1
|
Ważny Ł, Whiteside TL, Pietrowska M. Oncoviral Infections and Small Extracellular Vesicles. Viruses 2024; 16:1291. [PMID: 39205265 PMCID: PMC11359865 DOI: 10.3390/v16081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Small extracellular vesicles (sEV) are small membrane-bound nanovesicles with a size range below 200 nm that are released by all types of cells. sEV carry a diverse cargo of proteins, lipids, glycans, and nucleic acids that mimic the content of producer cells. sEV mediate intercellular communication and play a key role in a broad variety of physiological and pathological conditions. Recently, numerous reports have emerged examining the role of sEV in viral infections. A significant number of similarities in the sEV biogenesis pathways and the replication cycles of viruses suggest that sEV might influence the course of viral infections in diverse ways. Besides directly modulating virus propagation by transporting the viral cargo (complete virions, proteins, RNA, and DNA), sEV can also modify the host antiviral response and increase the susceptibility of cells to infection. The network of mutual interactions is particularly complex in the case of oncogenic viruses, deserving special consideration because of its significance in cancer progression. This review summarizes the current knowledge of interactions between sEV and oncogenic viruses, focusing on sEV abilities to modulate the carcinogenic properties of oncoviruses.
Collapse
Affiliation(s)
- Łukasz Ważny
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| | - Theresa L. Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| |
Collapse
|
2
|
Chen J, Zhao Y, Cheng J, Wang H, Pan S, Liu Y. The Antiviral Potential of Perilla frutescens: Advances and Perspectives. Molecules 2024; 29:3328. [PMID: 39064906 PMCID: PMC11279397 DOI: 10.3390/molecules29143328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Viruses pose a significant threat to human health, causing widespread diseases and impacting the global economy. Perilla frutescens, a traditional medicine and food homologous plant, is well known for its antiviral properties. This systematic review examines the antiviral potential of Perilla frutescens, including its antiviral activity, chemical structure and pharmacological parameters. Utilizing bioinformatics analysis, we revealed the correlation between Perilla frutescens and antiviral activity, identified overlaps between Perilla frutescens target genes and virus-related genes, and explored related signaling pathways. Moreover, a classified summary of the active components of Perilla frutescens, focusing on compounds associated with antiviral activity, provides important clues for optimizing the antiviral drug development of Perilla frutescens. Our findings indicate that Perilla frutescens showed a strong antiviral effect, and its active ingredients can effectively inhibit the replication and spread of a variety of viruses in this review. The antiviral mechanisms of Perilla frutescens may involve several pathways, including enhanced immune function, modulation of inflammatory responses, and inhibition of key enzyme activities such as viral replicase. These results underscore the potential antiviral application of Perilla frutescens as a natural plant and provide important implications for the development of new antiviral drugs.
Collapse
Affiliation(s)
- Jing Chen
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Yi Zhao
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Jie Cheng
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Haoran Wang
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| | - Shu Pan
- Computer Science School, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
| | - Yuwei Liu
- Department of Bioinformatics and Intelligent Diagnosis, School of Medicine, Jiangsu University, Zhenjiang 212003, China; (J.C.); (Y.Z.); (J.C.); (H.W.)
| |
Collapse
|
3
|
Gong H, Zhang S, Dou J, Chen J. Is human herpesvirus 8 infection more common in men than in women? an updated meta-analysis. BMC Infect Dis 2024; 24:454. [PMID: 38684967 PMCID: PMC11059601 DOI: 10.1186/s12879-024-09346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Clinically, most patients with Kaposi's sarcoma (KS) are male, and several direct and indirect mechanisms may underlie this increased susceptibility in men, Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is considered to be the primary etiological agent responsible for KS. Thus, we propose the hypothesis that men are more susceptible to HHV-8 infection, leading to a higher incidence of Kaposi's sarcoma among males. A meta-analysis was conducted to evaluate the association between gender and HHV-8 seropositivity in the general population. METHODS A comprehensive literature search was performed using 6 online databases: PubMed, EMBASE, Cochrane library, Web of Science, CNKI, and Wanfang. Studies published before March 15, 2023, were included. RESULTS In all, 33 articles including 41 studies were included in the meta-analysis. In the included adult population. men had a higher risk of HHV-8 infection than did women in adult populations from all over the world (odds ratio [OR]: 1.08, 95% confidence interval [CI]: 1.01-1.15), but no differences were found in child population from all over the world (OR: 0.90, 95% CI: 0.79-1.01). There was a significant difference in HHV-8 seroprevalence between men and women in sub-Saharan Africa (SSA) adult population (OR: 1.15, 95% CI: 1.05-1.26). However, no significant differences were observed in sub-Saharan Africa (SSA) child population (OR: 0.90, 95%CI 0.78-1.03). As for other continents, the results showed no significant difference, such as the Asian population (OR: 1.03, 95%CI: 0.92-1.16). or the European and American populations (OR 1.01, 95%CI 0.87-1.17). CONCLUSION There was a slight gender disparity for HHV-8 infection in the adult population. Among the adult populations from SSA and globally, men were more likely to be infected with HHV-8 than were women. However, no statistical significance was observed in the child populations from SSA and globally. In the future, the inclusion of more standardized studies may strengthen the results of this study.
Collapse
Affiliation(s)
- Haibo Gong
- Department of Dermatology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Zhengzhou, Henan, 450003, China.
| | - Shuai Zhang
- Department of Dermatology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Zhengzhou, Henan, 450003, China
| | - Jinfa Dou
- Department of Dermatology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Zhengzhou, Henan, 450003, China
| | - Jing Chen
- Department of Dermatology, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Zhengzhou, Henan, 450003, China
| |
Collapse
|
4
|
Yarahmadi A, Zare M, Aghayari M, Afkhami H, Jafari GA. Therapeutic bacteria and viruses to combat cancer: double-edged sword in cancer therapy: new insights for future. Cell Commun Signal 2024; 22:239. [PMID: 38654309 PMCID: PMC11040964 DOI: 10.1186/s12964-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Cancer, ranked as the second leading cause of mortality worldwide, leads to the death of approximately seven million people annually, establishing itself as one of the most significant health challenges globally. The discovery and identification of new anti-cancer drugs that kill or inactivate cancer cells without harming normal and healthy cells and reduce adverse effects on the immune system is a potential challenge in medicine and a fundamental goal in Many studies. Therapeutic bacteria and viruses have become a dual-faceted instrument in cancer therapy. They provide a promising avenue for cancer treatment, but at the same time, they also create significant obstacles and complications that contribute to cancer growth and development. This review article explores the role of bacteria and viruses in cancer treatment, examining their potential benefits and drawbacks. By amalgamating established knowledge and perspectives, this review offers an in-depth examination of the present research landscape within this domain and identifies avenues for future investigation.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mitra Zare
- Department of Microbiology, Faculty of Sciences, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Masoomeh Aghayari
- Department of Microbiology, Faculty of Sciences, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Gholam Ali Jafari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
5
|
Owliaee I, Khaledian M, Boroujeni AK, Shojaeian A. Engineered small extracellular vesicles as a novel platform to suppress human oncovirus-associated cancers. Infect Agent Cancer 2023; 18:69. [PMID: 37915098 PMCID: PMC10621078 DOI: 10.1186/s13027-023-00549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Cancer, as a complex, heterogeneous disease, is currently affecting millions of people worldwide. Even if the most common traditional treatments, namely, chemotherapy (CTx) and radiotherapy (RTx), have been so far effective in some conditions, there is still a dire need for novel, innovative approaches to treat types of cancer. In this context, oncoviruses are responsible for 12% of all malignancies, such as human papillomavirus (HPV), Merkel cell polyomavirus (MCPyV), Epstein-Barr virus (EBV), human herpesvirus 8 (HHV-8), as well as hepatitis B virus (HBV) and hepatitis C virus (HCV), and the poorest in the world also account for 80% of all human cancer cases. Against this background, nanomedicine has developed nano-based drug delivery systems (DDS) to meet the demand for drug delivery vectors, e.g., extracellular vesicles (EVs). This review article aimed to explore the potential of engineered small EVs (sEVs) in suppressing human oncovirus-associated cancers. METHODS Our search was conducted for published research between 2000 and 2022 using several international databases, including Scopus, PubMed, Web of Science, and Google Scholar. We also reviewed additional evidence from relevant published articles. RESULTS In this line, the findings revealed that EV engineering as a new field is witnessing the development of novel sEV-based structures, and it is expected to be advanced in the future. EVs may be further exploited in specialized applications as therapeutic or diagnostic tools. The techniques of biotechnology have been additionally utilized to create synthetic bilayers based on the physical and chemical properties of parent molecules via a top-down strategy for downsizing complicated, big particles into nano-sized sEVs. CONCLUSION As the final point, EV-mediated treatments are less toxic to the body than the most conventional ones, making them a safer and even more effective option. Although many in vitro studies have so far tested the efficacy of sEVs, further research is still needed to develop their potential in animal and clinical trials to reap the therapeutic benefits of this promising platform.
Collapse
Affiliation(s)
- Iman Owliaee
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehran Khaledian
- Department of Medical Entomology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Khaghani Boroujeni
- Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
6
|
The Functions of TRIM56 in Antiviral Innate Immunity and Tumorigenesis. Int J Mol Sci 2023; 24:ijms24055046. [PMID: 36902478 PMCID: PMC10003129 DOI: 10.3390/ijms24055046] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
As a member of the TRIM (tripartite motif) protein family, TRIM56 can function as an E3 ubiquitin ligase. In addition, TRIM56 has been shown to possess deubiquitinase activity and the ability to bind RNA. This adds to the complexity of the regulatory mechanism of TRIM56. TRIM56 was initially found to be able to regulate the innate immune response. In recent years, its role in direct antiviral and tumor development has also attracted the interest of researchers, but there is no systematic review on TRIM56. Here, we first summarize the structural features and expression of TRIM56. Then, we review the functions of TRIM56 in TLR and cGAS-STING pathways of innate immune response, the mechanisms and structural specificity of TRIM56 against different types of viruses, and the dual roles of TRIM56 in tumorigenesis. Finally, we discuss the future research directions regarding TRIM56.
Collapse
|
7
|
Singh RK, Bose D, Robertson ES. Epigenetic Reprogramming of Kaposi's Sarcoma-Associated Herpesvirus during Hypoxic Reactivation. Cancers (Basel) 2022; 14:5396. [PMID: 36358814 PMCID: PMC9654037 DOI: 10.3390/cancers14215396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 09/05/2023] Open
Abstract
The biphasic life cycle (latent and lytic) of Kaposi's sarcoma-associated Herpesvirus (KSHV) is regulated by epigenetic modification of its genome and its associated histone proteins. The temporal events driving epigenetic reprogramming of the KSHV genome on initial infection to establish latency has been well studied, but the reversal of these epigenetic changes during lytic replication, especially under physiological conditions such as hypoxia, has not been explored. In this study, we investigated epigenetic reprogramming of the KSHV genome during hypoxic reactivation. Hypoxia induced extensive enrichment of both transcriptional activators and repressors on the KSHV genome through H3K4Me3, H3K9Me3, and H3K27Me3, as well as histone acetylation (H3Ac) modifications. In contrast to uniform quantitative enrichment with modified histones, a distinct pattern of RTA and LANA enrichment was observed on the KSHV genome. The enrichment of modified histone proteins was due to their overall higher expression levels, which was exclusively seen in KSHV-positive cells. Multiple KSHV-encoded factors such as LANA, RTA, and vGPCR are involved in the upregulation of these modified histones. Analysis of ChIP-sequencing for the initiator DNA polymerase (DNAPol1α) combined with single molecule analysis of replicated DNA (SMARD) demonstrated the involvement of specific KSHV genomic regions that initiate replication in hypoxia.
Collapse
Affiliation(s)
| | | | - Erle S. Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|