1
|
Kafeero HM, Ndagire D, Ocama P, Kato CD, Wampande E, Walusansa A, Kajumbula H, Kateete D, Ssenku JE, Sendagire H. Mapping hepatitis B virus genotypes on the African continent from 1997 to 2021: a systematic review with meta-analysis. Sci Rep 2023; 13:5723. [PMID: 37029173 PMCID: PMC10082212 DOI: 10.1038/s41598-023-32865-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Hepatitis B virus (HBV) has ten genotypes (A-J) and over 40 sub-genotypes based on the divergence of ≥ 8% and 4 to < 8% in the complete genome respectively. These genotypes and sub-genotypes influence the disease prognosis, response to therapy and route of viral transmission. Besides, infection with mixed genotypes and recombinant genotypes has also been reported. This study aimed at mapping the de novo genotypes and correlate them with the immigration trends in order to inform future research on the underlying reasons for the relative distribution of HBV genotypes from a large sample size pooled from many primary studies. Data was extracted from 59 full research articles obtained from Scopus, PubMed, EMBASE, Willy library, African Journal Online (AJOL) and Google Scholar. Studies that investigated the genotypes, sub-genotypes, mixed genotypes and recombinant were included. The Z-test and regression were used for the analysis. The study protocol is registered with PROSPERO under the registration number CRD42022300220. Overall, genotype E had the highest pooled prevalence significantly higher than all the other genotypes (P < 0.001). By region, genotype A posted the highest pooled prevalence in eastern and southern Africa, E in west Africa and D in north Africa (P < 0.0001). Regarding the emerging genotypes B and C on the African continent, genotype B was significantly higher in south Africa than C (P < 0.001). In contrast, genotype C was significantly higher in east Africa than west Africa (P < 0.0001). The A1 and D/E were the most diverse sub-genotypes and genotype mixtures respectively. Finally, we observed a general progressive decrease in the prevalence of predominant genotypes but a progressive increase in the less dominant by region. Historical and recent continental and intercontinental migrations can provide a plausible explanation for the HBV genotype distribution pattern on the African continent.
Collapse
Affiliation(s)
- Hussein Mukasa Kafeero
- Department of Medical Microbiology, College of Health Sciences, Makerere University, P. O Box 7062, Kampala, Uganda.
- Department of Medical Microbiology, Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda, P. O Box 7689, Kampala, Uganda.
| | - Dorothy Ndagire
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Ponsiano Ocama
- Department of Medicine, College of Health Sciences, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Charles Drago Kato
- Department of Biomolecular Resources and Biolab Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Eddie Wampande
- Department of Biomolecular Resources and Biolab Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Abdul Walusansa
- Department of Medical Microbiology, Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda, P. O Box 7689, Kampala, Uganda
| | - Henry Kajumbula
- Department of Medical Microbiology, College of Health Sciences, Makerere University, P. O Box 7062, Kampala, Uganda
| | - David Kateete
- Department of Molecular Biology and Immunology, College of Health Sciences, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Jamilu E Ssenku
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Hakim Sendagire
- Department of Medical Microbiology, College of Health Sciences, Makerere University, P. O Box 7062, Kampala, Uganda
- Department of Medical Microbiology, Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda, P. O Box 7689, Kampala, Uganda
| |
Collapse
|
2
|
Cheng XD, Xu HF, Wei F, Jiang LX, Zhou HZ. The genotype analysis of the hepatitis C virus in Heilongjiang Province, China. Medicine (Baltimore) 2021; 100:e25203. [PMID: 33950918 PMCID: PMC8104223 DOI: 10.1097/md.0000000000025203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/25/2021] [Indexed: 01/04/2023] Open
Abstract
Introduction: Hepatitis C virus (HCV) infection is a major public health issue. HCV genotype identification is clinically important to tailor the dosage and duration of treatment, and recombination in intra-patient populations of HCV may lead to the generation of escape mutants, as previously observed for other RNA viruses. Up to now, there is no study assessing HCV genotypes and subtypes in Heilongjiang Province, China.Methods: To determine genotype and phylogenetic analysis of HCV in Heilongjiang Province is crucial. In this study, we amplified 3 genome regions (5'UTR, E1, and NS5B) of 30 HCV patients in Heilongjiang Province, amplified products were analyzed by bioinformatics.Results: We found that 23 specimens had concordant subtypes in the 3 gene regions (2a and 1b), 7 HCV patients were considered the recombinants, the recombination pattern of the 7 HCV patients in the 5'UTR, E1, and NS5B region as followed: 1b/2a/1b, 2a/2a/1b, 1b/2a/2a, 1b/2a/1b, 1b/2a/1b, 1b/2a/1b, 2a/2a/1b.Conclusions: The findings in the present study showed that a higher recombination rate (23%) than other researches, and the recombination of 2a/1b in the 5'UTR, E1, and NS5B region was only found in the present study up to now.
Collapse
Affiliation(s)
- Xue-Di Cheng
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Hua-Feng Xu
- Department of Laboratory Diagnosis, Heilongjiang Provincial Hospital
| | - Feng Wei
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Li-Xin Jiang
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | - Hai-Zhou Zhou
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| |
Collapse
|
3
|
A novel hepatitis B virus recombinant genotype D4/E identified in a South African population. Heliyon 2019; 5:e01477. [PMID: 31008405 PMCID: PMC6453802 DOI: 10.1016/j.heliyon.2019.e01477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/08/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
Background Genetic diversity is a characteristic trait of the hepatitis B virus (HBV) and has been associated with different clinical outcomes. In South Africa, HBV infection is a major public health concern. Most HBV infections are caused by genotype A strains. However rare cases of infection with HBV genotype D have been reported. The purpose of this study was to investigate the molecular characteristics of a rare HBV subgenotype D4 isolate. Methods The full-length genome of isolate ZADGM6964 was amplified in a one-step polymerase chain reaction. The amplified product was purified and cloned into a pGEM®-T Easy Vector System to investigate the genetic diversity of the viral quasi-populations. The primary isolate and clones were then directly sequenced and analysed using an array of bioinformatics software. Results Phylogenetic analysis showed that the primary isolate and cloned sequences formed a monophyletic cluster away from subgenotype D4 reference strains. Further recombination analysis revealed that isolate ZADGM6964 was in fact a D4/E recombinant strain with breakpoints identified within the X and overlapping pre-Core/Core open reading frames with a >70% bootstrap confidence level. The recombinant genotype D4/E was found to be unique from other D/E strains archived in the genetic database, GenBank. Conclusion This study represents the first ever report on the isolation and molecular characterization of an HBV D4/E recombinant strain in South Africa. The findings provide evidence of further HBV genetic diversity in South Africa than has been previously reported.
Collapse
|
4
|
Mokaya J, McNaughton AL, Hadley MJ, Beloukas A, Geretti AM, Goedhals D, Matthews PC. A systematic review of hepatitis B virus (HBV) drug and vaccine escape mutations in Africa: A call for urgent action. PLoS Negl Trop Dis 2018; 12:e0006629. [PMID: 30080852 PMCID: PMC6095632 DOI: 10.1371/journal.pntd.0006629] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/16/2018] [Accepted: 06/22/2018] [Indexed: 12/14/2022] Open
Abstract
International sustainable development goals for the elimination of viral hepatitis as a public health problem by 2030 highlight the pressing need to optimize strategies for prevention, diagnosis and treatment. Selected or transmitted resistance associated mutations (RAMs) and vaccine escape mutations (VEMs) in hepatitis B virus (HBV) may reduce the success of existing treatment and prevention strategies. These issues are particularly pertinent for many settings in Africa where there is high HBV prevalence and co-endemic HIV infection, but lack of robust epidemiological data and limited education, diagnostics and clinical care. The prevalence, distribution and impact of RAMs and VEMs in these populations are neglected in the current literature. We therefore set out to assimilate data for sub-Saharan Africa through a systematic literature review and analysis of published sequence data, and present these in an on-line database (https://livedataoxford.shinyapps.io/1510659619-3Xkoe2NKkKJ7Drg/). The majority of the data were from HIV/HBV coinfected cohorts. The commonest RAM was rtM204I/V, either alone or in combination with associated mutations, and identified in both reportedly treatment-naïve and treatment-experienced adults. We also identified the suite of mutations rtM204V/I + rtL180M + rtV173L, that has been associated with vaccine escape, in over 1/3 of cohorts. Although tenofovir has a high genetic barrier to resistance, it is of concern that emerging data suggest polymorphisms that may be associated with resistance, although the precise clinical impact of these is unknown. Overall, there is an urgent need for improved diagnostic screening, enhanced laboratory assessment of HBV before and during therapy, and sustained roll out of tenofovir in preference to lamivudine alone. Further data are needed in order to inform population and individual approaches to HBV diagnosis, monitoring and therapy in these highly vulnerable settings.
Collapse
Affiliation(s)
- Jolynne Mokaya
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anna L. McNaughton
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Martin J. Hadley
- Oxford University Academic IT Department, Oxford, United Kingdom
| | - Apostolos Beloukas
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Anna-Maria Geretti
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Dominique Goedhals
- Division of Virology, University of the Free State/National Health Laboratory Service, Bloemfontein, Republic of South Africa
| | - Philippa C. Matthews
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Microbiology and Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| |
Collapse
|
5
|
Gencay M, Hübner K, Gohl P, Seffner A, Weizenegger M, Neofytos D, Batrla R, Woeste A, Kim HS, Westergaard G, Reinsch C, Brill E, Thu Thuy PT, Hoang BH, Sonderup M, Spearman CW, Pabinger S, Gautier J, Brancaccio G, Fasano M, Santantonio T, Gaeta GB, Nauck M, Kaminski WE. Ultra-deep sequencing reveals high prevalence and broad structural diversity of hepatitis B surface antigen mutations in a global population. PLoS One 2017; 12:e0172101. [PMID: 28472040 PMCID: PMC5417417 DOI: 10.1371/journal.pone.0172101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
The diversity of the hepatitis B surface antigen (HBsAg) has a significant impact on the performance of diagnostic screening tests and the clinical outcome of hepatitis B infection. Neutralizing or diagnostic antibodies against the HBsAg are directed towards its highly conserved major hydrophilic region (MHR), in particular towards its “a” determinant subdomain. Here, we explored, on a global scale, the genetic diversity of the HBsAg MHR in a large, multi-ethnic cohort of randomly selected subjects with HBV infection from four continents. A total of 1553 HBsAg positive blood samples of subjects originating from 20 different countries across Africa, America, Asia and central Europe were characterized for amino acid variation in the MHR. Using highly sensitive ultra-deep sequencing, we found 72.8% of the successfully sequenced subjects (n = 1391) demonstrated amino acid sequence variation in the HBsAg MHR. This indicates that the global variation frequency in the HBsAg MHR is threefold higher than previously reported. The majority of the amino acid mutations were found in the HBV genotypes B (28.9%) and C (25.4%). Collectively, we identified 345 distinct amino acid mutations in the MHR. Among these, we report 62 previously unknown mutations, which extends the worldwide pool of currently known HBsAg MHR mutations by 22%. Importantly, topological analysis identified the “a” determinant upstream flanking region as the structurally most diverse subdomain of the HBsAg MHR. The highest prevalence of “a” determinant region mutations was observed in subjects from Asia, followed by the African, American and European cohorts, respectively. Finally, we found that more than half (59.3%) of all HBV subjects investigated carried multiple MHR mutations. Together, this worldwide ultra-deep sequencing based genotyping study reveals that the global prevalence and structural complexity of variation in the hepatitis B surface antigen have, to date, been significantly underappreciated.
Collapse
Affiliation(s)
- Mikael Gencay
- Roche Diagnostics International Ltd, Rotkreuz, Switzerland
| | - Kirsten Hübner
- Bioscientia Institute for Medical Diagnostics, Ingelheim, Germany
| | - Peter Gohl
- Bioscientia Institute for Medical Diagnostics, Ingelheim, Germany
| | - Anja Seffner
- Department of Molecular Genetics and Microbiology, MVZ Labor Dr. Limbach & Kollegen GbR, Heidelberg, Germany
| | - Michael Weizenegger
- Department of Molecular Genetics and Microbiology, MVZ Labor Dr. Limbach & Kollegen GbR, Heidelberg, Germany
| | | | - Richard Batrla
- Roche Diagnostics International Ltd, Rotkreuz, Switzerland
| | | | - Hyon-suk Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, South Korea
| | | | | | - Eva Brill
- Bioscientia Institute for Medical Diagnostics, Ingelheim, Germany
| | - Pham Thi Thu Thuy
- Hepatology Department, Medic Medical Center, Ho Chi Minh City, Vietnam
| | - Bui Huu Hoang
- Gastroenterology Department, Ho Chi Minh City University Medical Center, Ho Chi Minh City, Vietnam
| | - Mark Sonderup
- Division of Hepatology and Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - C. Wendy Spearman
- Division of Hepatology and Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Stephan Pabinger
- AIT Austrian Institute of Technology, Health and Environment Department, Molecular Diagnostics, Vienna, Austria
| | | | - Giuseppina Brancaccio
- Infectious Diseases and Viral Hepatitis Unit, Second University of Naples, Naples, Italy
| | - Massimo Fasano
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Teresa Santantonio
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giovanni B. Gaeta
- Infectious Diseases and Viral Hepatitis Unit, Second University of Naples, Naples, Italy
| | - Markus Nauck
- Bioscientia Institute for Medical Diagnostics, Ingelheim, Germany
- * E-mail: (WEK); (MN)
| | - Wolfgang E. Kaminski
- Bioscientia Institute for Medical Diagnostics, Ingelheim, Germany
- * E-mail: (WEK); (MN)
| |
Collapse
|