1
|
Ze L, Shaohui S, Jinhai H, Hui G. Evaluation of the cross-protection of the Vero cell-derived attenuated influenza vaccines with compound adjuvant, through intranasal immunization. APMIS 2024; 132:741-753. [PMID: 38961516 DOI: 10.1111/apm.13448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/03/2024] [Indexed: 07/05/2024]
Abstract
This study was to evaluate the sufficient safety and effect of the novel influenza vaccine program. It prepared new reassortant influenza virus, with high yield on Vero cells. According to the plaque counting, one dose LAIV was composed with 105 PFU of H1, H3, BY, and BV, respectively. Then mixed this LAIV with compound adjuvant, containing 500 μg/mL of carbopol971P and 50 μg/mL of tetanus toxin. That vaccination was called catt-flu. And it employed the GYZZ02 vaccine (commercialized freeze-dried LAIV, listed in China) as cohort analysis control. All mice received two doses of the vaccine, administered on days 0 and 14, respectively. That catt-flu program could induce more cross-protection with neutralizing antibody against heterogeneous types of influenza virus, not only based on HA but also NA protective antigen, through convenient nasal immunization, which had non-inferiority titter compared with the chicken embryo-derived GYZZ02 vaccine on safe and effect. The Vero cell-derived vaccine (LAIV) combined compound catt adjuvant (contain carbopol971P and tetanus toxin) could provide another safety and protective program of influenza vaccine by intranasal administration, as catt-flu program.
Collapse
Affiliation(s)
- Liu Ze
- School of Life Sciences, Tianjin University, Tianjin, China
- The Zhongyi Anke Biotech Co., Ltd, Tianjin, China
| | - Song Shaohui
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, Yunnan, China
| | - Huang Jinhai
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Gao Hui
- The Zhongyi Anke Biotech Co., Ltd, Tianjin, China
| |
Collapse
|
2
|
Chen PL, Tzeng TT, Hu AYC, Wang LHC, Lee MS. Development and Evaluation of Vero Cell-Derived Master Donor Viruses for Influenza Pandemic Preparedness. Vaccines (Basel) 2020; 8:vaccines8040626. [PMID: 33113866 PMCID: PMC7712210 DOI: 10.3390/vaccines8040626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
The embryonated egg-based platform currently produces the majority of seasonal influenza vaccines by employing a well-developed master donor virus (MDV, A/PR/8/34 (PR8)) to generate high-growth reassortants (HGRs) for A/H1N1 and A/H3N2 subtypes. Although the egg-based platform can supply enough seasonal influenza vaccines, it cannot meet surging demands during influenza pandemics. Therefore, multi-purpose platforms are desirable for pandemic preparedness. The Vero cell-based production platform is widely used for human vaccines and could be a potential multi-purpose platform for pandemic influenza vaccines. However, many wild-type and egg-derived influenza viruses cannot grow efficiently in Vero cells. Therefore, it is critical to develop Vero cell-derived high-growth MDVs for pandemic preparedness. In this study, we evaluated two in-house MDVs (Vero-15 and VB5) and two external MDVs (PR8 and PR8-HY) to generate Vero cell-derived HGRs for five avian influenza viruses (AIVs) with pandemic potentials (H5N1 clade 2.3.4, H5N1 clade 2.3.2.1, American-lineage H5N2, H7N9 first wave and H7N9 fifth wave). Overall, no single MDV could generate HGRs for all five AIVs, but this goal could be achieved by employing two in-house MDVs (vB5 and Vero-15). In immunization studies, mice received two doses of Vero cell-derived inactivated H5N1 and H7N9 whole virus antigens adjuvanted with alum and developed robust antibody responses.
Collapse
Affiliation(s)
- Po-Ling Chen
- National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan; (P.-L.C.); (T.-T.T.); (A.Y.-C.H.)
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300044, Taiwan;
| | - Tsai-Teng Tzeng
- National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan; (P.-L.C.); (T.-T.T.); (A.Y.-C.H.)
| | - Alan Yung-Chih Hu
- National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan; (P.-L.C.); (T.-T.T.); (A.Y.-C.H.)
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300044, Taiwan;
| | - Min-Shi Lee
- National Institution of Infectious Diseases and Vaccinology, National Health Research Institutes (NHRI), Zhunan, Miaoli 35053, Taiwan; (P.-L.C.); (T.-T.T.); (A.Y.-C.H.)
- Correspondence: ; Tel.: +886-37-206-166
| |
Collapse
|
3
|
Liu Z, Geng X, Cui Z, Li W, Ou X, Liao G. Construction and identification of influenza plasmid pool imparting high yields to candidate vaccine viruses in Vero cell at low temperature. J Cell Mol Med 2020; 24:11198-11210. [PMID: 32902192 PMCID: PMC7576294 DOI: 10.1111/jcmm.15672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 11/28/2022] Open
Abstract
We generated plasmid pools for the rapid preparation of candidate vaccine strains, which could grow in the Vero cells at low temperature. Firstly, we cloned in the pHW2000 plasmid each of the eight gene segments (PB2, PB1, PA, hemagglutinin [HA], neuraminidase [NA], NS, NP, M) of two master donor strains (MDS), respectively, A/Yunnan/1/2005Vca(H3N2) and B/Yunnan/2/2005Vca(By), which had Vca phenotype (cold‐adapted phenotype in Vero cells). Secondly, the similar operation was implemented with each of the HA, NA and NP segments of circulating strains with epidemic potential (parental strains). The virus rescue techniques were employed in this study, according to the homology rate of HA segments between MDS and parental strains. Then, we harvested amount of new Vca virus strains. By transmission electron microscope, it could observe new viruses' diameter and length were from 100 to 120 nm. Importantly, these reassortant viruses could get high‐yield production in Vero cells at 25℃ from the beginning to the fourth generation, which was significantly differ from their original parental viruses. Additional, these production 16 new Vca strains could maintain enough antibody binding capacity and attenuation phenotype, which consisted with their MDS. So these plasmid pools constructed by mount of different influenza A and B virus gene fragments could present desired working performance and provide convenience and realization for more Vca reassortant virus as candidate vaccine strain if needing.
Collapse
Affiliation(s)
- Ze Liu
- The Fifth Department of Biological products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, Yunnan Province, China
| | - Xingliang Geng
- The Fifth Department of Biological products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, Yunnan Province, China
| | - Zhaohai Cui
- The Fifth Department of Biological products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, Yunnan Province, China
| | - Weidong Li
- The Department of Production Administration, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, Yunnan Province, China
| | - Xia Ou
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Guoyang Liao
- The Fifth Department of Biological products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, Yunnan Province, China
| |
Collapse
|
4
|
Yang J, Lin Y, Jiang L, Xi J, Wang X, Guan J, Chen J, Pan Y, Luo J, Ye C, Sun Q. Comparison analysis of microRNAs in response to dengue virus type 2 infection between the Vero cell-adapted strain and its source, the clinical C6/36 isolated strain. Virus Res 2018; 250:65-74. [PMID: 29660363 DOI: 10.1016/j.virusres.2018.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
Abstract
To elucidate the differences in microRNAs during dengue virus infection between Vero cell-adapted strain (DENV-2-Vero) and its source, the clinical C6/36 isolated strain (DENV-2-C6/36), a comparison analysis was performed in Vero cells by high throughput sequencing. The results showed that the expression of 16 known and 3 novel miRNAs exhibited marked differences. 5 known miRNAs were up-regulated in DENV-2-C6/36 group, while 11 known microRNAs were down-regulated in DENV-2-Vero group. The GO enrichment and KEGG pathway analysis showed that there was a distinct difference in regulating viral replication between two strains. In DENV-2-Vero infection group, significantly enriched GO terms included virion attachment to host cells, viral structural protein/genome processing and packaging. Meanwhile, the regulation of cell death and apoptosis between two groups were different in the early stage of infection. KEGG enrichment analysis showed that DENV-2-C6/36 infection induced more intense regulation of immune-related pathways, including Fc gamma R-mediated phagocytosis, etc. DENV-2-Vero infection could partially alleviate the immune defense of Vero cells compared with DENV-2-C6/36. The results indicated that the distinct microRNA changes induced by two DENV-2 strains may be partly related to their infective abilities. Our data provide useful insights that help elucidate the host-pathogen interactions following DENV infection.
Collapse
Affiliation(s)
- Jiajia Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming 650118, PR China
| | - Yao Lin
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming 650118, PR China
| | - Liming Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming 650118, PR China
| | - Juemin Xi
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming 650118, PR China
| | - Xiaodan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming 650118, PR China
| | - Jiaoqiong Guan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming 650118, PR China
| | - Junying Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming 650118, PR China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming 650118, PR China
| | - Jia Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Kunming Medical University, Kunming 650500, PR China
| | - Chao Ye
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Kunming Medical University, Kunming 650500, PR China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming 650118, PR China; Yunnan Key Laboratory of Vector-Borne Infectious Disease, Kunming 650118, PR China.
| |
Collapse
|
5
|
Yang F, Ma L, Zhou J, Wu Y, Gao J, Song S, Geng X, Guo Q, Li Z, Li W, Liao G, Li Y. Development and identification of a new Vero cell-based live attenuated influenza B vaccine by a modified classical reassortment method. Expert Rev Vaccines 2017; 16:855-863. [PMID: 28581345 DOI: 10.1080/14760584.2017.1337514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND It was to generate a new Vero and cold-adapted live attenuated influenza B vaccine with enough safety and immunogenicity. METHODS According to modified classical reassortment method, the donor strain was B/Yunnan/2/2005Vca(B), and the parental virus strain was B/Brisbane/60/2008wt. After co-infection in Vero cells, the prepared antibody serum inhibited the donor strain growth, and screening conditions inhibited the parental virus growth, which induced the growth of the new reassortant virus B/Brisbane/60/2008Vca(B) grow. Through intraperitoneal injection (i.j.) and intranasal injection (n.j.) we evaluated the safety and immunogenicity of the vaccine. RESULTS A high-yield of the reassortant virus was produced in Vero cells at 25°C, similar to the donor strains. After sequencing, it was found that B/Brisbane/60/2008Vca(B) Hemagglutinin (HA) and Neuraminidase (NA) gene fragments were from B/Brisbane/60/2008wt, while the other 6 gene fragments were from B/Yunnan/2/2005Vca(B). The n.j. immune pathway experiments showed no significant differences between the treatment and the PBS control group with respect to weight changes (P > 0.5). Furthermore, the new strain had a sufficient geometric mean titter (GMT) against B/Brisbane/60/2008wt. CONCLUSION The new reassortant live attenuated influenza B vaccine was safe and having enough immune stimulating ability.
Collapse
Affiliation(s)
- Fan Yang
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China.,b Medical Faculty , Kunming University of Science and Technology , Kunming , People's Republic of China
| | - Lei Ma
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Jian Zhou
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Yinjie Wu
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Jingxia Gao
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Shaohui Song
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Xingliang Geng
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Qi Guo
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Zhuofan Li
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Weidong Li
- c The Department of Production Administration, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Guoyang Liao
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Yufeng Li
- d Department of Cardiology , Chinese PLA General Hospital , Beijing , People's Republic of China
| |
Collapse
|