1
|
Huang H, Zhong W, Wang X, Yang Y, Wu T, Chen R, Liu Y, He F, Li J. The role of gastric microecological dysbiosis in gastric carcinogenesis. Front Microbiol 2023; 14:1218395. [PMID: 37583514 PMCID: PMC10423824 DOI: 10.3389/fmicb.2023.1218395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Gastric cancer (GC) is the leading cause of cancer-related death worldwide, and reducing its mortality has become an urgent public health issue. Gastric microecological dysbiosis (including bacteria, fungi, viruses, acid suppressants, antibiotics, and surgery) can lead to gastric immune dysfunction or result in a decrease in dominant bacteria and an increase in the number and virulence of pathogenic microorganisms, which in turn promotes development of GC. This review analyzes the relationship between gastric microecological dysbiosis and GC, elucidates dynamic alterations of the microbiota in Correa's cascade, and identifies certain specific microorganisms as potential biomarkers of GC to aid in early screening and diagnosis. In addition, this paper presents the potential of gastric microbiota transplantation as a therapeutic target for gastric cancer, providing a new direction for future research in this field.
Collapse
Affiliation(s)
- Hui Huang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Wei Zhong
- Chengdu Medical College, Chengdu, Sichuan, China
| | | | - Ying Yang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Tianmu Wu
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Runyang Chen
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Yanling Liu
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Feng He
- Chengdu Medical College, Chengdu, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Jun Li
- Chengdu Medical College, Chengdu, Sichuan, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Seo JW, Park KB, Chin HM, Jun KH. Does Epstein-Barr virus-positive gastric cancer establish a significant relationship with the multiple genes related to gastric carcinogenesis? PLoS One 2023; 18:e0283366. [PMID: 37285389 DOI: 10.1371/journal.pone.0283366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/07/2023] [Indexed: 06/09/2023] Open
Abstract
Gastric cancer has been categorized into molecular subtypes including Epstein-Barr virus (EBV)-positive tumors, which provide clinicopathological and prognostic information. In this study, we investigated the EBV infection status of patients with gastric cancer and its correlation with the clinicopathological characteristics and multiple genes related to gastric carcinogenesis. The data of 460 gastric cancer patients who underwent curative gastrectomy with D2 lymph node dissection between January 2017 and February 2022 were analyzed. The clinicopathological features and prognosis of the patients with EBV-positive gastric cancers were compared with those of EBV-negative gastric cancers. Immunohistochemistry for epidermal growth factor receptor (EGFR), C-erb B2, Ki-67, and p53 was performed. Additionally, in situ hybridization was conducted to detect EBV, and microsatellite instability (MSI) analysis was used to assess the deficiency in mismatch repair (MMR) genes. EBV-positivity and MSI were identified in 10.4% and 37.3% of gastric cancer patients, respectively. EBV positivity was associated with male gender (P = 0.001), proximal location (P = 0.004), poorly differentiated histological type (P = 0.048), moderate to severe lymphoid stroma (P = 0.006), high Ki-67 expression (P = 0.02), and a shorter resection margin. EGFR was more often expressed in EBV-negative gastric cancers (P < 0.001). MSI tumors were associated with older age (P = 0.01), the presence of lymphatic invasion (P = 0.02), less perineural invasion (P = 0.05), and the presence of H. pylori infection (P = 0.05). EBV positive gastric cancer is associated with increased Ki-67 and decreased EGFR expression and a shorter resection margin due to the prominent lymphoid stroma. However, MMR deficiency is not associated with EBV status even though MSI gastric cancer is related to H. pylori status.
Collapse
Affiliation(s)
- Ji Won Seo
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki Bum Park
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyung Min Chin
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyong Hwa Jun
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
3
|
Co-infection relationship with Epstein-Barr virus in gastroduodenal diseases with Helicobacter Pylori. Quantitative PCR and EBNA-1 gene-based approach. Acta Gastroenterol Belg 2022; 85:301-308. [DOI: 10.51821/85.2.9440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Objective: Helicobacter pylori (Hp) and Epstein-Barr virus (EBV) are involved in gastric cancer (GC) etiology. EBV/Hp co- infection was thought synergistically increase gastroduodenal disease occurence. We aimed to determine the presence of EBV/Hp co-infection in gastroduodenal diseases.
Methods: The study group had 68 Hp (+) cases [25 GC, 13 IM (intestinal metaplasia), 30 PU (peptic ulcer)], and the control group had 40 NUD (non-ulcer dyspepsia) cases [20 Hp+, 20 Hp-]. EBV-DNA was detected by non-polymorphic EBNA-1 gene-based qPCR. EBV/EBNA-1 IgG levels were determined by quantitative and qualitative ELISA methods, respectively.
Results: EBV-DNA positivity was 32% (8/25), 6.6% (2/30) and 5% (1/20) in GC, PU and NUD Hp (+) cases, respectively. There was a significant difference (p = 0.001) between GC (32%) and NUD Hp (+) (5%) cases in terms of EBV-DNA positivity. Mean EBV-DNA copy numbers were 6568.54 ± 20351, 30.60 ± 159.88 and 13.85 ± 61.93 for GC, PU, and NUD, respectively. In terms of the mean EBV-DNA copy number, a significant difference was found between the groups (p = 0.005). In terms of EBV/EBNA-1 IgG antibody positivity, no significant difference was found between GC and NUD cases (p = 0.248). EBV DNA positivity was found to be significant (odds ration [OR] = 26.71 (p=0.009, %95CI 2.286- 312.041) in multivariate logistic regression.
Conclusioin: Although we had a small number of GC cases, it can be suggested that the estimated risk created by the synergistic effect based on the addition of EBV increased 26 times in the presence of Hp in GC.
Collapse
|
4
|
Kato I, Zhang J, Sun J. Bacterial-Viral Interactions in Human Orodigestive and Female Genital Tract Cancers: A Summary of Epidemiologic and Laboratory Evidence. Cancers (Basel) 2022; 14:425. [PMID: 35053587 PMCID: PMC8773491 DOI: 10.3390/cancers14020425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Infectious agents, including viruses, bacteria, fungi, and parasites, have been linked to pathogenesis of human cancers, whereas viruses and bacteria account for more than 99% of infection associated cancers. The human microbiome consists of not only bacteria, but also viruses and fungi. The microbiome co-residing in specific anatomic niches may modulate oncologic potentials of infectious agents in carcinogenesis. In this review, we focused on interactions between viruses and bacteria for cancers arising from the orodigestive tract and the female genital tract. We examined the interactions of these two different biological entities in the context of human carcinogenesis in the following three fashions: (1) direct interactions, (2) indirect interactions, and (3) no interaction between the two groups, but both acting on the same host carcinogenic pathways, yielding synergistic or additive effects in human cancers, e.g., head and neck cancer, liver cancer, colon cancer, gastric cancer, and cervical cancer. We discuss the progress in the current literature and summarize the mechanisms of host-viral-bacterial interactions in various human cancers. Our goal was to evaluate existing evidence and identify gaps in the knowledge for future directions in infection and cancer.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jilei Zhang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Sun
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- UIC Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
5
|
The Role of Coinfections in the EBV-Host Broken Equilibrium. Viruses 2021; 13:v13071399. [PMID: 34372605 PMCID: PMC8310153 DOI: 10.3390/v13071399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
The Epstein–Barr virus (EBV) is a well-adapted human virus, and its infection is exclusive to our species, generally beginning in the childhood and then persisting throughout the life of most of the affected adults. Although this infection generally remains asymptomatic, EBV can trigger life-threatening conditions under unclear circumstances. The EBV lifecycle is characterized by interactions with other viruses or bacteria, which increases the probability of awakening its pathobiont capacity. For instance, EBV infects B cells with the potential to alter the germinal center reaction (GCR)—an adaptive immune structure wherein mutagenic-driven processes take place. HIV- and Plasmodium falciparum-induced B cell hyperactivation also feeds the GCR. These agents, along with the B cell tropic KSHV, converge in the ontogeny of germinal center (GC) or post-GC lymphomas. EBV oral transmission facilitates interactions with local bacteria and HPV, thereby increasing the risk of periodontal diseases and head and neck carcinomas. It is less clear as to how EBV is localized in the stomach, but together with Helicobacter pylori, they are known to be responsible for gastric cancer. Perhaps this mechanism is reminiscent of the local inflammation that attracts different herpesviruses and enhances graft damage and chances of rejection in transplanted patients. In this review, we discussed the existing evidence suggestive of EBV possessing the potential to synergize or cooperate with these agents to trigger or worsen the disease.
Collapse
|
6
|
Blanco R, Aguayo F. Role of BamHI-A Rightward Frame 1 in Epstein-Barr Virus-Associated Epithelial Malignancies. BIOLOGY 2020; 9:biology9120461. [PMID: 33322292 PMCID: PMC7763232 DOI: 10.3390/biology9120461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Simple Summary Epstein–Barr virus is a ubiquitous persistent virus, which is involved in the development of some human cancers. A licensed vaccine to prevent Epstein–Barr virus infection is lacking. BamHI-A rightward frame 1 is a viral protein specifically detected in both nasopharyngeal and Epstein–Barr virus-positive gastric cancers. It has been proposed that this viral protein confers cancer properties to infected epithelial cells and is involved in the escape of cancer cells from immune recognition. In this review, we summarize the properties of BamHI-A rightward frame 1 which confers cancer characteristics to infected epithelial cells. Thus, BamHI-A rightward frame 1 is a potential therapeutic target for the treatment of either Epstein–Barr virus (EBV)-positive nasopharyngeal or gastric cancers. Abstract Epstein–Barr virus (EBV) infection is associated with a subset of both lymphoid and epithelial malignancies. During the EBV latency program, some viral products involved in the malignant transformation of infected cells are expressed. Among them, the BamHI-A rightward frame 1 (BARF1) is consistently detected in nasopharyngeal carcinomas (NPC) and EBV-associated gastric carcinomas (EBVaGCs) but is practically undetectable in B-cells and lymphomas. Although BARF1 is an early lytic gene, it is expressed during epithelial EBV latency, mainly as a secreted protein (sBARF1). The capacity of sBARF1 to disrupt both innate and adaptive host antiviral immune responses contributes to the immune escape of infected cells. Additionally, BARF1 increases cell proliferation, shows anti-apoptotic effects, and promotes an increased hTERT activity and tumor formation in nude mice cooperating with other host proteins such as c-Myc and H-ras. These facts allow for the consideration of BARF1 as a key protein for promoting EBV-associated epithelial tumors. In this review, we focus on structural and functional aspects of BARF1, such as mechanisms involved in epithelial carcinogenesis and its capacity to modulate the host immune response.
Collapse
Affiliation(s)
- Rancés Blanco
- Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile;
| | - Francisco Aguayo
- Universidad de Tarapacá, Arica 1000000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Correspondence:
| |
Collapse
|
7
|
Ignatova E, Seriak D, Fedyanin M, Tryakin A, Pokataev I, Menshikova S, Vakhabova Y, Smirnova K, Tjulandin S, Ajani JA. Epstein-Barr virus-associated gastric cancer: disease that requires special approach. Gastric Cancer 2020; 23:951-960. [PMID: 32514646 DOI: 10.1007/s10120-020-01095-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus-associated gastric cancer [EBV-associated GC, EBV( +) GC] is a distinct molecular subtype of gastrointestinal (GI) cancers. It accounts for up to 10% of all molecular subtypes of gastric cancer (GC). It has unique genetic and epigenetic features, which determine its definitive phenotype with male and younger age predominance, proximal stomach localization, and diffuse adenocarcinoma histology. EBV( +) GC also has a unique epigenetic profile and mutational status with frequent mutations of PIK3CA, ARID1A and BCOR, and PD-L1 and PD-L2 amplifications, as well. The aim of this review is to highlight clinical significance of EBV( +) GC and prognostic role of EBV infection, and to determine potentially appropriate drug therapy for this disease.
Collapse
Affiliation(s)
- Ekaterina Ignatova
- Department of Clinical Pharmacology and Chemotherapy, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, 24, Kashirskoye shosse, Moscow, Russian Federation.
| | - Daria Seriak
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russian Federation
| | - Mikhail Fedyanin
- Department of Clinical Pharmacology and Chemotherapy, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Alexey Tryakin
- Department of Clinical Pharmacology and Chemotherapy, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Ilya Pokataev
- Department of Clinical Pharmacology and Chemotherapy, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Sofia Menshikova
- Department of Anticancer Drug Treatment, AO K31 City, Moscow, Russian Federation
| | - Yuliya Vakhabova
- Chemotherapy Department of Tumors Drug Treatment, Moscow Scientific Research Oncological Institution N.a. P.A. Herzen, Branch of Federal State Budgetary Institution "National Medical Research Center of Radiology" of Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Ksenia Smirnova
- Laboratory of Viral Carcinogenesis, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Sergey Tjulandin
- Department of Clinical Pharmacology and Chemotherapy, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| |
Collapse
|
8
|
Dávila-Collado R, Jarquín-Durán O, Dong LT, Espinoza JL. Epstein-Barr Virus and Helicobacter Pylori Co-Infection in Non-Malignant Gastroduodenal Disorders. Pathogens 2020; 9:pathogens9020104. [PMID: 32041355 PMCID: PMC7168260 DOI: 10.3390/pathogens9020104] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Epstein–Barr virus (EBV) and Helicobacter pylori (H. pylori) are two pathogens associated with the development of various human cancers. The coexistence of both microorganisms in gastric cancer specimens has been increasingly reported, suggesting that crosstalk of both pathogens may be implicated in the carcinogenesis process. Considering that chronic inflammation is an initial step in the development of several cancers, including gastric cancer, we conducted a systematic review to comprehensively evaluate publications in which EBV and H. pylori co-infection has been documented in patients with non-malignant gastroduodenal disorders (NMGDs), including gastritis, peptic ulcer disease (PUD), and dyspepsia. We searched the PubMed database up to August 2019, as well as publication references and, among the nine studies that met the inclusion criteria, we identified six studies assessing EBV infection directly in gastric tissues (total 949 patients) and three studies in which EBV infection status was determined by serological methods (total 662 patients). Due to the substantial methodological and clinical heterogeneity among studies identified, we could not conduct a meta-analysis. The overall prevalence of EBV + H. pylori co-infection in NMGDs was 34% (range 1.8% to 60%). A higher co-infection rate (EBV + H. pylori) was reported in studies in which EBV was documented by serological methods in comparison with studies in which EBV infection was directly assessed in gastric specimens. The majority of these studies were conducted in Latin-America and India, with most of them comparing NMGDs with gastric cancer, but there were no studies comparing the co-infection rate in NMGDs with that in asymptomatic individuals. In comparison with gastritis caused by only one of these pathogens, EBV + H. pylori co-infection was associated with increased severity of gastric inflammation. In conclusion, only relatively small studies testing EBV and H. pylori co-infection in NMGDs have been published to date and the variable report results are likely influenced by geographic factors and detection methods.
Collapse
Affiliation(s)
| | | | - Le Thanh Dong
- Faculty of Medical Technology, Hanoi Medical University, Hanoi 116001, Vietnam
| | - J. Luis Espinoza
- Faculty of Health Sciences, Kanazawa University, Kodatsuno 5-11-80, Kanazawa 920-0942, Ishikawa, Japan
- Correspondence:
| |
Collapse
|
9
|
Guo C, Wei J, Scott RS, Chen Y, Chen Z, Zhao W, Zhang C, Wang B, Chai C, Dai G, Li M, Zhang F. Prevalence and characteristics of Epstein‐Barr virus associated gastric carcinoma in Gansu Province, Northwest China with mRNA expression of glycoprotein BMRF2. J Med Virol 2019; 92:356-363. [DOI: 10.1002/jmv.25616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Chen Guo
- School of Basic Medical SciencesLanzhou UniversityLanzhou Gansu China
- First Affiliated Clinical HospitalLanzhou UniversityLanzhou Gansu China
| | - Jing Wei
- School of Basic Medical SciencesLanzhou UniversityLanzhou Gansu China
| | - Rona S. Scott
- Center for Molecular and Tumor VirologyLouisiana State University Health Sciences CenterShreveport Louisiana
- Department of Microbiology and ImmunologyLouisiana State University Health Sciences CenterShreveport Louisiana
- Feist‐Weiller Cancer CenterLouisiana State University Health Sciences CenterShreveport Louisiana
| | - Yonglin Chen
- First Affiliated Clinical HospitalLanzhou UniversityLanzhou Gansu China
| | - Zhifeng Chen
- Department of Otolaryngology‐Head and Neck SurgeryThe 940th Hospital of Joint Logistics Support Force of CPLALanzhou Gansu China
| | - Wenjie Zhao
- School of Basic Medical SciencesLanzhou UniversityLanzhou Gansu China
| | - Chenli Zhang
- School of Basic Medical SciencesLanzhou UniversityLanzhou Gansu China
| | - Binsheng Wang
- First Affiliated Clinical HospitalLanzhou UniversityLanzhou Gansu China
| | - Chen Chai
- First Affiliated Clinical HospitalLanzhou UniversityLanzhou Gansu China
| | - Gan Dai
- Xiangya School of MedicineCentral South UniversityChangsha Hunan China
| | - Min Li
- School of Basic Medical SciencesLanzhou UniversityLanzhou Gansu China
| | - Fangfang Zhang
- School of Basic Medical SciencesLanzhou UniversityLanzhou Gansu China
| |
Collapse
|
10
|
Fukayama M, Kunita A, Kaneda A. Gastritis-Infection-Cancer Sequence of Epstein-Barr Virus-Associated Gastric Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:437-457. [PMID: 29896679 DOI: 10.1007/978-981-10-7230-7_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus-associated gastric cancer (EBVaGC) is a representative EBV-infected epithelial neoplasm, which is now included as one of the four subtypes of The Cancer Genome Atlas molecular classification of gastric cancer. In this review, we portray a gastritis-infection-cancer sequence of EBVaGC. This virus-associated type of gastric cancer demonstrates clonal growth of EBV-infected epithelial cells within the mucosa of atrophic gastritis. Its core molecular abnormality is the EBV-specific hyper-epigenotype of CpG island promoter methylation, which induces silencing of tumor suppressor genes. This is due to the infection-induced disruption of the balance between DNA methylation and DNA demethylation activities. Abnormalities in the host cell genome, including phosphatidylinositol-4,5-biphosphate 3-kinase catalytic subunit α (PIK3CA), AT-rich interaction domain 1A (ARID1A), and programmed death-ligand 1 (PD-L1), are associated with the development and progression of EBVaGC. Furthermore, posttranscriptional modulation affects the transformation processes of EBV-infected cells, such as epithelial mesenchymal transition and anti-apoptosis, via cellular and viral microRNAs (miRNAs). Once established, cancer cells of EBVaGC remodel their microenvironment, at least partly, via the delivery of exosomes containing cellular and viral miRNAs. After exosomes are incorporated, these molecules change the functions of stromal cells, tuning the microenvironment for EBVaGC. During this series of events, EBV hijacks and uses cellular machineries, such as DNA methylation and the miRNA delivery system. This portrait of gastritis-infection-cancer sequences highlights the survival strategies of EBV in the stomach epithelial cells and may be useful for the integration of therapeutic modalities against EBV-driven gastric cancer.
Collapse
Affiliation(s)
- Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Akiko Kunita
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
11
|
Prevalence and characteristics of Epstein-Barr virus-associated gastric carcinomas in Portugal. Infect Agent Cancer 2017; 12:41. [PMID: 28814970 PMCID: PMC5518146 DOI: 10.1186/s13027-017-0151-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common malignant tumors of the digestive tract and is the third leading cause of cancer death worldwide. Epstein–Barr virus (EBV) has been associated with approximately 10% of the total cases of gastric carcinomas. No previous study has analyzed the prevalence of EBV infection in gastric cancer of the Portuguese population. Methods In the present study, we have analyzed 82 gastric carcinoma cases and 33 healthy individuals (control group) from Coimbra region for the presence of EBV by polymerase chain reaction (PCR) and by in situ hybridization (ISH) for EBV-encoded small RNAs (EBERs). The status of H. pylori infection was assessed by serology and by PCR. Results EBV was detected by PCR in 90.2% of stomach cancer cases, whereas EBERs were detected in 11%. In our series, EBV-associated gastric carcinoma (EBVaGC) were significantly associated with gender and the majority of them presented lymph node metastasis. These cases were generally graded in more advanced pTNM stages and, non-surprisingly, showed worse survival. H. pylori infection was detected in 62.2% of the gastric cancers and 64.7% of these patients were CagA+. On the other hand, the H. pylori prevalence was higher in the EBV-negative gastric carcinomas (64.4%) than in those carcinoma cases with EBV+ (44.4%). Conclusions The present study shows that prevalence of EBVaGC among Portuguese population is in accordance with the worldwide prevalence. EBV infection seems to be associated to poorer prognostic and no relation to H. pylori infection has been found. Conversely, the presence of H. pylori seems to have a favourable impact on patient’s survival. Our results emphasize that geographic variation can contribute with new epidemiological data on the association of EBV with gastric cancer.
Collapse
|
12
|
Ribeiro J, Oliveira C, Malta M, Sousa H. Epstein-Barr virus gene expression and latency pattern in gastric carcinomas: a systematic review. Future Oncol 2017; 13:567-579. [PMID: 28118740 DOI: 10.2217/fon-2016-0475] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
METHODS A systematic review of literature was conducted to identify all published reports regarding the expression of Epstein-Barr Virus (EBV) proteins/transcripts and EBV latency patterns in EBV-associated gastric carcinomas (EBVaGC). RESULTS The literature search retrieved 247 papers, of which 25 papers matched the inclusion criteria. The analysis reveals that the most frequently expressed EBV latent proteins are EBNA1 (98.1%) and LMP2A (53.8%), while LMP1 and LMP2B are present in only 10% of cases. Lytic proteins, such as BARF0 and BARF1, and other lytic transcripts are present in almost half of cases. CONCLUSION EBVaGC seems to display a unique transcription/latency pattern that does not fit the 'standard' EBV latency patterns and therefore should be further studied to better understand EBVaGC carcinogenesis.
Collapse
Affiliation(s)
- Joana Ribeiro
- Molecular Oncology & Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal.,Faculty of Medicine of Porto University (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.,Research Department, Portuguese League Against Cancer (Liga Portuguesa Contra o Cancro - Núcleo Regional do Norte), Estrada Interior da Circunvalação 6657, 4200 Porto, Portugal
| | - Cláudia Oliveira
- Molecular Oncology & Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal.,Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Mariana Malta
- Molecular Oncology & Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal.,Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Hugo Sousa
- Molecular Oncology & Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal
| |
Collapse
|
13
|
Bae JM, Kim EH. Epstein-Barr Virus and Gastric Cancer Risk: A Meta-analysis With Meta-regression of Case-control Studies. J Prev Med Public Health 2016; 49:97-107. [PMID: 27055546 PMCID: PMC4829373 DOI: 10.3961/jpmph.15.068] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/01/2016] [Indexed: 12/13/2022] Open
Abstract
Objectives: Research on how the risk of gastric cancer increases with Epstein-Barr virus (EBV) infection is lacking. In a systematic review that investigated studies published until September 2014, the authors did not calculate the summary odds ratio (SOR) due to heterogeneity across studies. Therefore, we include here additional studies published until October 2015 and conduct a meta-analysis with meta-regression that controls for the heterogeneity among studies. Methods: Using the studies selected in the previously published systematic review, we formulated lists of references, cited articles, and related articles provided by PubMed. From the lists, only case-control studies that detected EBV in tissue samples were selected. In order to control for the heterogeneity among studies, subgroup analysis and meta-regression were performed. Results: In the 33 case-control results with adjacent non-cancer tissue, the total number of test samples in the case and control groups was 5280 and 4962, respectively. In the 14 case-control results with normal tissue, the total number of test samples in case and control groups was 1393 and 945, respectively. Upon meta-regression, the type of control tissue was found to be a statistically significant variable with regard to heterogeneity. When the control tissue was normal tissue of healthy individuals, the SOR was 3.41 (95% CI, 1.78 to 6.51; I-squared, 65.5%). Conclusions: The results of the present study support the argument that EBV infection increases the risk of gastric cancer. In the future, age-matched and sex-matched case-control studies should be conducted.
Collapse
Affiliation(s)
- Jong-Myon Bae
- Department of Preventive Medicine, Jeju National University School of Medicine, Jeju, Korea
| | - Eun Hee Kim
- Department of Preventive Medicine, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
14
|
Rymbai ML, Ramalingam VV, Samarasan I, Chandran BS, Mathew G, Jerobin J, Abraham AM, Sachithanandham J, Kannangai R. Frequency of Epstein--Barr virus infection as detected by messenger RNA for EBNA 1 in histologically proven gastric adenocarcinoma in patients presenting to a tertiary care center in South India. Indian J Med Microbiol 2016; 33:369-73. [PMID: 26068337 DOI: 10.4103/0255-0857.158556] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Epstein-Barr virus (EBV)-associated gastric carcinoma is a relatively uncommon entity detected in approximately 10% of gastric adenocarcinoma. OBJECTIVE The purpose of this study is to estimate the frequency of EBV-associated gastric carcinoma and also to assess the nature of presentation, any significant difference between this subgroup and EBV-negative gastric adenocarcinomas with respect to age and sex predilection, lymph nodal status, site of presentation. MATERIALS AND METHODS We prospectively analyzed 100 cases of gastric adenocarcinoma who underwent either a partial or total gastrectomy during the period from March 2010 to August 2011. The tumour and the corresponding normal gastric tissue from the same patient were analyzed for the presence of Epstein-Barr nuclear antigen 1 (EBNA1) messenger ribonucleic acid (mRNA) by real-time polymerase chain reaction (PCR). RESULT EBV was detected in 6% cases of gastric adenocarcinoma. All the positive patients were males. The majority of cases involved the proximal stomach and there was variable lymph nodal involvement. CONCLUSION Our study endorses that there is an association between EBV infection and gastric adenocarcinoma in the Indian population. There was no significant difference between this subgroup and EBV-negative gastric adenocarcinomas with respect to age and sex predilection, lymph nodal status and site of presentation. Short-term follow-up of this subgroup of patients seems to indicate a good overall prognosis after appropriate treatment. However, a larger study with long-term follow-up is needed to further establish the role of EBV in gastric adenocarcinoma in this study population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - R Kannangai
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
15
|
Iizasa H, Ishihara S, Richardo T, Kanehiro Y, Yoshiyama H. Dysbiotic infection in the stomach. World J Gastroenterol 2015; 21:11450-11457. [PMID: 26523109 PMCID: PMC4616220 DOI: 10.3748/wjg.v21.i40.11450] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/10/2015] [Accepted: 09/15/2015] [Indexed: 02/06/2023] Open
Abstract
Microbiota in human alimentary tract plays important roles for homeostatic maintenance of the body. Compositional difference of gut microbiota is tightly associated with susceptibility of many diseases, including inflammatory diseases, obesity, diabetes mellitus, cancer, and atherosclerosis. “Dysbiosis” refers to a state of imbalance among the colonies of microorganisms within the body, which brings abnormal increase of specific minor components and decrease in the normally dominant species. Since stomach secrets strong acid for its digestive role, this organ has long been thought a sterile organ. However, the discovery of Helicobacter pylori (H. pylori) has changed the concept. This bacterium has proven to cause gastritis, peptic ulcer, and gastric cancer. However, recent cross-sectional studies revealed that H. pylori carriers had a decreased risk of developing immunological diseases, such as asthma. H. pylori coinfection also suppresses inflammatory bowel diseases. This review describes human gastric microbiota by discussing its mutual interaction and pathogenic enrollment. Gastric “dysbiosis” may affect host inflammatory response and play important role for gastric pathogenesis. We will topically discuss enrollment of dysbiosis for genesis of gastric cancer as well as for disruption of immunological homeostasis affecting oncogenic resistance.
Collapse
|
16
|
Shukla SK, Khatoon J, Prasad KN, Rai RP, Singh AK, Kumar S, Ghoshal UC, Krishnani N. Transforming growth factor beta 1 (TGF-β1) modulates Epstein-Barr virus reactivation in absence of Helicobacter pylori infection in patients with gastric cancer. Cytokine 2015; 77:176-9. [PMID: 26239415 DOI: 10.1016/j.cyto.2015.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/01/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Transforming growth factor-beta 1 (TGF-β1), a multifunctional cytokine, acts as a key factor for Epstein-Barr virus (EBV) reactivation. We investigated the role of TGF-β1 in latent and lytic stages of EBV in relation to Helicobacter pylori infection among patients with gastric cancer (GC) and peptic ulcer disease (PUD). METHOD Gastric mucosal TGF-β1 expression was determined in 95 EBV positive patients with gastroduodenal pathology [GC 40, PUD 19 and non-ulcer dyspepsia (NUD) 36] by quantitative real time PCR. Presence of H. pylori infection was diagnosed when either culture or any two of three tests (RUT, histopathology and specific ureA PCR) were positive. Serum level of TGF-β1 was detected among 60 patients using ELISA. RESULTS Mucosal TGF-β1 mRNA expression was detected in 85 of 95 EBV positive patients and it was significantly higher in patients with GC (p=0.042). TGF-β1 expression tended to be higher among H. pylori non-infected than infected patients (3.80±6.24 vs. 2.07±2.50, p=0.085). Both mRNA and serum level had significant association with lytic stage of EBV in absence of H. pylori infection when compared with its presence (5.21±4.00 vs. 2.29±2.89, p=0.040 and 842.00 [669.55] vs. 662.63 [628.76], p=0.049; respectively). CONCLUSION TGF-β1 expression was significantly associated with GC. TGF-β1 was higher both at expression and translational levels in lytic EBV infection without H. pylori suggests that H. pylori infection might play important role in preventing EBV reactivation through attenuated TGF-β1 expression. This might be a "wise host defense against EBV reactivation".
Collapse
Affiliation(s)
- Sanket Kumar Shukla
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, U.P. 226014, India; Department of Microbiology, University of Pennsylvania-School of Medicine, Philadelphia, PA 19104, United States
| | - Jahanarah Khatoon
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, U.P. 226014, India
| | - Kashi Nath Prasad
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, U.P. 226014, India.
| | - Ravi Prakash Rai
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, U.P. 226014, India
| | - Aloukick Kumar Singh
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, U.P. 226014, India
| | - Sushil Kumar
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, U.P. 226014, India
| | - Uday Chand Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, U.P. 226014, India
| | - Narendra Krishnani
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, U.P. 226014, India
| |
Collapse
|
17
|
Abstract
Epstein-Barr virus (EBV) infection is found in a subset of gastric cancers. Previous reviews have exclusively focused on EBV-encoded small RNA (EBER) positivity in gastric cancer tissues, but a comprehensive evaluation of other type of studies is lacking.We searched the PubMed database up to September, 2014, and performed a systematic review.We considered studies comparing EBV nucleic acids positivity in gastric cancer tissue with positivity in either adjacent non-tumor tissue of cancer patients or non-tumor mucosa from healthy individuals, patients with benign gastric diseases, or deceased individuals. We also considered studies comparing EBV antibodies in serum from cancer patients and healthy controls.Selection of potentially eligible studies and data extraction were performed by 2 independent reviewers. Due to the heterogeneity of studies, we did not perform formal meta-analysis.Forty-seven studies (8069 cases and 1840 controls) were identified. EBER positivity determined by in situ hybridization (ISH) was significantly higher in cancer tissues (range 5.0%-17.9%) than in adjacent mucosa from the same patients or biopsies from all control groups (almost 0%). High EBV nuclear antigen-1 (EBNA-1) positivity by PCR was found in gastric cancer tissues, but most were not validated by ISH or adjusted for inflammatory severity and lymphocyte infiltration. Only 4 studies tested for EBV antibodies, with large variation in the seropositivities of different antibodies in both cases and controls, and did not find an association between EBV seropositivity and gastric cancer.In summary, tissue-based ISH methods strongly suggest an association between EBV infection and gastric cancer, but PCR method alone is invalid to confirm such association. Very limited evidence from serological studies and the lack of novel antibodies warrant further investigations to identify potential risk factors of EBV for gastric cancer.
Collapse
Affiliation(s)
- Xin-Zu Chen
- From the Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany (X-ZC, HC, FAC, HB); Department of Gastrointestinal Surgery (X-ZC, J-KH); Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China (X-ZC, J-KH); and German Cancer Consortium (DKTK), Heidelberg, Germany (HB)
| | | | | | | | | |
Collapse
|
18
|
Liang Q, Yao X, Tang S, Zhang J, Yau TO, Li X, Tang CM, Kang W, Lung RWM, Li JW, Chan TF, Xing R, Lu Y, Lo KW, Wong N, To KF, Yu C, Chan FKL, Sung JJY, Yu J. Integrative identification of Epstein-Barr virus-associated mutations and epigenetic alterations in gastric cancer. Gastroenterology 2014; 147:1350-62.e4. [PMID: 25173755 DOI: 10.1053/j.gastro.2014.08.036] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The mechanisms by which Epstein-Barr virus (EBV) contributes to the development of gastric cancer are unclear. We investigated EBV-associated genomic and epigenomic variations in gastric cancer cells and tumors. METHODS We performed whole-genome, transcriptome, and epigenome sequence analyses of a gastric adenocarcinoma cell line (AGS cells), before and after EBV infection. We then looked for alterations in gastric tumor samples, with (n = 34) or without (n = 100) EBV infection, collected from patients at the Prince of Wales Hospital, Chinese University of Hong Kong (from 1998 through 2004), or the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (from 1999 through 2006). RESULTS Transcriptome analysis showed that infected cells expressed 9 EBV genes previously detected in EBV-associated gastric tumors and 71 EBV genes not previously reported in gastric tumors. Ten viral genes that had not been reported previously in gastric cancer but were expressed most highly in EBV-infected cells also were expressed in primary EBV-positive gastric tumors. Whole-genome sequence analysis identified 45 EBV-associated nonsynonymous mutations. These mutations, in genes such as AKT2, CCNA1, MAP3K4, and TGFBR1, were associated significantly with EBV-positive gastric tumors, compared with EBV-negative tumors. An activating mutation in AKT2 was associated with reduced survival times of patients with EBV-positive gastric cancer (P = .006); this mutation was found to dysregulate mitogen-activated protein kinase signaling. Integrated epigenome and transcriptome analyses identified 216 genes transcriptionally down-regulated by EBV-associated hypermethylation; methylation of ACSS1, FAM3B, IHH, and TRABD increased significantly in EBV-positive tumors. Overexpression of Indian hedgehog (IHH) and TraB domain containing (TRABD) increased proliferation and colony formation of gastric cancer cells, whereas knockdown of these genes reduced these activities. We found 5 signaling pathways (axon guidance, focal adhesion formation, interactions among cytokines and receptors, mitogen-activated protein kinase signaling, and actin cytoskeleton regulation) to be affected commonly by EBV-associated genomic and epigenomic alterations. CONCLUSIONS By using genomic, transcriptome, and epigenomic comparisons of EBV infected vs noninfected gastric cancer cells and tumor samples, we identified alterations in genes, gene expression, and methylation that affect different signaling networks. These might be involved in EBV-associated gastric carcinogenesis.
Collapse
Affiliation(s)
- Qiaoyi Liang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | | | | | - Jingwan Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Tung On Yau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Xiaoxing Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Ceen-Ming Tang
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Raymond W M Lung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing Woei Li
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting Fung Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Rui Xing
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, Beijing, China
| | - Youyong Lu
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, Beijing, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Nathalie Wong
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Francis K L Chan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Joseph J Y Sung
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|