1
|
Kutumbetov L, Myrzakhmetova B, Tussipova A, Zhapparova G, Tlenchiyeva T, Bissenbayeva K, Zhapar K, Zhugunissov K, Nurabayev S, Kerimbayev A. Safety and Immunogenicity of the Live Attenuated Vaccine QazCOVID-Live Against Coronavirus Infection COVID-19: Pre-Clinical Study Results. Vaccines (Basel) 2024; 12:1401. [PMID: 39772061 PMCID: PMC11728456 DOI: 10.3390/vaccines12121401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
The research conducted in this preclinical study assesses QazCovid-live, a live attenuated COVID-19 vaccine created in Kazakhstan, by conducting preclinical evaluations of safety, immunogenicity, and allergenicity in various animal models, including mice, rats, hamsters, and guinea pigs. The vaccine, developed by attenuating SARS-CoV-2 via numerous Vero cell passages, had no significant adverse effects in acute and subacute toxicity assessments, even at elevated dosages. Allergenicity testing indicated the absence of both immediate and delayed hypersensitivity reactions. Immunogenicity evaluations revealed strong virus-neutralizing antibody responses, especially following intranasal and intratracheal delivery. Studies on reversibility and transmission further validated the vaccine's stability and non-pathogenicity. The data indicate that QazCovid-live is safe, immunogenic, and prepared for clinical trials, presenting a potential strategy for COVID-19 prevention.
Collapse
Affiliation(s)
| | - Balzhan Myrzakhmetova
- Research Institute for Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan; (L.K.); (A.T.); (G.Z.); (T.T.); (K.B.); (K.Z.); (K.Z.); (S.N.); (A.K.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Zeng Z, Geng X, Wen X, Chen Y, Zhu Y, Dong Z, Hao L, Wang T, Yang J, Zhang R, Zheng K, Sun Z, Zhang Y. Novel receptor, mutation, vaccine, and establishment of coping mode for SARS-CoV-2: current status and future. Front Microbiol 2023; 14:1232453. [PMID: 37645223 PMCID: PMC10461067 DOI: 10.3389/fmicb.2023.1232453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023] Open
Abstract
Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its resultant pneumonia in December 2019, the cumulative number of infected people worldwide has exceeded 670 million, with over 6.8 million deaths. Despite the marketing of multiple series of vaccines and the implementation of strict prevention and control measures in many countries, the spread and prevalence of SARS-CoV-2 have not been completely and effectively controlled. The latest research shows that in addition to angiotensin converting enzyme II (ACE2), dozens of protein molecules, including AXL, can act as host receptors for SARS-CoV-2 infecting human cells, and virus mutation and immune evasion never seem to stop. To sum up, this review summarizes and organizes the latest relevant literature, comprehensively reviews the genome characteristics of SARS-CoV-2 as well as receptor-based pathogenesis (including ACE2 and other new receptors), mutation and immune evasion, vaccine development and other aspects, and proposes a series of prevention and treatment opinions. It is expected to provide a theoretical basis for an in-depth understanding of the pathogenic mechanism of SARS-CoV-2 along with a research basis and new ideas for the diagnosis and classification, of COVID-19-related disease and for drug and vaccine research and development.
Collapse
Affiliation(s)
- Zhaomu Zeng
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- Department of Neurosurgery, Xiangya Hospital Jiangxi Hospital of Central South University, National Regional Medical Center for Nervous System Diseases, Nanchang, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Xiuchao Geng
- Department of Nursing, School of Medicine, Taizhou University, Taizhou, China
| | - Xichao Wen
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Yixi Zhu
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zishu Dong
- Department of Zoology, Advanced Research Institute, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Liangchao Hao
- Department of Plastic Surgery, Shaoxing People’s Hospital, Shaoxing, China
| | - Tingting Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Jifeng Yang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Ruobing Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Yuhao Zhang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
3
|
Saadh MJ, Ghadimkhani T, Soltani N, Abbassioun A, Daniel Cosme Pecho R, Taha A, Jwad Kazem T, Yasamineh S, Gholizadeh O. Progress and prospects on vaccine development against monkeypox infection. Microb Pathog 2023; 180:106156. [PMID: 37201635 PMCID: PMC10186953 DOI: 10.1016/j.micpath.2023.106156] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The monkeypox virus (MPOX) is an uncommon zoonotic illness brought on by an orthopoxvirus (OPXV). MPOX can occur with symptoms similar to smallpox. Since April 25, 2023, 110 nations have reported 87,113 confirmed cases and 111 fatalities. Moreover, the outspread prevalence of MPOX in Africa and a current outbreak of MPOX in the U.S. have made it clear that naturally occurring zoonotic OPXV infections remain a public health concern. Existing vaccines, though they provide cross-protection to MPOX, are not specific for the causative virus, and their effectiveness in the light of the current multi-country outbreak is still to be verified. Furthermore, as a sequel of the eradication and cessation of smallpox vaccination for four decades, MPOX found a possibility to re-emerge, but with distinct characteristics. The World Health Organization (WHO) suggested that nations use affordable MPOX vaccines within a framework of coordinated clinical effectiveness and safety evaluations. Vaccines administered in the smallpox control program and conferred immunity against MPOX. Currently, vaccines approved by WHO for use against MPOX are replicating (ACAM2000), low replicating (LC16m8), and non-replicating (MVA-BN). Although vaccines are accessible, investigations have demonstrated that smallpox vaccination is approximately 85% efficient in inhibiting MPOX. In addition, developing new vaccine methods against MPOX can help prevent this infection. To recognize the most efficient vaccine, it is essential to assess effects, including reactogenicity, safety, cytotoxicity effect, and vaccine-associated side effects, especially for high-risk and vulnerable people. Recently, several orthopoxvirus vaccines have been produced and are being evaluated. Hence, this review aims to provide an overview of the efforts dedicated to several types of vaccine candidates with different strategies for MPOX, including inactivated, live-attenuated, virus-like particles (VLPs), recombinant protein, nucleic acid, and nanoparticle-based vaccines, which are being developed and launched.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | | | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Arian Abbassioun
- Department of Virology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Ali Taha
- Medical Technical College, Al-Farahidi University, Iraq
| | - Tareq Jwad Kazem
- Scientific Affairs Department, Al-Mustaqbal University, 51001, Hillah, Babylon, Iraq
| | - Saman Yasamineh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Gholizadeh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Pacheco-García U, Serafín-López J. Indirect Dispersion of SARS-CoV-2 Live-Attenuated Vaccine and Its Contribution to Herd Immunity. Vaccines (Basel) 2023; 11:655. [PMID: 36992239 PMCID: PMC10055900 DOI: 10.3390/vaccines11030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
It has been 34 months since the beginning of the SARS-CoV-2 coronavirus pandemic, which causes the COVID-19 disease. In several countries, immunization has reached a proportion near what is required to reach herd immunity. Nevertheless, infections and re-infections have been observed even in vaccinated persons. That is because protection conferred by vaccines is not entirely effective against new virus variants. It is unknown how often booster vaccines will be necessary to maintain a good level of protective immunity. Furthermore, many individuals refuse vaccination, and in developing countries, a large proportion of the population has not yet been vaccinated. Some live-attenuated vaccines against SARS-CoV-2 are being developed. Here, we analyze the indirect dispersion of a live-attenuated virus from vaccinated individuals to their contacts and the contribution that this phenomenon could have to reaching Herd Immunity.
Collapse
Affiliation(s)
- Ursino Pacheco-García
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Jeanet Serafín-López
- Department of Immunology, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico
| |
Collapse
|
5
|
Chavda VP, Jogi G, Dave S, Patel BM, Vineela Nalla L, Koradia K. mRNA-Based Vaccine for COVID-19: They Are New but Not Unknown! Vaccines (Basel) 2023; 11:507. [PMID: 36992091 PMCID: PMC10052021 DOI: 10.3390/vaccines11030507] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
mRNA vaccines take advantage of the mechanism that our cells use to produce proteins. Our cells produce proteins based on the knowledge contained in our DNA; each gene encodes a unique protein. The genetic information is essential, but cells cannot use it until mRNA molecules convert it into instructions for producing specific proteins. mRNA vaccinations provide ready-to-use mRNA instructions for constructing a specific protein. BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) both are newly approved mRNA-based COVID-19 vaccines that have shown excellent protection and efficacy. In total, there are five more mRNA-based vaccine candidates for COVID-19 under different phases of clinical development. This review is specifically focused on mRNA-based vaccines for COVID-19 covering its development, mechanism, and clinical aspects.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India
| | - Gargi Jogi
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India
| | - Srusti Dave
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Bhoomika M. Patel
- School of Medico-legal Studies, National Forensic Sciences University, Gandhinagar 382007, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India
| | - Krishna Koradia
- Department of Pharmaceutics, Saurashtra University, Rajkot 360005, India
| |
Collapse
|
6
|
Faizuloev E, Gracheva A, Korchevaya E, Smirnova D, Samoilikov R, Pankratov A, Trunova G, Khokhlova V, Ammour Y, Petrusha O, Poromov A, Leneva I, Svitich O, Zverev V. Cold-adapted SARS-CoV-2 variants with different temperature sensitivity exhibit an attenuated phenotype and confer protective immunity. Vaccine 2023; 41:892-902. [PMID: 36528447 PMCID: PMC9744683 DOI: 10.1016/j.vaccine.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
As novel SARS-CoV-2 Variants of Concern emerge, the efficacy of existing vaccines against COVID-19 is declining. A possible solution to this problem lies in the development of a live attenuated vaccine potentially able of providing cross-protective activity against a wide range of SARS-CoV-2 antigenic variants. Cold-adapted (ca) SARS-CoV-2 variants, Dubrovka-ca-B4 (D-B4) and Dubrovka-ca-D2 (D-D2), were obtained after long-term passaging of the Dubrovka (D) strain in Vero cells at reduced temperatures. Virulence, immunogenicity, and protective activity of SARS-CoV-2 variants were evaluated in experiments on intranasal infection of Syrian golden hamsters (Mesocricetus auratus). In animal model infecting with ca variants, the absence of body weight loss, the significantly lower viral titer and viral RNA concentration in animal tissues, the less pronounced inflammatory lesions in animal lungs as compared with the D strain indicated the reduced virulence of the virus variant. Single intranasal immunization with D-B4 and D-D2 variants induced the production of neutralizing antibodies in hamsters and protected them from infection with the D strain and the development of severe pneumonia. It was shown that for ca SARS-CoV-2 variants, the temperature-sensitive (ts) phenotype was not obligate for virulence reduction. Indeed, the D-B4 variant, which did not possess the ts phenotype but had lost the ability to infect human lung cells Calu-3, exhibited reduced virulence in hamsters. Consequently, the potential phenotypic markers of attenuation of ca SARS-CoV-2 variants are the ca phenotype, the ts phenotype, and the change in species specificity of the virus. This study demonstrates the great potential of SARS-CoV-2 cold adaptation as a strategy to develop a live attenuated COVID-19 vaccine.
Collapse
Affiliation(s)
- Evgeny Faizuloev
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia; Russian Medical Academy of Continuous Professional Education, Moscow, Russia.
| | | | | | - Daria Smirnova
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | - Roman Samoilikov
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | - Andrey Pankratov
- FSBI NMRRC of the Ministry of Health of the Russian Federation, P.A. Hertsen Moscow Oncology Research Institute, Moscow, Russia
| | - Galina Trunova
- FSBI NMRRC of the Ministry of Health of the Russian Federation, P.A. Hertsen Moscow Oncology Research Institute, Moscow, Russia
| | - Varvara Khokhlova
- FSBI NMRRC of the Ministry of Health of the Russian Federation, P.A. Hertsen Moscow Oncology Research Institute, Moscow, Russia
| | - Yulia Ammour
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | - Olga Petrusha
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | - Artem Poromov
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia,Peoples' Friendship University of Russia, Department of Biochemistry, Moscow, Russia
| | - Irina Leneva
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | - Oxana Svitich
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia,I.M. Sechenov First Moscow State Medical University (Sechenov University), F.F. Erisman Institute of Public Health, Moscow, Russia
| | - Vitaly Zverev
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia,I.M. Sechenov First Moscow State Medical University (Sechenov University), F.F. Erisman Institute of Public Health, Moscow, Russia
| |
Collapse
|
7
|
Chen JM, Ji YF, Duan ZJ, Wei B. Editorial: Zoonotic emerging viral infectious diseases. Front Vet Sci 2023; 10:1194324. [PMID: 37113559 PMCID: PMC10128908 DOI: 10.3389/fvets.2023.1194324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Affiliation(s)
- Ji-Ming Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
- *Correspondence: Ji-Ming Chen
| | - Yu-Fei Ji
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhao-Jun Duan
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bin Wei
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
8
|
Abdoli M, Shafaati M, Ghamsari LK, Abdoli A. Intranasal administration of cold-adapted live-attenuated SARS-CoV-2 candidate vaccine confers protection against SARS-CoV-2. Virus Res 2022; 319:198857. [PMID: 35820511 PMCID: PMC9270963 DOI: 10.1016/j.virusres.2022.198857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
With the COVID-19 pandemic globally, the ongoing threat of new challenges of mucosal infections was once again reminded human beings. Hence, access to the next-generation vaccine to elicit mucosal immunity is required to reduce virus shedding. SARS-CoV-2 retains a unique polybasic cleavage motif in its spike protein, recognized by the host furin protease. The proteolytic furin cleavage site at the junction of S1/S2 glycoprotein plays a key role in the pathogenesis of SARS-CoV-2. Here, we examined the protective immunity of a double-deleted PRRA/GTNGTKR motifs cold-adapted live-attenuated candidate vaccines as a called "KaraVac." using a hamster animal model of infected attenuated SARS-CoV-2. The KaraVac vaccinated hamsters were challenged against the wild-type (WT) SARS-CoV-2. No apparent bodyweight loss and histopathological lesions were observed in the hamsters. The establishment of sterilizing immunity was induced via stimulating a robust neutralizing antibody (NAb) response in a hamster model. Consequently, deletions in the spike sequence and inoculation into hamsters provide resistance to the subsequent challenge with WT SARS-CoV-2. We have suggested that deletion of the furin cleavage site and GTNGTKR motifs in the spike sequence attenuates the virus from the parental strain and can be used as a potent immunogen.
Collapse
Affiliation(s)
- Mohsen Abdoli
- Amirabad Virology Laboratory, Vaccine Unit, Tehran 1413693341, Iran
| | - Maryam Shafaati
- Department of Microbiology, Faculty Science, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | | - Asghar Abdoli
- Amirabad Virology Laboratory, Vaccine Unit, Tehran 1413693341, Iran; Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
Chavda VP, Chen Y, Dave J, Chen ZS, Chauhan SC, Yallapu MM, Uversky VN, Bezbaruah R, Patel S, Apostolopoulos V. COVID-19 and vaccination: myths vs science. Expert Rev Vaccines 2022; 21:1603-1620. [PMID: 35980281 DOI: 10.1080/14760584.2022.2114900] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Several vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed since the inception of the coronavirus disease 2019 (COVID-19) in December 2019, at unprecedented speed. However, these rapidly developed vaccines raised many questions related to the efficacy and safety of vaccines in different communities across the globe. Various hypotheses regarding COVID-19 and its vaccines were generated, and many of them have also been answered with scientific evidence. Still, there are many myths/misinformation related to COVID-19 and its vaccines, which create hesitancy for COVID-19 vaccination, and must be addressed critically to achieve success in the battle against the pandemic. AREA COVERED The development of anti-SARS-CoV-2 vaccines against COVID-19, their safety and efficacy, and myths/misinformation relating to COVID-19 and vaccines are presented. EXPERT OPINION In this pandemic we have seen a global collaborative effort of researchers, governments, and industry, supported by billions of dollars in funding, have allowed the development of vaccines far more quickly than in the past. Vaccines go through rigorous testing, analysis, and evaluations in clinical settings prior to their approval, even if they are approved for emergency use. Despite the myths, vaccination represents an important strategy to get back to normality.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad
| | - Yangmin Chen
- Peter J. Tobin College of Business, St. John's University, Queens, NY 11439, USA
| | - Jayant Dave
- Department of Pharmaceutical Quality Assurance, L.M. College of Pharmacy, Ahmedabad
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institure, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh -786004, Assam, India
| | - Sandip Patel
- Department of Pharmacology, L.M. College of Pharmacy, Ahmedabad
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Melbourne, VIC, 3030, Australia.,Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, 3021, Australia
| |
Collapse
|
10
|
Wang L, Tao Q, Wang Z, Shi J, Yan W, Zhang L, Sun Y, Yao X. Tea Ingredients Have Anti-coronavirus Disease 2019 (COVID-19) Targets Based on Bioinformatics Analyses and Pharmacological Effects on LPS-Stimulated Macrophages. Front Nutr 2022; 9:875765. [PMID: 35669076 PMCID: PMC9163550 DOI: 10.3389/fnut.2022.875765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused millions of deaths and lacks treatment. Although several studies have focused on the major component of green tea, epigallocatechin 3-gallate (EGCG), which is efficient in preventing COVID-19, systemic analyses of the anti-COVID-19 potential of green tea remain insufficient. Here, we co-analyzed the target genes of tea ingredients and COVID-19 signature genes and found that epigallocatechin 3-acetalbehyde was capable of reversing the major molecular processes of COVID-19 (MAPK and NF-κB activation). These findings were further supported by Western blotting (WB), immunofluorescence, and quantitative polymerase chain reaction (qPCR) in LPS-stimulated macrophages. Moreover, using molecular docking analysis, we identified three tea ingredients ((-)-catechin gallate, D-(+)-cellobiose, and EGCG) that may interact with the vital SARS-CoV-2 protein, 5R84, compared with the qualified 5R84 ligand WGS. Thus, our results indicated that tea ingredients have the potential to treat COVID-19 by suppressing the COVID-19 signature genes and interacting with the vital SARS-CoV-2 protein.
Collapse
Affiliation(s)
- Lei Wang
- Department of Clinical Laboratory, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Department of Basic Medicine, Medical School of Nanjing University, Nanjing, China
| | - Zhiguo Wang
- Department of Clinical Laboratory, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jianfeng Shi
- Department of Clinical Laboratory, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Wei Yan
- Department of Clinical Laboratory, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Li Zhang
- Department of Clinical Laboratory, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yaoxiang Sun
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Xiaoming Yao
- Department of Clinical Laboratory, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Goławski M, Lewandowski P, Jabłońska I, Delijewski M. The Reassessed Potential of SARS-CoV-2 Attenuation for COVID-19 Vaccine Development—A Systematic Review. Viruses 2022; 14:v14050991. [PMID: 35632736 PMCID: PMC9146402 DOI: 10.3390/v14050991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Live-attenuated SARS-CoV-2 vaccines received relatively little attention during the COVID-19 pandemic. Despite this, several methods of obtaining attenuated coronaviruses are known. In this systematic review, the strategies of coronavirus attenuation, which may potentially be applied to SARS-CoV-2, were identified. PubMed, Scopus, Web of Science and Embase databases were searched to identify relevant articles describing attenuating mutations tested in vivo. In case of coronaviruses other than SARS-CoV-2, sequence alignment was used to exclude attenuating mutations that cannot be applied to SARS-CoV-2. Potential immunogenicity, safety and efficacy of the attenuated SARS-CoV-2 vaccine were discussed based on animal studies data. A total of 27 attenuation strategies, used to create 101 different coronaviruses, have been described in 56 eligible articles. The disruption of the furin cleavage site in the SARS-CoV-2 spike protein was identified as the most promising strategy. The replacement of core sequences of transcriptional regulatory signals, which prevents recombination with wild-type viruses, also appears particularly advantageous. Other important attenuating mutations encompassed mostly the prevention of evasion of innate immunity. Sufficiently attenuated coronaviruses typically caused no meaningful disease in susceptible animals and protected them from challenges with virulent virus. This indicates that attenuated COVID-19 vaccines may be considered as a potential strategy to fight the threat posed by SARS-CoV-2.
Collapse
Affiliation(s)
- Marcin Goławski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (P.L.); (M.D.)
- Correspondence:
| | - Piotr Lewandowski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (P.L.); (M.D.)
| | - Iwona Jabłońska
- Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland;
| | - Marcin Delijewski
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland; (P.L.); (M.D.)
| |
Collapse
|
12
|
Islam MA, Haque MA, Rahman MA, Hossen F, Reza M, Barua A, Marzan AA, Das T, Kumar Baral S, He C, Ahmed F, Bhattacharya P, Jakariya M. A Review on Measures to Rejuvenate Immune System: Natural Mode of Protection Against Coronavirus Infection. Front Immunol 2022; 13:837290. [PMID: 35371007 PMCID: PMC8965011 DOI: 10.3389/fimmu.2022.837290] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2, a novel Corona virus strain, was first detected in Wuhan, China, in December 2019. As of December 16, 2021, almost 4,822,472 people had died and over 236,132,082 were infected with this lethal viral infection. It is believed that the human immune system is thought to play a critical role in the initial phase of infection when the viruses invade the host cells. Although some effective vaccines have already been on the market, researchers and many bio-pharmaceuticals are still working hard to develop a fully functional vaccine or more effective therapeutic agent against the COVID-19. Other efforts, in addition to functional vaccines, can help strengthen the immune system to defeat the corona virus infection. Herein, we have reviewed some of those proven measures, following which a more efficient immune system can be better prepared to fight viral infection. Among these, dietary supplements like- fresh vegetables and fruits offer a plentiful of vitamins and antioxidants, enabling to build of a healthy immune system. While the pharmacologically active components of medicinal plants directly aid in fighting against viral infection, supplementary supplements combined with a healthy diet will assist to regulate the immune system and will prevent viral infection. In addition, some personal habits, like- regular physical exercise, intermittent fasting, and adequate sleep, had also been proven to aid the immune system in becoming an efficient one. Maintaining each of these will strengthen the immune system, allowing innate immunity to become a more defensive and active antagonistic mechanism against corona-virus infection. However, because dietary treatments take longer to produce beneficial effects in adaptive maturation, personalized nutrition cannot be expected to have an immediate impact on the global outbreak.
Collapse
Affiliation(s)
- Md. Aminul Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Department of Microbiology President Abdul Hamid Medical College, Karimganj, Bangladesh
| | - Md. Atiqul Haque
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Md. Arifur Rahman
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Foysal Hossen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mahin Reza
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abanti Barua
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abdullah Al Marzan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tuhin Das
- Department of Microbiology, University of Chittagong, Chittagong, Bangladesh
| | | | - Cheng He
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Firoz Ahmed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Prosun Bhattacharya
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Md. Jakariya
- Department of Environmental Science and Management, North South University, Dhaka, Bangladesh
| |
Collapse
|
13
|
Kumar S, Saikia D, Bankar M, Saurabh MK, Singh H, Varikasuvu SR, Maharshi V. Efficacy of COVID-19 vaccines: a systematic review and network meta-analysis of phase 3 randomized controlled trials. Pharmacol Rep 2022; 74:1228-1237. [PMID: 36342658 PMCID: PMC9640819 DOI: 10.1007/s43440-022-00429-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Several vaccines have been approved for the prevention of COVID-19. However, no head-to-head trials comparing their clinical efficacy have been performed. This network meta-analysis aims to identify those, among the competing existing vaccines, conferring the maximum protection against COVID-19. A literature search was done in Medline (via PubMed), Embase and Cochrane Library databases for phase 3 randomized controlled trials evaluating the efficacy of different COVID-19 vaccines. Search results were screened and eligible studies were included to perform a network meta-analysis in software 'R' version 4.1.2 using a random effect model. Cochrane's 'Risk of Bias tool (RoB2)' was used for quality assessment. Raw data from the included studies was used for network meta-analysis. Assessment of inconsistency was not possible as no study compared two or more vaccines directly. A forest plot for indirect comparison of various COVID-19 vaccines was obtained. Rankogram and 'P' scores were obtained to rank the vaccines based on the indirect evidence of their comparative efficacy. A total of 17 randomized controlled trials evaluating the efficacy of 16 COVID-19 vaccines, were included in the network meta-analysis. A total of 361,386 participants was included in this network meta-analysis. Overall risk of bias among included studies was of 'some concern'. All the COVID-19 vaccines had a statistically significant reduction of risk for contracting symptomatic SARS-CoV-2 in comparison to the placebo, however, the maximum protection (RR 0.05) was with BNT126b2. The indirect comparison also revealed BNT126b2 vaccine confers the highest protection against symptomatic SARS-CoV-2 infection in comparison to all others included, with a 'P' score of 0.9771 followed by mRNA-1273, rAD26 & rAD5 and NVX-CoV2373. The evidence generated from this network meta-analysis indicates the good efficacy of all the included vaccines in preventing symptomatic COVID-19 as compared to placebo. The BNT126b2 vaccine was found to provide the highest protection against symptomatic SARS-CoV-2 among all included followed by mRNA-1273, rAD26 & rAD5, NVX-CoV2373 and others.
Collapse
Affiliation(s)
- Subodh Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, Deoghar, India
| | | | - Mangesh Bankar
- Department of Pharmacology, All India Institute of Medical Sciences, Raebareli, India
| | - Manoj Kumar Saurabh
- Department of Pharmacology, All India Institute of Medical Sciences, Deoghar, India
| | - Harminder Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Deoghar, India
| | | | - Vikas Maharshi
- Department of Pharmacology, All India Institute of Medical Sciences, Deoghar, India
| |
Collapse
|