1
|
Ergünay K, Polat C, Özkul A. Vector-borne viruses in Turkey: A systematic review and bibliography. Antiviral Res 2020; 183:104934. [PMID: 32949637 DOI: 10.1016/j.antiviral.2020.104934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/25/2022]
Abstract
Turkey serves as a natural hub for the dissemination of vector-borne viruses and provides many suitable habitats with diverse ecologies for introduction and establishment of new pathogens. This manuscript provides an updated systematic review and meta-analysis of the vector-borne viruses documented in Turkey. Following web-based identification, screening and eligibility evaluation, 291 published reports were reviewed. The publications were categorized and listed as a supplementary bibliography accompanying the manuscript. In brief, Crimean-Congo hemorrhagic fever virus (CCHFV) and West Nile virus (WNV) are currently documented as prominent tick and mosquito-borne viral pathogens in Turkey. CCHFV produces a significant number of infections annually, with severe outcome or death in a portion of cases. WNV gained attention following the clustering of cases in 2010. Exposure and infections with sandfly-borne phleboviruses, such as Toscana virus, are indigenous and widespread. Epidemiology, risk factors, symptomatic infections in susceptible hosts, vectors and reservoirs for these pathogens have been explored in detail. Detection of novel viruses in mosquitoes, sandflies and ticks from several regions is of particular interest, despite scarce information on their epidemiology and pathogenicity in vertebrates. Introduction and emergence of viruses transmitted by invasive Aedes mosquitoes constitute a threat, albeit only imported infections have so far been documented. Detection of Rift valley fever virus exposure is also of concern, due to its detrimental effects on livestock and spillover infections in humans. Vigilance to identify and diagnose probable cases as well as vector surveillance for established and potential pathogens is therefore, imperative.
Collapse
Affiliation(s)
- Koray Ergünay
- Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Ankara, 06100, Turkey.
| | - Ceylan Polat
- Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Ankara, 06100, Turkey
| | - Aykut Özkul
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Ankara, 06110, Turkey
| |
Collapse
|
2
|
Jiménez de Oya N, Esler WP, Huard K, El-Kattan AF, Karamanlidis G, Blázquez AB, Ramos-Ibeas P, Escribano-Romero E, Louloudes-Lázaro A, Casas J, Sobrino F, Hoehn K, James DE, Gutiérrez-Adán A, Saiz JC, Martín-Acebes MA. Targeting host metabolism by inhibition of acetyl-Coenzyme A carboxylase reduces flavivirus infection in mouse models. Emerg Microbes Infect 2019; 8:624-636. [PMID: 30999821 PMCID: PMC6493301 DOI: 10.1080/22221751.2019.1604084] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Flaviviruses are (re)-emerging RNA viruses strictly dependent on lipid metabolism for infection. In the search for host targeting antivirals, we explored the effect of pharmacological modulation of fatty acid metabolism during flavivirus infection. Considering the central role of acetyl-Coenzyme A carboxylase (ACC) on fatty acid metabolism, we analyzed the effect of three small-molecule ACC inhibitors (PF-05175157, PF-05206574, and PF-06256254) on the infection of medically relevant flaviviruses, namely West Nile virus (WNV), dengue virus, and Zika virus. Treatment with these compounds inhibited the multiplication of the three viruses in cultured cells. PF-05175157 induced a reduction of the viral load in serum and kidney in WNV-infected mice, unveiling its therapeutic potential for the treatment of chronic kidney disease associated with persistent WNV infection. This study constitutes a proof of concept of the reliability of ACC inhibitors to become viable antiviral candidates. These results support the repositioning of metabolic inhibitors as broad-spectrum antivirals.
Collapse
Affiliation(s)
- Nereida Jiménez de Oya
- a Department of Biotechnology , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - William P Esler
- b Worldwide Research and Development Pfizer , Cambridge , MA , USA
| | - Kim Huard
- b Worldwide Research and Development Pfizer , Cambridge , MA , USA
| | | | - Georgios Karamanlidis
- b Worldwide Research and Development Pfizer , Cambridge , MA , USA.,h Present address: Cardiometabolic Disorders Amgen Discovery Research , Thousand Oaks , California 91320 , USA
| | - Ana-Belén Blázquez
- a Department of Biotechnology , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | | | - Estela Escribano-Romero
- a Department of Biotechnology , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - Andrés Louloudes-Lázaro
- a Department of Biotechnology , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - Josefina Casas
- d Department of Biomedicinal Chemistry , Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) and CIBEREHD , Barcelona , Spain
| | - Francisco Sobrino
- e Department of Virology and Microbiology , Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) , Madrid , Spain
| | - Kyle Hoehn
- f School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney , Australia
| | - David E James
- g Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School , University of Sydney , Australia
| | | | - Juan-Carlos Saiz
- a Department of Biotechnology , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - Miguel A Martín-Acebes
- a Department of Biotechnology , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| |
Collapse
|
3
|
Niedrig M, Patel P, El Wahed AA, Schädler R, Yactayo S. Find the right sample: A study on the versatility of saliva and urine samples for the diagnosis of emerging viruses. BMC Infect Dis 2018; 18:707. [PMID: 30594124 PMCID: PMC6311079 DOI: 10.1186/s12879-018-3611-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/10/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The emergence of different viral infections during the last decades like dengue, West Nile, SARS, chikungunya, MERS-CoV, Ebola, Zika and Yellow Fever raised some questions on quickness and reliability of laboratory diagnostic tests for verification of suspected cases. Since sampling of blood requires medically trained personal and comprises some risks for the patient as well as for the health care personal, the sampling by non-invasive methods (e.g. saliva and/ or urine) might be a very valuable alternative for investigating a diseased patient. MAIN BODY To analyse the usefulness of alternative non-invasive samples for the diagnosis of emerging infectious viral diseases, a literature search was performed on PubMed for alternative sampling for these viral infections. In total, 711 papers of potential relevance were found, of which we have included 128 in this review. CONCLUSIONS Considering the experience using non-invasive sampling for the diagnostic of emerging viral diseases, it seems important to perform an investigation using alternative samples for routine diagnostics. Moreover, during an outbreak situation, evaluation of appropriate sampling and further processing for laboratory analysis on various diagnostic platforms are very crucial. This will help to achieve optimal diagnostic results for a good and reliable case identification.
Collapse
Affiliation(s)
| | | | - Ahmed Abd El Wahed
- Division of Microbiology and Animal Hygiene, University of Goettingen, Goettingen, Germany
| | | | - Sergio Yactayo
- Control of Epidemic Diseases (CED), World Health Organization, Geneva, Switzerland
| |
Collapse
|
4
|
Murray KO, Kolodziej S, Ronca SE, Gorchakov R, Navarro P, Nolan MS, Podoll A, Finkel K, Mandayam S. Visualization of West Nile Virus in Urine Sediment using Electron Microscopy and Immunogold up to Nine Years Postinfection. Am J Trop Med Hyg 2017; 97:1913-1919. [PMID: 29141749 DOI: 10.4269/ajtmh.17-0405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
West Nile virus (WNV) is an important emerging flavivirus in North America. Experimental studies in animals infer the development of persistent infection in the kidneys. In humans, recent studies suggest the possibility of persistent renal infection and chronic kidney disease. Considering the discrepancies between published studies on viral RNA detection in urine of convalescing WNV-positive patients, we explored the use of electron microscopy (EM) with anti-WNV E protein antibody immunogold labeling to detect virus in the urine sediment from a subset of study participants in the Houston WNV cohort. In 42% of evaluated study participants had visible sediment present in urine after centrifugation; viral particles consistent with the size and morphology of WNV were successfully detected using EM in the urine sediment up to 9 years postinfection. The anti-WNV immunogold labeling bound to virus envelope in the sediment allowed for enhanced detection when compared with PCR and provide a new technique for understanding kidney disease in WNV patients. These results provide further evidence of persistent infection in at least a subset of individuals infected with WNV. These findings present a novel tool to diagnose persistent WNV infection and its possible link with progressive renal pathology.
Collapse
Affiliation(s)
- Kristy O Murray
- Baylor College of Medicine and Texas Children's Hospital, Department of Pediatrics, Section of Pediatric Tropical Medicine, National School of Tropical Medicine, Houston, Texas
| | - Steven Kolodziej
- The University of Texas Health Science Center, Medical School, Houston, Texas
| | - Shannon E Ronca
- Baylor College of Medicine and Texas Children's Hospital, Department of Pediatrics, Section of Pediatric Tropical Medicine, National School of Tropical Medicine, Houston, Texas
| | - Rodion Gorchakov
- Baylor College of Medicine and Texas Children's Hospital, Department of Pediatrics, Section of Pediatric Tropical Medicine, National School of Tropical Medicine, Houston, Texas
| | - Patricia Navarro
- The University of Texas Health Science Center, Medical School, Houston, Texas
| | - Melissa S Nolan
- Baylor College of Medicine and Texas Children's Hospital, Department of Pediatrics, Section of Pediatric Tropical Medicine, National School of Tropical Medicine, Houston, Texas
| | - Amber Podoll
- The University of Texas Health Science Center, Medical School, Houston, Texas
| | - Kevin Finkel
- The University of Texas Health Science Center, Medical School, Houston, Texas
| | | |
Collapse
|
5
|
Yamshchikov V, Manuvakhova M, Rodriguez E, Hébert C. Development of a human live attenuated West Nile infectious DNA vaccine: Identification of a minimal mutation set conferring the attenuation level acceptable for a human vaccine. Virology 2016; 500:122-129. [PMID: 27816638 DOI: 10.1016/j.virol.2016.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 10/20/2022]
Abstract
For the development of a human West Nile (WN) infectious DNA (iDNA) vaccine, we created highly attenuated chimeric virus W1806 with the serological identity of highly virulent WN-NY99. Earlier, we attempted to utilize mutations found in the E protein of the SA14-14-2 vaccine to bring safety of W1806 to the level acceptable for human use (Yamshchikov et al., 2016). Here, we analyzed effects of the SA14-14-2 changes on growth properties and neurovirulence of W1806. A set including the E138K, K279M, K439R and G447D changes was identified as the perspective subset for satisfying the target safety profile without compromising immunogenicity of the vaccine candidate. The genetic stability of the attenuated phenotype was found to be unsatisfactory being dependent on a subset of attenuating changes incorporated in W1806. Elucidation of underlying mechanisms influencing selection of pathways for restoration of the envelope protein functionality will facilitate resolution of the emerged genetic stability issue.
Collapse
Affiliation(s)
| | | | - Efrain Rodriguez
- 2000 9th Avenue South, Southern Research, Birmingham, AL 35205, USA
| | - Charles Hébert
- 2000 9th Avenue South, Southern Research, Birmingham, AL 35205, USA
| |
Collapse
|