1
|
Stadler D, Kächele M, Jones AN, Hess J, Urban C, Schneider J, Xia Y, Oswald A, Nebioglu F, Bester R, Lasitschka F, Ringelhan M, Ko C, Chou W, Geerlof A, van de Klundert MA, Wettengel JM, Schirmacher P, Heikenwälder M, Schreiner S, Bartenschlager R, Pichlmair A, Sattler M, Unger K, Protzer U. Interferon-induced degradation of the persistent hepatitis B virus cccDNA form depends on ISG20. EMBO Rep 2021; 22:e49568. [PMID: 33969602 PMCID: PMC8183418 DOI: 10.15252/embr.201949568] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) persists by depositing a covalently closed circular DNA (cccDNA) in the nucleus of infected cells that cannot be targeted by available antivirals. Interferons can diminish HBV cccDNA via APOBEC3-mediated deamination. Here, we show that overexpression of APOBEC3A alone is not sufficient to reduce HBV cccDNA that requires additional treatment of cells with interferon indicating involvement of an interferon-stimulated gene (ISG) in cccDNA degradation. Transcriptome analyses identify ISG20 as the only type I and II interferon-induced, nuclear protein with annotated nuclease activity. ISG20 localizes to nucleoli of interferon-stimulated hepatocytes and is enriched on deoxyuridine-containing single-stranded DNA that mimics transcriptionally active, APOBEC3A-deaminated HBV DNA. ISG20 expression is detected in human livers in acute, self-limiting but not in chronic hepatitis B. ISG20 depletion mitigates the interferon-induced loss of cccDNA, and co-expression with APOBEC3A is sufficient to diminish cccDNA. In conclusion, non-cytolytic HBV cccDNA decline requires the concerted action of a deaminase and a nuclease. Our findings highlight that ISGs may cooperate in their antiviral activity that may be explored for therapeutic targeting.
Collapse
|
2
|
He Y, Zhou Y, Wang H, Yin J, Chang Y, Hu P, Ren H, Xu H. Identifying potential biomarkers in hepatitis B virus infection and its response to the antiviral therapy by integrated bioinformatic analysis. J Cell Mol Med 2021; 25:6558-6572. [PMID: 34041839 PMCID: PMC8278120 DOI: 10.1111/jcmm.16655] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
The antiviral treatment efficacy varies among chronic hepatitis B (CHB) patients and the underlying mechanism is unclear. An integrated bioinformatics analysis was performed to investigate the host factors that affect the therapeutic responsiveness in CHB patients. Four GEO data sets (GSE54747, GSE27555, GSE66698 and GSE66699) were downloaded from the Gene Expression Omnibus (GEO) database and analysed to identify differentially expressed genes(DEGs). Enrichment analyses of the DEGs were conducted using the DAVID database. Immune cell infiltration characteristics were analysed by CIBERSORT. Upstream miRNAs and lncRNAs of hub DEGs were identified by miRWalk 3.0 and miRNet in combination with the MNDR platform. As a result, seventy‐seven overlapping DEGs and 15 hub genes were identified including CCL5, CXCL9, MYH2, CXCR4, CD74, CCL4, HLA‐DRB1, ACTA1, CD69, CXCL10, HLA‐DRB5, HLA‐DQB1, CXCL13, STAT1 and CKM. The enrichment analyses revealed that the DEGs were mainly enriched in immune response and chemokine signalling pathways. Investigation of immune cell infiltration in liver samples suggested significantly different infiltration between responders and non‐responders, mainly characterized by higher proportions of CD8+ T cells and activated NK cells in non‐responders. The prediction of upstream miRNAs and lncRNAs led to the identification of a potential mRNA‐miRNA‐lncRNA regulatory network composed of 2 lncRNAs (H19 and GAS5) and 5 miRNAs (hsa‐mir‐106b‐5p, hsa‐mir‐17‐5p, hsa‐mir‐20a‐5p, hsa‐mir‐6720‐5p and hsa‐mir‐93‐5p) targeting CCL5 mRNA. In conclusion, our study suggested that host genetic factors could affect therapeutic responsiveness in CHB patients. The antiviral process might be associated with the chemokine‐mediated immune response and immune cell infiltration in the liver microenvironment.
Collapse
Affiliation(s)
- Yi He
- Department of infection, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| | - Yingzhi Zhou
- Department of infection, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| | - Huimin Wang
- Department of infection, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| | - Jingyang Yin
- Chongqing People's Hospital, Chongqing Medical University, Chongqing, China
| | - Yunan Chang
- Department of infection, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongmei Xu
- Department of infection, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Park YK, Lee SY, Lee AR, Kim K, Kim K, Kim K, Choi B. Antiviral activity of interferon-stimulated gene 20, as a putative repressor binding to hepatitis B virus enhancer II and core promoter. J Gastroenterol Hepatol 2020; 35:1426-1436. [PMID: 31951295 PMCID: PMC7497004 DOI: 10.1111/jgh.14986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/30/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Interferon-stimulated gene 20 (ISG20) is an interferon-inducible exonuclease that inhibits the replication of several RNA viruses. In patients with chronic hepatitis B, ISG20 expression is related to the interferon-α treatment response. However, the molecular mechanism of ISG20-mediated anti-hepatitis B virus (HBV) activity is unclear. METHODS We have investigated the effect of ISG20 on antiviral activity to address that. The life cycle of HBV was analyzed by the ectopic expression of ISG20 in HepG2 and HepG2-NTCP cells. Finally, to provide physiological relevance of our study, the expression of ISG20 from chronic hepatitis B patients was examined. RESULTS Interferon-stimulated gene 20 was mainly induced by interferon-β and dramatically inhibited HBV replication. In addition, ISG20 decreased HBV gene expression and transcription. Although ISG20 inhibited HBV replication by reducing viral enhancer activity, the expression of transcription factors that bind the HBV enhancer was not affected. Particularly, ISG20 suppressed HBV enhancer activity by binding to the enhancer II and core promoter (EnhII/Cp) region. CONCLUSION Our findings suggest that ISG20 exerts the anti-HBV activity by acting as a putative repressor binding to the HBV EnhII/Cp region.
Collapse
Affiliation(s)
- Yong Kwang Park
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| | - Sun Young Lee
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| | - Ah Ram Lee
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of MedicineKonkuk UniversitySeoulKorea
| | - Kyung‐Chang Kim
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| | - Kisoon Kim
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| | - Kyun‐Hwan Kim
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of MedicineKonkuk UniversitySeoulKorea
| | - Byeong‐Sun Choi
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| |
Collapse
|
4
|
Zhu Z, Huang S, Zhang Y, Sun C, Tang Y, Zhao Q, Zhou Q, Ju W, He X. Bioinformatics analysis on multiple Gene Expression Omnibus datasets of the hepatitis B virus infection and its response to the interferon-alpha therapy. BMC Infect Dis 2020; 20:84. [PMID: 31996147 PMCID: PMC6990549 DOI: 10.1186/s12879-019-4720-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/22/2019] [Indexed: 12/11/2022] Open
Abstract
Background Hepatitis B virus (HBV) infection is a global health problem and interferon-alpha (IFN-α) is one of the effective therapies. However, little is known about the genetic background of the HBV infection or the genetic determinants of the IFN-α treatment response. Thus, we aim to explore the possible molecular mechanisms of HBV infection and its response to the IFN-α therapy with a comprehensive bioinformatics analysis. Methods The Gene Expression Omnibus datasets (GSE83148, GSE84044 and GSE66698) were collected and the differentially expressed genes (DEGs), key biological processes and intersecting pathways were analyzed. The expression of the co-expressed DEGs in the clinical samples was verified by quantitative real time polymerase chain reaction (qRT-PCR). Results Analysis of all the 3 datasets revealed that there were eight up-regulated and one down-regulated co-expressed DEGs following the HBV infection and after IFN-α treatment. In clinical samples, the mRNA level of HKDC1, EPCAM, GSN, ZWINT and PLD3 were significantly increased, while, the mRNA level of PLEKHA2 was significantly decreased in HBV infected liver tissues compared to normal liver tissues. PI3K-Akt signaling pathway, focal adhesion, HTLV-I infection, cytokine-cytokine receptor interaction, metabolic pathways, NF-κB signaling pathway were important pathways associated with the HBV infection and the response of IFN-α treatment. Conclusions The co-expressed genes, common biological processes and intersecting pathways identified in the study might play an important role in HBV infection and response of IFN-α treatment. The dysregulated genes may act as novel biomarkers and therapeutic targets for HBV.
Collapse
Affiliation(s)
- Zebin Zhu
- Organ Transplant Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China
| | - Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China.,Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510030, Guangdong, China
| | - Yixi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, Guangdong, China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, Guangdong, China
| | - Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, Guangdong, China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, Guangdong, China
| | - Qi Zhou
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China. .,Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou, 516081, Guangdong, China. .,Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China. .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, Guangdong, China. .,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, Guangdong, China.
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China. .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, Guangdong, China. .,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
5
|
Van Tong H, Hoan NX, Binh MT, Quyen DT, Meyer CG, Song LH, Toan NL, Velavan TP. Interferon-stimulated gene 20 kDa protein serum levels and clinical outcome of hepatitis B virus-related liver diseases. Oncotarget 2018; 9:27858-27871. [PMID: 29963243 PMCID: PMC6021248 DOI: 10.18632/oncotarget.25559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/21/2018] [Indexed: 01/20/2023] Open
Abstract
Interferon-stimulated gene 20 kDa protein (ISG20) with 3' to 5' exonuclease activity mainly targeting single-stranded RNA plays an important role in immune responses against various infectious pathogens, including hepatitis viruses. ISG20 levels were measured by ELISA assays in sera of 339 hepatitis B-virus (HBV) infected patients and 71 healthy individuals and were correlated with clinical and laboratory parameters. ISG20 mRNA was quantified by qRT-PCR in 30 pairs of hepatocellular carcinoma (HCC) tumour and adjacent non-tumour liver tissues. ISG20 levels were significantly elevated in HBV patients compared to healthy controls (P<0.0001). In the patient group, varying ISG20 levels were associated with different forms of HBV-related liver diseases. ISG20 levels were higher in patients with HCC compared to those without HCC (P<0.0001), and increased according to the stages of HCC (P<0.0001). ISG20 mRNA expression was up-regulated in tumour tissues compared to the expression in adjacent non-tumour tissues (P=0.017). Importantly, ISG20 levels were strongly correlated with the levels of AST, ALT, total and direct bilirubin among HCC patients (Pearson's r = 0.43, 0.35, 0.34, 0.3; P<0.0001, respectively). Although differences between liver cirrhosis (LC) and non-LC patients were not observed, ISG20 levels were elevated according to the progression of cirrhosis in patients with LC plus HCC (P=0.005). In conclusions, ISG20 levels are induced by HBV infection and significantly associated with progression and clinical outcome of HBV-related liver diseases, especially in patients with HCC. ISG20 might be a potential indicator for liver injury and the clinical outcome in HBV-related HCC.
Collapse
Affiliation(s)
- Hoang Van Tong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Nghiem Xuan Hoan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- 108 Military Central Hospital, Hanoi, Vietnam
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
| | - Mai Thanh Binh
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- 108 Military Central Hospital, Hanoi, Vietnam
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
| | - Dao Thanh Quyen
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- 108 Military Central Hospital, Hanoi, Vietnam
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
| | - Christian G. Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
- Duy Tan University, Da Nang, Vietnam
| | - Le Huu Song
- 108 Military Central Hospital, Hanoi, Vietnam
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
- Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
6
|
Zheng Y, Zheng X, Li S, Zhang H, Liu M, Yang Q, Zhang M, Sun Y, Wu J, Yu B. Identification of key genes and pathways in regulating immune‑induced diseases of dendritic cells by bioinformatic analysis. Mol Med Rep 2018; 17:7585-7594. [PMID: 29620200 PMCID: PMC5983944 DOI: 10.3892/mmr.2018.8834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) serve crucial roles in the activation of the immune response, and imbalance in the activation or inhibition of DCs has been associated with an increased susceptibility to develop immune-induced diseases. However, the molecular mechanisms of regulating immune-induced diseases of DCs are not well understood. The aim of the present study was to identify the gene signatures and uncover the potential regulatory mechanisms in DCs. A total of 4 gene expression profiles (GSE52894, GSE72893, GSE75938 and GSE77969) were integrated and analyzed in depth. In total, 241 upregulated genes and 365 downregulated genes were detected. Gene ontology and pathway enrichment analysis showed that the differentially expressed genes (DEGs) were significantly enriched in the inflammatory response, the tumor necrosis factor (TNF) signaling pathway, the nuclear factor (NF)-κB signaling pathway and antigen processing. The top 10 hub genes were identified from the protein-protein analysis. The most significant 2 modules were filtered from the protein-protein network. The genes in 2 modules were involved in type I interferon signaling, the NF-κB signaling pathway and the TNF signaling pathway. Furthermore, the microRNA-mRNA network analysis was performed. The results of the present study revealed that the identified DEGs and pathways may improve our understanding of the mechanisms of the maturation of DCs, and the candidate hub genes that may be therapeutic targets for immune-induced diseases.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xianghui Zheng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shuang Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hanlu Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Mingyang Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Qingyuan Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Maomao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yong Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jian Wu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
7
|
Interferon-stimulated gene of 20 kDa protein (ISG20) degrades RNA of hepatitis B virus to impede the replication of HBV in vitro and in vivo. Oncotarget 2018; 7:68179-68193. [PMID: 27626689 PMCID: PMC5356548 DOI: 10.18632/oncotarget.11907] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/15/2016] [Indexed: 01/04/2023] Open
Abstract
Hepatitis B virus (HBV) barely induces host interferon (IFN)-stimulated genes (ISGs), which allows efficient HBV replication in the immortalized mouse hepatocytes as per human hepatocytes. Here we found that transfection of Isg20 plasmid robustly inhibits the HBV replication in HBV-infected hepatocytes irrespective of IRF3 or IFN promoter activation. Transfection of Isg20 is thus effective to eradicate HBV in the infected hepatocytes. Transfection of HBV genome or ε-stem of HBV pgRNA (active pgRNA moiety) failed to induce Isg20 in the hepatocytes, while control polyI:C (a viral dsRNA analogue mimic) activated MAVS pathway leading to production of type I IFN and then ISGsg20 via the IFN-α/β receptor (IFNAR). Consistently, addition of IFN-α induced Isg20 and partially suppressed HBV replication in hepatocytes. Chasing HBV RNA, DNA and proteins by blotting indicated that ISG20 expression decreased HBV RNA and replicative DNA in HBV-transfected cells, which resulted in low HBs antigen production and virus titer. The exonuclease domains of ISG20 mainly participated in HBV-RNA decay. In vivo hydrodynamic injection, ISG20 was crucial for suppressing HBV replication without degrading host RNA in the liver. Taken together, ISG20 acts as an innate anti-HBV effector that selectively degrades HBV RNA and blocks replication of infectious HBV particles. ISG20 would be a critical effector for ameliorating chronic HBV infection in the IFN therapy.
Collapse
|
8
|
Liu K, Li Y, Zhou B, Wang F, Huan B, Shao D, Wei J, Qiu Y, Li B, Qian Y, Jung YS, Miao D, Tong G, Ma Z. A conjugate protein containing HIV TAT, ISG20, and a PRRSV polymerase binding inhibits PRRSV replication and may be a novel therapeutic platform. Res Vet Sci 2017; 113:13-20. [PMID: 28818749 DOI: 10.1016/j.rvsc.2017.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS), which is caused by Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection, has caused substantial economic losses for the global swine industry. To date, there are limited commercially available measures to control the spread of PRRSV. The available vaccines are unstable and there is no anti-PRRSV therapeutic available. Therefore, this study designed a novel recombinant antiviral protein that included a novel polypeptide that binds to the PRRSV polymerase (p9), the transduction ability of the HIV TAT, and the nucleotide degradation activity of interferon stimulated gene 20 (ISG20). The recombinant proteins TAT-p9-ISG20 and p9-ISG20 were expressed in MARC-145 cells by transient transfection and then tested for antiviral activity and entry efficiency. The p9-ISG20 construct had greater antiviral activity than either p9 alone (1.37-fold) or ISG20 alone (1.9-fold). Addition of the HIV TAT protein increased the entry efficiency of p9-ISG20 by 1.57-fold, which was associated with increased anti-viral activity (1.52-fold) compared to P9-ISG20. In summary, TAT-p9-ISG20 achieved a synergistic effect by combining three different antiviral proteins and may be a novel PRRSV therapeutic platform.
Collapse
Affiliation(s)
- Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Yuming Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Bin Zhou
- Key Laboratory of Animal Disease Diagnostic & Immunology, Department of Veterinary Medicine College, Nanjing Agricultural University, YiFu 4037, Nanjing, Jiangsu 210095, PR China
| | - Feifei Wang
- Key Laboratory of Animal Disease Diagnostic & Immunology, Department of Veterinary Medicine College, Nanjing Agricultural University, YiFu 4037, Nanjing, Jiangsu 210095, PR China
| | - Beili Huan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Yingjuan Qian
- Key Laboratory of Animal Disease Diagnostic & Immunology, Department of Veterinary Medicine College, Nanjing Agricultural University, YiFu 4037, Nanjing, Jiangsu 210095, PR China
| | - Yong-Sam Jung
- Key Laboratory of Animal Disease Diagnostic & Immunology, Department of Veterinary Medicine College, Nanjing Agricultural University, YiFu 4037, Nanjing, Jiangsu 210095, PR China
| | - Denian Miao
- Shanghai Academy of Agricultural Sciences, PR China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, PR China.
| |
Collapse
|
9
|
Liu Y, Nie H, Mao R, Mitra B, Cai D, Yan R, Guo JT, Block TM, Mechti N, Guo H. Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA. PLoS Pathog 2017; 13:e1006296. [PMID: 28399146 PMCID: PMC5388505 DOI: 10.1371/journal.ppat.1006296] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) replicates its DNA genome through reverse transcription of a viral RNA pregenome. We report herein that the interferon (IFN) stimulated exoribonuclease gene of 20 KD (ISG20) inhibits HBV replication through degradation of HBV RNA. ISG20 expression was observed at basal level and was highly upregulated upon IFN treatment in hepatocytes, and knock down of ISG20 resulted in elevation of HBV replication and attenuation of IFN-mediated antiviral effect. The sequence element conferring the susceptibility of HBV RNA to ISG20-mediated RNA degradation was mapped at the HBV RNA terminal redundant region containing epsilon (ε) stem-loop. Furthermore, ISG20-induced HBV RNA degradation relies on its ribonuclease activity, as the enzymatic inactive form ISG20D94G was unable to promote HBV RNA decay. Interestingly, ISG20D94G retained antiviral activity against HBV DNA replication by preventing pgRNA encapsidation, resulting from a consequence of ISG20-ε interaction. This interaction was further characterized by in vitro electrophoretic mobility shift assay (EMSA) and ISG20 was able to bind HBV ε directly in absence of any other cellular proteins, indicating a direct ε RNA binding capability of ISG20; however, cofactor(s) may be required for ISG20 to efficiently degrade ε. In addition, the lower stem portion of ε is the major ISG20 binding site, and the removal of 4 base pairs from the bottom portion of ε abrogated the sensitivity of HBV RNA to ISG20, suggesting that the specificity of ISG20-ε interaction relies on both RNA structure and sequence. Furthermore, the C-terminal Exonuclease III (ExoIII) domain of ISG20 was determined to be responsible for interacting with ε, as the deletion of ExoIII abolished in vitro ISG20-ε binding and intracellular HBV RNA degradation. Taken together, our study sheds light on the underlying mechanisms of IFN-mediated HBV inhibition and the antiviral mechanism of ISG20 in general. HBV is a DNA virus but replicates its DNA via retrotranscription of a viral RNA pregenome. ISG20, an antiviral RNase induced by interferons, inhibits the replication of many RNA viruses but the underlying molecular antiviral mechanism remains elusive. Since all the known viruses, except for prions, have RNA products in their life cycles, ISG20 can be a broad spectrum antiviral protein; but in order to distinguish viral RNA from host RNA, ISG20 may have evolved to recognize virus-specific signals as its antiviral target. We demonstrated herein that ISG20 selectively binds to a unique stem-loop structure called epsilon (ε) in all HBV RNA species and degrades viral RNA to inhibit HBV replication. Because ε is the HBV pregenomic RNA packaging signal and reverse transcription priming site, the binding of ISG20 to ε, even in the absence of ribonuclease activity, results in antiviral effect to prevent DNA replication due to preventing viral polymerase binding to pgRNA. We also determined the structure and sequence requirements of ε RNA and ISG20 protein for ISG20-ε binding and antiviral activity. Such information will aid the function study of ISG20 against viral pathogens in host innate defense, and ISG20 has potentials to be developed into a therapeutic agent for viral diseases including hepatitis B.
Collapse
Affiliation(s)
- Yuanjie Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Hui Nie
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Richeng Mao
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Bidisha Mitra
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Dawei Cai
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ran Yan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Timothy M. Block
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Nadir Mechti
- CNRS, UMR5235, DIMNP, University of Montpellier 2, Montpellier, France
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
10
|
Zheng Z, Wang L, Pan J. Interferon-stimulated gene 20-kDa protein (ISG20) in infection and disease: Review and outlook. Intractable Rare Dis Res 2017; 6:35-40. [PMID: 28357179 PMCID: PMC5359350 DOI: 10.5582/irdr.2017.01004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interferon-stimulated exonuclease gene 20 (ISG20) is an RNA exonuclease in the yeast RNA exonuclease 4 homolog (REX4) subfamily and the DEDDh exonuclease family, and this gene codes for a 20-kDa protein. Those exonucleases are involved in cleaving single-stranded RNA and DNA. ISG20 is also referred to as HEM45 (HeLa estrogen-modulated, band 45). Expression of ISG20 can be induced or regulated by both type I and II interferons (IFNs) in various cell lines. ISG20 plays a role in mediating interferon's antiviral activities. In addition, ISG20 may be a potential susceptibility biomarker or pharmacological target in some inflammatory conditions. Exonucleases are useful components of many physiological processes. Despite recent advances in our understanding of the functions of ISG20, much work remains to be done with regard to uncovering the mechanism of action of ISG20 in specific diseases and adapting ISG20 for use as a biomarker of disease. This review describes current information on ISG20 and its potential use in marking disease. This review describes several research achievements thus far and it seeks to provide some new ideas for future related research.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Shandong Medicinal Biotechnology Center, Ji'nan, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
- Key Laboratory for Biotech-drugs of the Ministry of Health, Ji'nan, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
| | - Lin Wang
- Shandong Medicinal Biotechnology Center, Ji'nan, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
- Key Laboratory for Biotech-drugs of the Ministry of Health, Ji'nan, China
| | - Jihong Pan
- Shandong Medicinal Biotechnology Center, Ji'nan, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
- Key Laboratory for Biotech-drugs of the Ministry of Health, Ji'nan, China
- Address correspondence to: Dr. Jihong Pan, Shandong Medicinal and Biotechnology Center, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Ji'nan, Shandong 250062, China. E-mail:
| |
Collapse
|
11
|
Oshiumi H, Mifsud EJ, Daito T. Links between recognition and degradation of cytoplasmic viral RNA in innate immune response. Rev Med Virol 2016; 26:90-101. [PMID: 26643446 DOI: 10.1002/rmv.1865] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/21/2015] [Accepted: 11/01/2015] [Indexed: 12/24/2022]
Abstract
Recognition and degradation of viral RNA are essential for antiviral innate immune responses. Cytoplasmic viral RNA is recognized by retinoic acid-inducible gene I (RIG-I)-like receptors, which trigger type I interferon (IFN) production. Secreted type I IFN activates ubiquitously expressed type I IFN receptor and induces IFN-stimulated genes (ISGs). To suppress viral replication, several nucleases degrade viral RNA. RNase L is an ISG with endonuclease activity that degrades viral RNA, producing small RNA that activates RIG-I, resulting in the amplification of type I IFN production. Moreover, recent studies have elucidated novel links between viral RNA recognition and degradation. The RNA exosome is a protein complex that includes nucleases and is essential for host and viral RNA decay. Although the small RNAs produced by the RNA exosome do not activate RIG-I, several accessory factors of the RNA exosome promote RIG-I activation. Zinc-finger antiviral protein (ZAP) is an accessory factor that recognizes viral RNA and promotes viral RNA degradation via the RNA exosome. ZAPS is an alternative splicing form of ZAP and promotes RIG-I oligomerization and ATPase activity, resulting in RIG-I activation. DDX60 is another cofactor involved in the viral RNA degradation via the RNA exosome. The DDX60 protein promotes RIG-I signaling in a cell-type specific manner. These observations imply that viral RNA degradation and recognition are linked to each other. In this review, I discuss the links between recognition and degradation of viral RNA.
Collapse
Affiliation(s)
- Hiroyuki Oshiumi
- Laboratory for Biologics Development, Research Center for Zoonosis Control, GI-CoRE Global Station for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Edin J Mifsud
- Laboratory for Biologics Development, Research Center for Zoonosis Control, GI-CoRE Global Station for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takuji Daito
- Laboratory for Biologics Development, Research Center for Zoonosis Control, GI-CoRE Global Station for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|