples over an interval of at least 1 week. RESULTS Active viral infection was detected in 25% of the recipients before transplantation and 27% (8 of 30) of the patients after transplantation. The mean time to onset of viral replication was 28.1 days after transplantation and 7 of 8 (87.5%) were asymptomatic. Risk factors associated with active HHV-6 infection were receiving an organ from a living donor (P=0.028), recipients with IgM antibodies detected before transplantation (P=0.005), and pretransplantation recipient HHV-6 viral load more than 10,000 copies/mL plasma (P=0.034). CONCLUSIONS Active HHV-6 infection occurs early after renal transplantation and is mostly asymptomatic. Donor or recipient infection may occur at the time of transplantation and are related to higher rates of posttransplantation infections.
Collapse
|
9
|
Current world literature. Curr Opin Organ Transplant 2013; 18:241-50. [PMID: 23486386 DOI: 10.1097/mot.0b013e32835f5709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
HHV-6 encephalitis in umbilical cord blood transplantation: a systematic review and meta-analysis. Bone Marrow Transplant 2012; 48:574-80. [PMID: 23000642 DOI: 10.1038/bmt.2012.180] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reactivation of human herpesvirus-6 (HHV-6) frequently occurs following hematopoietic SCT (HSCT), and has been associated with clinical consequences in many patient populations. HHV-6 reactivation and HHV-6 encephalitis seem to occur more frequently in patients undergoing HSCT with cord blood (CB) as the stem cell source. We have conducted a systematic literature review and meta-analysis to investigate the clinical significance of this correlation. A systematic review of publications indexed in PubMed was performed for HSCT studies published over the past 10 years that fit inclusion criteria. Data on prevalences of HHV-6 reactivation and HHV-6 encephalitis post HSCT were abstracted from 19 papers. Meta-analyses were conducted to calculate combined prevalence estimates. The prevalences of HHV-6 reactivation and encephalitis were compared among CB vs non-CB HSCT. Prevalences of HHV-6 reactivation and HHV-6 encephalitis were significantly higher in patients receiving CB as the stem cell source than in patients receiving another stem cell source (72.0% vs 37.4%, P<0.0001; 8.3% vs 0.50%, P<0.0001, respectively). HHV-6 reactivation and HHV-6 encephalitis are significant complications in the post-HSCT setting, particularly in patients receiving CB as the stem cell source. Thus, patients undergoing umbilical CB transplantation should be closely monitored for HHV-6 reactivation.
Collapse
|