1
|
Katona M, Jeles K, Takács P, Csoma E. Prevalence and in vitro study of human polyomavirus 9. Sci Rep 2024; 14:29313. [PMID: 39592793 PMCID: PMC11599758 DOI: 10.1038/s41598-024-80806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
Little is known about human polyomavirus 9 (HPyV9). The mode of transmission and the site of replication are unknown, and seroprevalence data have been published with a wide range. A total of 1038 serum samples from individuals aged 0.7-93 years were used for seroprevalence study. We observed that seropositivity increased with age among children and young adults, and a 36.2% adult seroprevalence was detected. The prevalence was examined in samples from the respiratory tract: cancerous and non-cancerous lung tissues, tonsils, adenoids, throat swabs, middle ear discharge and nasopharyngeal samples collected from children and adults. HPyV9 was detected in 5.2% of nasopharyngeal samples and 1% of tonsils. Upon a viral infection, the interaction of viral promoters and cellular factors may determine whether a virus productively replicates in a cell. The early and late promoter activity of HPyV9 and the effect of the large T antigen (LTAg) on it was investigated in respiratory, kidney, endothelial and colon cell lines, fibroblast and primary airway epithelial cells. The highest promoter activity was measured in A549 lung cell line. LTAg expression significantly increased the late promoter activity. Based on our results, the respiratory cells may be suitable for HPyV9 replication.
Collapse
Grants
- FK 128533 National Research, Development and Innovation Office
- FK 128533 National Research, Development and Innovation Office
- FK 128533 National Research, Development and Innovation Office
- TKP2021-EGA-19 National Research, Development and Innovation Fund of Hungary, financed under the TKP2021-EGA funding scheme
- TKP2021-EGA-19 National Research, Development and Innovation Fund of Hungary, financed under the TKP2021-EGA funding scheme
- TKP2021-EGA-19 National Research, Development and Innovation Fund of Hungary, financed under the TKP2021-EGA funding scheme
- ÚNKP-23-4-I-DE-178 New National Excellence Program of The Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund
- BO/00212/18/5 János Bolyai Research Scholarship from the Hungarian Academy of Sciences
Collapse
Affiliation(s)
- Melinda Katona
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, 4032, Hungary
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Krisztina Jeles
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, 4032, Hungary
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Péter Takács
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kuno u. 3, Tihany, 8237, Hungary
| | - Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary.
| |
Collapse
|
2
|
Razizadeh MH, Tabibzadeh A. Human polyomavirus 9 as a potential threat in kidney transplant recipients; lessons from BKPyV. Transpl Immunol 2023; 80:101894. [PMID: 37414266 DOI: 10.1016/j.trim.2023.101894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
As a therapeutic method, kidney transplantation significantly improved the life quality and prognosis of patients with the end-stage renal disease. Since a key element in stable kidney transplantation is continuous therapy with immunosuppressive agents, an inhibited immune response makes patients vulnerable to opportunistic viral and bacterial infections. Polyomavirus (PyV), from the Polyomaviridae family, includes a well-known BK virus (BKPyV) and less publicized human polyomavirus 9 (HPyV9). Both these viruses may inflict significant damage to kidney transplants because of their high prevalence and pathogenesis. While a great body of knowledge was accumulated about the BKPyV-caused nephropathy, much less information is about the potential threat from the HPyV9-caused damage to kidney transplants. The current review provides a glimpse of general information about the PyV-associated nephropathy with a special focus on the role of the HPyV9 in pathogenesis of nephropathy in kidney transplants.
Collapse
Affiliation(s)
| | - Alireza Tabibzadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
van Rijn AL, Roos R, Dekker FW, Rotmans JI, Feltkamp M. Torque teno virus load as marker of rejection and infection in solid organ transplantation - A systematic review and meta-analysis. Rev Med Virol 2023; 33:e2393. [PMID: 36056751 PMCID: PMC10078304 DOI: 10.1002/rmv.2393] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 01/28/2023]
Abstract
Balancing immunosuppression to prevent rejection in solid organ transplant (SOT) recipients remains challenging. Torque teno virus (TTV), a commensal non-pathogenic virus, has been proposed as marker of functional immunity: higher loads correspond to over-immunosuppression, and lower loads to under-immunosuppression. This review offers an overview of the current evidence of the association between TTV-load and infection and rejection after SOT. A systematic literature search strategy, deposited in the PROSPERO registry, resulted in 548 records. After screening, 23 original and peer-reviewed articles were assessed investigating the association between TTV-load, infection and/or rejection in SOT. The Quality in Prognostic Studies (QUIPS)-tool was used to assess the risk of bias. Meta-analysis with random-effects was performed on results with similar outcomes and exposure measures. Most of the included studies involved retrospective cohorts in which the TTV-load was measured longitudinally, within the first 2 years post-transplantation. Infection outcomes differed between studies and included viral, bacterial, parasitic and fungal infections. Rejection was defined by biopsy confirmation or initiation of rejection treatment. Twelve out of 16 studies reported an association between high TTV-load and infections, whereas 13 out of 15 reported an association between low TTV-load and rejection. Meta-analysis showed an increased risk of infection (OR: 1.16, 95% CI: 1.03-1.32; HR: 1.05, 95% CI: 0.97-1.14) and a decreased risk of rejection (OR: 0.90, 95% CI: 0.87-0.94; HR: 0.74, 95% CI: 0.71-0.76) per 1 log TTV-load increase. The qualitative assessment showed varying risks of bias in the included studies. This systematic review and meta-analysis indicates that blood TTV-load measured within the first 2 years after SOT is associated with the risk of infection or allograft rejection, although substantial risk of bias in the studies included warrant cautious interpretation. The results in this review provide a rationale for larger, prospective, studies into TTV as marker of infection and rejection after SOT.
Collapse
Affiliation(s)
- A L van Rijn
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - R Roos
- Department of Internal Medicine, HagaZiekenhuis, The Hague, The Netherlands
| | - F W Dekker
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - J I Rotmans
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - McW Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Fan Y, Guo D, Zhao S, Wei Q, Li Y, Lin T. Human genes with relative synonymous codon usage analogous to that of polyomaviruses are involved in the mechanism of polyomavirus nephropathy. Front Cell Infect Microbiol 2022; 12:992201. [PMID: 36159639 PMCID: PMC9492876 DOI: 10.3389/fcimb.2022.992201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
Human polyomaviruses (HPyVs) can cause serious and deleterious infections in human. Yet, the molecular mechanism underlying these infections, particularly in polyomavirus nephropathy (PVAN), is not well-defined. In the present study, we aimed to identify human genes with codon usage bias (CUB) similar to that of HPyV genes and explore their potential involvement in the pathogenesis of PVAN. The relative synonymous codon usage (RSCU) values of genes of HPyVs and those of human genes were computed and used for Pearson correlation analysis. The involvement of the identified correlation genes in PVAN was analyzed by validating their differential expression in publicly available transcriptomics data. Functional enrichment was performed to uncover the role of sets of genes. The RSCU analysis indicated that the A- and T-ending codons are preferentially used in HPyV genes. In total, 5400 human genes were correlated to the HPyV genes. The protein-protein interaction (PPI) network indicated strong interactions between these proteins. Gene expression analysis indicated that 229 of these genes were consistently and differentially expressed between normal kidney tissues and kidney tissues from PVAN patients. Functional enrichment analysis indicated that these genes were involved in biological processes related to transcription and in pathways related to protein ubiquitination pathway, apoptosis, cellular response to stress, inflammation and immune system. The identified genes may serve as diagnostic biomarkers and potential therapeutic targets for HPyV associated diseases, especially PVAN.
Collapse
Affiliation(s)
- Yu Fan
- Department of Urology, National Clinical Research Center for Geriatrics and Organ Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
| | - Duan Guo
- Department of Palliative Medicine, West China School of Public Health and West China fourth Hospital, Sichuan University, Chengdu, China
- Palliative Medicine Research Center, West China−Peking Union Medical College, Chen Zhiqian (PUMC C.C). Chen Institute of Health, Sichuan University, Chengdu, China
| | - Shangping Zhao
- Department of Urology, West China School of Nursing and Organ Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, National Clinical Research Center for Geriatrics and Organ Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Tao Lin, ; ; Yi Li,
| | - Tao Lin
- Department of Urology, National Clinical Research Center for Geriatrics and Organ Transplantation Center, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Tao Lin, ; ; Yi Li,
| |
Collapse
|
5
|
van Rijn AL, Wunderink HF, Sidorov IA, de Brouwer CS, Kroes AC, Putter H, de Vries AP, Rotmans JI, Feltkamp MC. Torque teno virus loads after kidney transplantation predict allograft rejection but not viral infection. J Clin Virol 2021; 140:104871. [PMID: 34089977 DOI: 10.1016/j.jcv.2021.104871] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
The main challenge of immunosuppressive therapy after solid organ transplantation is to create a new immunological balance that prevents organ rejection and does not promote opportunistic infection. Torque teno virus (TTV), a ubiquitous and non-pathogenic single-stranded DNA virus, has been proposed as a marker of functional immunity in immunocompromised patients. Here we investigate whether TTV loads predict the risk of common viral infection and allograft rejection in kidney transplantation recipients. In a retrospective cohort of 389 kidney transplantation recipients, individual TTV loads in were measured by qPCR in consecutive plasma samples during one year follow-up. The endpoints were allograft rejection, BK polyomavirus (BKPyV) viremia and cytomegalovirus (CMV) viremia. Repeated TTV measurements and rejection and infection survival data were analysed in a joint model. During follow-up, TTV DNA detection in the transplant recipients increased from 85 to 100%. The median viral load increased to 107 genome copies/ml within three months after transplantation. Rejection, BKPyV viremia and CMV viremia occurred in 23%, 27% and 17% of the patients, respectively. With every 10-fold TTV load-increase, the risk of rejection decreased considerably (HR: 0.74, CI 95%: 0.71-0.76), while the risk of BKPyV and CMV viremia remained the same (HR: 1.03, CI 95%: 1.03-1.04 and HR: 1.01, CI 95%: 1.01-1.01). In conclusion, TTV load kinetics predict allograft rejection in kidney transplantation recipients, but not the BKPyV and CMV infection. The potential use of TTV load levels as a guide for optimal immunosuppressive drug dosage to prevent allograft rejection deserves further validation.
Collapse
Affiliation(s)
- Aline L van Rijn
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Herman F Wunderink
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Igor A Sidorov
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Caroline S de Brouwer
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Aloysius Cm Kroes
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hein Putter
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Aiko Pj de Vries
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Mariet Cw Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
6
|
Narayanan D, Rady PL, Tyring SK. Recent developments in trichodysplasia spinulosa disease. Transpl Infect Dis 2020; 22:e13434. [PMID: 32748541 DOI: 10.1111/tid.13434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022]
Abstract
Trichodysplasia Spinulosa (TS) is a rare proliferative skin disease that occurs primarily in immunocompromised patients, specifically organ transplant recipients. TS is characterized by uncontrolled inner root sheath cell proliferation and folliculocentric papular eruption that can progress to disfiguring leonine facies when left untreated. TS presents with distinct histological features including the presence of large eosinophilic, trichohyaline granules within hyperproliferating inner root sheath cells of the hair bulb. The discovery of the Trichodysplasia Spinulosa Polyomavirus (TSPyV) and recent studies highlighting the role of TSPyV tumor antigens in cell proliferation pathways have provided new insight into the mechanisms of TS development. In this review, we discuss the expansion of our understanding of TS, specifically over the past 5 years. We summarize novel cases of TS and recent developments in the mechanisms underlying TSPyV-mediated disease progression. We also evaluate advancements in diagnostic methods and treatment options. As the incidence of TS continues to rise, it is becoming critical for clinicians to understand the clinical features of TS and emerging research regarding pathogenesis and therapeutics for early treatment of this potentially disfiguring disease.
Collapse
Affiliation(s)
- Deepika Narayanan
- Department of Dermatology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Peter L Rady
- Department of Dermatology, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Stephen K Tyring
- Department of Dermatology, The University of Texas McGovern Medical School, Houston, TX, USA
| |
Collapse
|
7
|
Wang Y, Strassl R, Helanterä I, Aberle SW, Bond G, Hedman K, Weseslindtner L. Multiplex analysis of Human Polyomavirus diversity in kidney transplant recipients with BK virus replication. J Clin Virol 2019; 120:6-11. [DOI: 10.1016/j.jcv.2019.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
|
8
|
van Rijn AL, Wunderink HF, de Brouwer CS, van der Meijden E, Rotmans JI, Feltkamp MCW. Impact of HPyV9 and TSPyV coinfection on the development of BK polyomavirus viremia and associated nephropathy after kidney transplantation. J Med Virol 2019; 91:1142-1147. [PMID: 30624811 PMCID: PMC6590353 DOI: 10.1002/jmv.25397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/16/2018] [Accepted: 12/09/2018] [Indexed: 11/12/2022]
Abstract
Background BK polyomavirus (BKPyV) persistently infects the urinary tract and causes viremia and nephropathy in kidney transplantation (KTx), recipients. In a previous study, we observed an increased incidence and load of BKPyV viremia in KTx patients coinfected with human polyomavirus 9 (HPyV9). Here we sought confirmation of this observation and explored whether novel HPyVs that have been detected in urine (HPyV9 and trichodysplasia spinulosa polyomavirus [TSPyV]) potentially aggravate BKPyV infection. Methods A well‐characterized cohort of 209 KTx donor‐recipient pairs was serologically and molecularly analyzed for HPyV9 and TSPyV coinfection. These data were correlated with the occurrence of BKPyV viremia and BKPyVAN in the recipients within a year after KTx. Results Seropositivity for HPyV9 (19%) and TSPyV (89%) was comparable between donors and recipients and did not correlate with BKPyV viremia and BKPyVAN that developed in 25% and 3% of the recipients, respectively. Two recipients developed TSPyV viremia and none HPyV9 viremia. Modification of the predictive effect of donor BKPyV seroreactivity on recipient BKPyV viremia by HPyV9 and TSPyV was not observed. Conclusions Our data provide no evidence for a promoting effect of HPyV9 and TSPyV on BKPyV infection and BKPyVAN in renal allograft patients. Therefore, we do not recommend including HPyV9 and TSPyV screening in KTx patients.
Collapse
Affiliation(s)
- Aline L van Rijn
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Herman F Wunderink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline S de Brouwer
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariet C W Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|