1
|
Louie AY, Kim JS, Drnevich J, Dibaeinia P, Koito H, Sinha S, McKim DB, Soto-Diaz K, Nowak RA, Das A, Steelman AJ. Influenza A virus infection disrupts oligodendrocyte homeostasis and alters the myelin lipidome in the adult mouse. J Neuroinflammation 2023; 20:190. [PMID: 37596606 PMCID: PMC10439573 DOI: 10.1186/s12974-023-02862-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Recent data suggest that myelin may be altered by physiological events occurring outside of the central nervous system, which may cause changes to cognition and behavior. Similarly, peripheral infection by non-neurotropic viruses is also known to evoke changes to cognition and behavior. METHODS Mice were inoculated with saline or influenza A virus. Bulk RNA-seq, lipidomics, RT-qPCR, flow cytometry, immunostaining, and western blots were used to determine the effect of infection on OL viability, protein expression and changes to the lipidome. To determine if microglia mediated infection-induced changes to OL homeostasis, mice were treated with GW2580, an inhibitor of microglia activation. Additionally, conditioned medium experiments using primary glial cell cultures were also used to test whether secreted factors from microglia could suppress OL gene expression. RESULTS Transcriptomic and RT-qPCR analyses revealed temporal downregulation of OL-specific transcripts with concurrent upregulation of markers characteristic of cellular stress. OLs isolated from infected mice had reduced cellular expression of myelin proteins compared with those from saline-inoculated controls. In contrast, the expression of these proteins within myelin was not different between groups. Similarly, histological and immunoblotting analysis performed on various brain regions indicated that infection did not alter OL viability, but increased expression of a cellular stress marker. Shot-gun lipidomic analysis revealed that infection altered the lipid profile within the prefrontal cortex as well as in purified brain myelin and that these changes persisted after recovery from infection. Treatment with GW2580 during infection suppressed the expression of genes associated with glial activation and partially restored OL-specific transcripts to baseline levels. Finally, conditioned medium from activated microglia reduced OL-gene expression in primary OLs without altering their viability. CONCLUSIONS These findings show that peripheral respiratory viral infection with IAV is capable of altering OL homeostasis and indicate that microglia activation is likely involved in the process.
Collapse
Affiliation(s)
- Allison Y Louie
- Neuroscience Program, 2325/21 Beckman Institute, 405 North Mathews Ave., Urbana, IL, 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 3306, IBB, Parker H. Petit Institute for Bioengineering and Biosciences, 315 Fernst Dr. NW, Atlanta, GA, 30332, USA
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 3516 Veterinary Medicine Basic Sciences Bldg., 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Jenny Drnevich
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Payam Dibaeinia
- Department of Computer Science, University of Illinois at Urbana-Champaign, 201 North Goodwin Avenue, Urbana, IL, 61801, USA
| | - Hisami Koito
- Department of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama, 350-0295, Japan
| | - Saurabh Sinha
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
- Department of Computer Science, University of Illinois at Urbana-Champaign, 201 North Goodwin Avenue, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Dr., Urbana, IL, 61801, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Daniel B McKim
- Neuroscience Program, 2325/21 Beckman Institute, 405 North Mathews Ave., Urbana, IL, 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Katiria Soto-Diaz
- Neuroscience Program, 2325/21 Beckman Institute, 405 North Mathews Ave., Urbana, IL, 61801, USA
| | - Romana A Nowak
- Department of Computer Science, University of Illinois at Urbana-Champaign, 201 North Goodwin Avenue, Urbana, IL, 61801, USA
- Department of Bioengineering, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Aditi Das
- Neuroscience Program, 2325/21 Beckman Institute, 405 North Mathews Ave., Urbana, IL, 61801, USA.
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA.
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 3306, IBB, Parker H. Petit Institute for Bioengineering and Biosciences, 315 Fernst Dr. NW, Atlanta, GA, 30332, USA.
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 3516 Veterinary Medicine Basic Sciences Bldg., 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Dr., Urbana, IL, 61801, USA.
| | - Andrew J Steelman
- Neuroscience Program, 2325/21 Beckman Institute, 405 North Mathews Ave., Urbana, IL, 61801, USA.
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Dr., Urbana, IL, 61801, USA.
- Department of Bioengineering, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis 2023; 176:105952. [PMID: 36493976 DOI: 10.1016/j.nbd.2022.105952] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The glial cell of the peripheral nervous system (PNS), the Schwann cell (SC), counts among the most multifaceted cells of the body. During development, SCs secure neuronal survival and participate in axonal path finding. Simultaneously, they orchestrate the architectural set up of the developing nerves, including the blood vessels and the endo-, peri- and epineurial layers. Perinatally, in rodents, SCs radially sort and subsequently myelinate individual axons larger than 1 μm in diameter, while small calibre axons become organised in non-myelinating Remak bundles. SCs have a vital role in maintaining axonal health throughout life and several specialized SC types perform essential functions at specific locations, such as terminal SC at the neuromuscular junction (NMJ) or SC within cutaneous sensory end organs. In addition, neural crest derived satellite glia maintain a tight communication with the soma of sensory, sympathetic, and parasympathetic neurons and neural crest derivatives are furthermore an indispensable part of the enteric nervous system. The remarkable plasticity of SCs becomes evident in the context of a nerve injury, where SC transdifferentiate into intriguing repair cells, which orchestrate a regenerative response that promotes nerve repair. Indeed, the multiple adaptations of SCs are captivating, but remain often ill-resolved on the molecular level. Here, we summarize and discuss the knowns and unknowns of the vast array of functions that this single cell type can cover in peripheral nervous system development, maintenance, and repair.
Collapse
|
3
|
Kirkcaldie MTK, Dwyer ST. The third wave: Intermediate filaments in the maturing nervous system. Mol Cell Neurosci 2017; 84:68-76. [PMID: 28554564 DOI: 10.1016/j.mcn.2017.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/10/2017] [Accepted: 05/25/2017] [Indexed: 01/16/2023] Open
Abstract
Intermediate filaments are critical for the extreme structural specialisations of neurons, providing integrity in dynamic environments and efficient communication along axons a metre or more in length. As neurons mature, an initial expression of nestin and vimentin gives way to the neurofilament triplet proteins and α-internexin, substituted by peripherin in axons outside the CNS, which physically consolidate axons as they elongate and find their targets. Once connection is established, these proteins are transported, assembled, stabilised and modified, structurally transforming axons and dendrites as they acquire their full function. The interaction between these neurons and myelinating glial cells optimises the structure of axons for peak functional efficiency, a property retained across their lifespan. This finely calibrated structural regulation allows the nervous system to maintain timing precision and efficient control across large distances throughout somatic growth and, in maturity, as a plasticity mechanism allowing functional adaptation.
Collapse
Affiliation(s)
- Matthew T K Kirkcaldie
- School of Medicine, Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia.
| | - Samuel T Dwyer
- School of Medicine, Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia
| |
Collapse
|
4
|
Vickers J, Kirkcaldie M, Phipps A, King A. Alterations in neurofilaments and the transformation of the cytoskeleton in axons may provide insight into the aberrant neuronal changes of Alzheimer’s disease. Brain Res Bull 2016; 126:324-333. [DOI: 10.1016/j.brainresbull.2016.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 01/09/2023]
|
5
|
Kirkcaldie MTK, Collins JM. The axon as a physical structure in health and acute trauma. J Chem Neuroanat 2016; 76:9-18. [PMID: 27233660 DOI: 10.1016/j.jchemneu.2016.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/22/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
The physical structure of neurons - dendrites converging on the soma, with an axon conveying activity to distant locations - is uniquely tied to their function. To perform their role, axons need to maintain structural precision in the soft, gelatinous environment of the central nervous system and the dynamic, flexible paths of nerves in the periphery. This requires close mechanical coupling between axons and the surrounding tissue, as well as an elastic, robust axoplasm resistant to pinching and flattening, and capable of sustaining transport despite physical distortion. These mechanical properties arise primarily from the properties of the internal cytoskeleton, coupled to the axonal membrane and the extracellular matrix. In particular, the two large constituents of the internal cytoskeleton, microtubules and neurofilaments, are braced against each other and flexibly interlinked by specialised proteins. Recent evidence suggests that the primary function of neurofilament sidearms is to structure the axoplasm into a linearly organised, elastic gel. This provides support and structure to the contents of axons in peripheral nerves subject to bending, protecting the relatively brittle microtubule bundles and maintaining them as transport conduits. Furthermore, a substantial proportion of axons are myelinated, and this thick jacket of membrane wrappings alters the form, function and internal composition of the axons to which it is applied. Together these structures determine the physical properties and integrity of neural tissue, both under conditions of normal movement, and in response to physical trauma. The effects of traumatic injury are directly dependent on the physical properties of neural tissue, especially axons, and because of axons' extreme structural specialisation, post-traumatic effects are usually characterised by particular modes of axonal damage. The physical realities of axons in neural tissue are integral to both normal function and their response to injury, and require specific consideration in evaluating research models of neurotrauma.
Collapse
Affiliation(s)
- Matthew T K Kirkcaldie
- School of Medicine, University of Tasmania, Australia; Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia.
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia
| |
Collapse
|
6
|
A Stochastic Multiscale Model That Explains the Segregation of Axonal Microtubules and Neurofilaments in Neurological Diseases. PLoS Comput Biol 2015; 11:e1004406. [PMID: 26285012 PMCID: PMC4540448 DOI: 10.1371/journal.pcbi.1004406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/17/2015] [Indexed: 11/19/2022] Open
Abstract
The organization of the axonal cytoskeleton is a key determinant of the normal function of an axon, which is a long thin projection of a neuron. Under normal conditions two axonal cytoskeletal polymers, microtubules and neurofilaments, align longitudinally in axons and are interspersed in axonal cross-sections. However, in many neurotoxic and neurodegenerative disorders, microtubules and neurofilaments segregate apart from each other, with microtubules and membranous organelles clustered centrally and neurofilaments displaced to the periphery. This striking segregation precedes the abnormal and excessive neurofilament accumulation in these diseases, which in turn leads to focal axonal swellings. While neurofilament accumulation suggests an impairment of neurofilament transport along axons, the underlying mechanism of their segregation from microtubules remains poorly understood for over 30 years. To address this question, we developed a stochastic multiscale model for the cross-sectional distribution of microtubules and neurofilaments in axons. The model describes microtubules, neurofilaments and organelles as interacting particles in a 2D cross-section, and is built upon molecular processes that occur on a time scale of seconds or shorter. It incorporates the longitudinal transport of neurofilaments and organelles through this domain by allowing stochastic arrival and departure of these cargoes, and integrates the dynamic interactions of these cargoes with microtubules mediated by molecular motors. Simulations of the model demonstrate that organelles can pull nearby microtubules together, and in the absence of neurofilament transport, this mechanism gradually segregates microtubules from neurofilaments on a time scale of hours, similar to that observed in toxic neuropathies. This suggests that the microtubule-neurofilament segregation can be a consequence of the selective impairment of neurofilament transport. The model generates the experimentally testable prediction that the rate and extent of segregation will be dependent on the sizes of the moving organelles as well as the density of their traffic. The shape and function of axons is dependent on a dynamic system of microscopic intracellular protein polymers (microtubules, neurofilaments and microfilaments) that comprise the axonal cytoskeleton. Neurofilaments are cargoes of intracellular transport that move along microtubule tracks, and they accumulate abnormally in axons in many neurotoxic and neurodegenerative disorders. Intriguingly, it has been reported that neurofilaments and microtubules, which are normally interspersed in axonal cross-sections, often segregate apart from each other in these disorders, which is something that is never observed in healthy axons. Here we describe a stochastic multiscale computational model that explains the mechanism of this striking segregation and offers insights into the mechanism of neurofilament accumulation in disease.
Collapse
|
7
|
Paus T, Pesaresi M, French L. White matter as a transport system. Neuroscience 2014; 276:117-25. [PMID: 24508743 DOI: 10.1016/j.neuroscience.2014.01.055] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/14/2014] [Accepted: 01/29/2014] [Indexed: 12/14/2022]
Abstract
There are two ways to picture white matter: as a grid of electrical wires or a network of roads. The first metaphor captures the classical function of an axon as conductor of action potentials (and information) from one brain region to another. The second one points to the important role of axons in a bi-directional transport of biological molecules and organelles between the cell body and synapse. Given the wide variety of such cargoes, a well-functioning axonal transport is critical for a number of processes, including neurotransmission, metabolism and viability of neurons. This selective review will emphasize the need for considering axonal transport when interpreting functional consequences of inter-individual variations in the structural properties of white matter. We start by describing the space occupied by white matter and techniques used in vivo for its characterization. We then provide examples of key features of maturation and aging of white matter, as well as some of the common abnormalities observed in neurodevelopmental and neurodegenerative disorders. Next, we review work that motivated our focus on axonal diameter, and explain the relationships between transport and cytoskeleton within the axon. We will conclude by describing molecular machinery of axonal transport and genes that may contribute to inter-individual variations in axonal diameter and axonal transport.
Collapse
Affiliation(s)
- T Paus
- Rotman Research Institute, University of Toronto, Toronto, Canada.
| | - M Pesaresi
- Rotman Research Institute, University of Toronto, Toronto, Canada
| | - L French
- Rotman Research Institute, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Abstract
All cells are influenced by mechanical forces. In the brain, force-generating and load-bearing proteins twist, turn, ratchet, flex, compress, expand and bend to mediate neuronal signalling and plasticity. Although the functions of mechanosensitive proteins have been thoroughly described in classical sensory systems, the effects of endogenous mechanical energy on cellular function in the brain have received less attention, and many working models in neuroscience do not currently integrate principles of cellular mechanics. An understanding of cellular-mechanical concepts is essential to allow the integration of mechanobiology into ongoing studies of brain structure and function.
Collapse
|
9
|
Srinivasan N, Kumar S. Ordered and disordered proteins as nanomaterial building blocks. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:204-18. [PMID: 22231983 DOI: 10.1002/wnan.1160] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Proteins possess a number of attractive properties that have contributed to their recent emergence as nanoscale building blocks for biomaterials and bioinspired materials. For instance, the amino acid sequence of a protein can be precisely controlled and manipulated via recombinant DNA technology, and proteins can be biosynthesized with very high purity and virtually perfect monodispersity. Most importantly, protein-based biomaterials offer the possibility of technologically harnessing the vast array of functions that these biopolymers serve in nature. In this review, we discuss recent progress in the field of protein-based biomaterials, with an overall theme of relating protein structure to material properties. We begin by discussing materials based on proteins that have well-defined three-dimensional structures, focusing specifically on elastin- and silk-like peptides. We then explore the newer field of materials based on intrinsically disordered proteins, using nucleoporin and neurofilament proteins as case studies. A key theme throughout the review is that specific environmental stimuli can trigger protein conformational changes, which in turn can alter macroscopic material properties and function.
Collapse
Affiliation(s)
- Nithya Srinivasan
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | | |
Collapse
|
10
|
Schnaar RL, Lopez PHH. Myelin-associated glycoprotein and its axonal receptors. J Neurosci Res 2010; 87:3267-76. [PMID: 19156870 DOI: 10.1002/jnr.21992] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myelin-associated glycoprotein (MAG) is expressed on the innermost myelin membrane wrap, directly apposed to the axon surface. Although it is not required for myelination, MAG enhances long-term axon-myelin stability, helps to structure nodes of Ranvier, and regulates the axon cytoskeleton. In addition to its role in axon-myelin stabilization, MAG inhibits axon regeneration after injury; MAG and a discrete set of other molecules on residual myelin membranes at injury sites actively signal axons to halt elongation. Both the stabilizing and the axon outgrowth inhibitory effects of MAG are mediated by complementary MAG receptors on the axon surface. Two MAG receptor families have been described, sialoglycans (specifically gangliosides GD1a and GT1b) and Nogo receptors (NgRs). Controversies remain about which receptor(s) mediates which of MAG's biological effects. Here we review the findings and challenges in associating MAG's biological effects with specific receptors.
Collapse
Affiliation(s)
- Ronald L Schnaar
- Department of Pharmacology, The Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| | | |
Collapse
|
11
|
Abstract
White matter occupies almost half of the human brain. It contains axons connecting spatially segregated modules and, as such, it is essential for the smooth flow of information in functional networks. Structural maturation of white matter continues during adolescence, as reflected in age-related changes in its volume, as well as in its microstructure. Here I review recent observations obtained with magnetic resonance imaging in typically developing adolescents and point out some of the known variations in structural properties of white matter vis-à-vis brain function in health and disease. I conclude by re-focusing the interpretations of MR-based studies of white matter from myelin to axon.
Collapse
Affiliation(s)
- Tomás Paus
- Brain and Body Centre, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
12
|
Paus T, Toro R. Could Sex Differences in White Matter be Explained by g ratio? Front Neuroanat 2009; 3:14. [PMID: 19753325 PMCID: PMC2742663 DOI: 10.3389/neuro.05.014.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/21/2009] [Indexed: 12/02/2022] Open
Abstract
Recent studies with magnetic resonance imaging suggest that age-related changes in white matter during male adolescence may indicate an increase in g ratio wherein the radial growth of an axon outpaces a corresponding increase in myelin thickness. We review the original Rushton (1951) model where a g ratio of approximately 0.6 represents an optimal relationship between the axon and fibre diameters vis-à-vis conduction velocity, and point out evidence indicating slightly higher g ratio in large-diameter fibres. We estimate that fibres with a diameter larger than 9.6 mum will have a relatively thinner myelin sheath, and brains with increasingly larger proportions of such large-diameter fibres will have progressively lower concentration of myelin. We conclude by pointing out possible implications of "suboptimal" g ratio for the emergence of "disconnection" disorders, such as schizophrenia, in late adolescence.
Collapse
Affiliation(s)
- Tomáš Paus
- Brain and Body Centre, University of NottinghamNottingham, UK
- Montreal Neurological InstituteMontreal, QC, Canada
| | | |
Collapse
|
13
|
Gov NS. Physical model for the width distribution of axons. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2009; 29:337-344. [PMID: 19579039 DOI: 10.1140/epje/i2009-10476-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 05/21/2009] [Accepted: 06/08/2009] [Indexed: 05/28/2023]
Abstract
The distribution of widths of axons was recently investigated, and was found to have a distinct peak at an optimized value. The optimized axon width at the peak may arise from the conflicting demands of minimizing energy consumption and assuring signal transmission reliability. The distribution around this optimized value is found to have a distinct non-Gaussian shape, with an exponential "tail". We propose here a mechanical model whereby this distribution arises from the interplay between the elastic energy of the membrane surrounding the axon core, the osmotic pressure induced by the neurofilaments inside the axon bulk, and active processes that remodel the microtubules and neurofilaments inside the axon. The axon's radius of curvature can be determined by the cell's control of the osmotic pressure difference across the membrane, the membrane tension or by changing the composition of the different components of the membrane. We find that the osmotic pressure, determined by the neurofilaments, seems to be the dominant control parameter.
Collapse
Affiliation(s)
- N S Gov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Shahpasand K, Ahmadian S, Riazi GH. A possible mechanism for controlling processive transport by microtubule-associated proteins. Neurosci Res 2008; 61:347-50. [PMID: 18541318 DOI: 10.1016/j.neures.2008.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/16/2008] [Accepted: 04/25/2008] [Indexed: 01/07/2023]
Abstract
Molecular mechanisms of axonal transport have been evaluated by several investigators. It seems that microtubules (MTs) act as a track for the transport and microtubule-associated proteins (MAPs) seem to play as a regulating factor in it. In order to transport MTs must move in the radial direction to make room for a vesicle and when the cargo passes, return to the previous position for the maintenance of neuronal structure. An inhibitor factor against the radial movement is the steric constraints resulted from presence of MAPs. In fact, inter-microtubular spaces (IMS) in the neuronal processes are resulted from the space-making role of the MAPs. Since the IMS must be locally altered to make enough room for a vesicle, it seems relevant to imagine some mechanisms that control the steric constraints for an efficient vesicular transport. Here we juxtapose the older findings and the recent ones to investigate the possible effects of MAPs on the processive transport.
Collapse
Affiliation(s)
- Kourosh Shahpasand
- Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran.
| | | | | |
Collapse
|
15
|
Lele TP, Kumar S. Brushes, cables, and anchors: recent insights into multiscale assembly and mechanics of cellular structural networks. Cell Biochem Biophys 2007; 47:348-60. [PMID: 17652780 DOI: 10.1007/s12013-007-0013-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/09/2023]
Abstract
The remarkable ability of living cells to sense, process, and respond to mechanical stimuli in their environment depends on the rapid and efficient interconversion of mechanical and chemical energy at specific times and places within the cell. For example, application of force to cells leads to conformational changes in specific mechanosensitive molecules which then trigger cellular signaling cascades that may alter cellular structure, mechanics, and migration and profoundly influence gene expression. Similarly, the sensitivity of cells to mechanical stresses is governed by the composition, architecture, and mechanics of the cellular cytoskeleton and extracellular matrix (ECM), which are in turn driven by molecular-scale forces between the constituent biopolymers. Understanding how these mechanochemical systems coordinate over multiple length and time scales to produce orchestrated cell behaviors represents a fundamental challenge in cell biology. Here, we review recent advances in our understanding of these complex processes in three experimental systems: the assembly of axonal neurofilaments, generation of tensile forces by actomyosin stress fiber bundles, and mechanical control of adhesion assembly.
Collapse
Affiliation(s)
- Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
16
|
Wagner OI, Rammensee S, Korde N, Wen Q, Leterrier JF, Janmey PA. Softness, strength and self-repair in intermediate filament networks. Exp Cell Res 2007; 313:2228-35. [PMID: 17524395 PMCID: PMC2709732 DOI: 10.1016/j.yexcr.2007.04.025] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/01/2007] [Accepted: 04/05/2007] [Indexed: 11/24/2022]
Abstract
One cellular function of intermediate filaments is to provide cells with compliance to small deformations while strengthening them when large stresses are applied. How IFs accomplish this mechanical role is revealed by recent studies of the elastic properties of single IF protein polymers and by viscoelastic characterization of the networks they form. IFs are unique among cytoskeletal filaments in withstanding large deformations. Single filaments can stretch to more than 3 times their initial length before breaking, and gels of IF withstand strains greater than 100% without damage. Even after mechanical disruption of gels formed by crossbridged neurofilaments, the elastic modulus of these gels rapidly recovers under conditions where gels formed by actin filaments are irreversibly ruptured. The polyelectrolyte properties of IFs may enable crossbridging by multivalent counterions, but identifying the mechanisms by which IFs link into bundles and networks in vivo remains a challenge.
Collapse
Affiliation(s)
- Oliver I. Wagner
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania. 3340 Smith Walk, Philadelphia, PA 19104, USA
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan (R.O.C.)
| | - Sebastian Rammensee
- Technische Universität, München, Physik-Department E22 Biophysik James-Franck-Str. 1, 85747 Garching, Germany
| | - Neha Korde
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania. 3340 Smith Walk, Philadelphia, PA 19104, USA
| | - Qi Wen
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania. 3340 Smith Walk, Philadelphia, PA 19104, USA
| | | | - Paul A. Janmey
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania. 3340 Smith Walk, Philadelphia, PA 19104, USA
- correspondance to: Paul Janmey, Institute for Medicine and Engineering, University of Pennsylvania, 1010 Vagelos Laboratories, 3340 Smith Walk, Philadelphia, PA 19104, Tel: 215.573.7380; lab: 215.573.9787, Fax: 215.573.6815,
| |
Collapse
|
17
|
Rammensee S, Janmey PA, Bausch AR. Mechanical and structural properties of in vitro neurofilament hydrogels. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:661-8. [PMID: 17340095 DOI: 10.1007/s00249-007-0141-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 01/24/2007] [Accepted: 01/29/2007] [Indexed: 11/25/2022]
Abstract
Neurofilaments belong to the class of cytoskeletal intermediate filaments and are the predominant structural elements in axons. They are composed of a semiflexible backbone and highly charged anionic sidearms protruding from the surface of the filaments. Here, the rheology of in-vitro networks of neurofilaments purified from pig spinal cord was determined. The mechanical properties of these networks are qualitatively similar to other hydrogels of semiflexible polymers. The low-deformation storage modulus G'(omega) showed a concentration (c) dependence of G' approximately c (1.3) that is consistent with a model for semiflexible networks, but was also observed for polyelectrolyte brushes. A terminal relaxation was not observed in the frequency range investigated (0.007-5 Hz), supporting the notion that sidearms act as cross-links hindering slip between filaments on a time scale of many minutes. The mesh size distribution of the network was measured by analysis of Brownian motion of embedded beads. The concentration dependence of the mesh size follows the same power law behaviour as found for F-actin networks, but shows a significantly wider distribution attributable to the smaller persistence length of neurofilaments. The attractive interaction between filaments is increased by addition of Al(3+) ions resulting in a reduction of the linear response regime from strains bigger than 80% to less than 30%.
Collapse
Affiliation(s)
- S Rammensee
- Biophysik (E22), Technische Universitaet Muenchen, James-Franck-Strasse, 85747, Garching, Germany
| | | | | |
Collapse
|
18
|
Maxwell WL, Watson A, Queen R, Conway B, Russell D, Neilson M, Graham DI. Slow, medium, or fast re-warming following post-traumatic hypothermia therapy? An ultrastructural perspective. J Neurotrauma 2005; 22:873-84. [PMID: 16083354 DOI: 10.1089/neu.2005.22.873] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It was hypothesized that rapid rather than slow re-warming following traumatic brain injury (TBI) and short-term hypothermia results in secondary, ultrastructural pathology. After stretch injury to the right optic nerve, adult guinea pigs were randomly allocated to one of six experimental groups. Either (1) sham (all procedures but not stretch-injured; n = 4); injured and (2) maintained at normal temporalis core temperature (38.5 degrees C) for 8 hours (n = 6); (3) cooled rapidly to 32.5 degrees C (temporalis temperature), maintained for 4 h and re-warmed to 38.5 degrees C at 1 degrees C rise every 10 min (fast; n = 6); (4) cooled and re-warmed at 1 degrees C rise every 20 min (medium; n = 6); (5) cooled and rewarmed at 1 degrees C rise every 40 min (slow; n = 6) before being killed 8 h after injury; and (6) uninjured animals (n = 6) cooled to 32.5 degrees C for 4 h and then re-warmed at 1 degrees C every 10 min before killing 4 h later. Tissue was processed for light immunocytochemistry (beta-APP and RMO-14) and ultrastructural stereology. In both uninjured and injured fast re-warmed animals, there was almost total loss of axonal microtubules (MT) and an increased number of neurofilaments (NF) within the axoplasm. In the former, there was also compaction of NF. The number of MT was reduced to 40% of control values, NFs were increased but were not compacted after medium rate re-warming. Following slow re-warming the axonal cytoskeleton did not differ from that in control animals. It is concluded that re-warming faster than 1 degrees C every 40 min following mild post-traumatic hypothermia induces secondary axonal pathology.
Collapse
Affiliation(s)
- William L Maxwell
- Anatomy, Institute of Biomedical and Life Sciences (IBLS), University of Glasgow, Glasgow, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
19
|
Kumar S, Hoh JH. Modulation of repulsive forces between neurofilaments by sidearm phosphorylation. Biochem Biophys Res Commun 2004; 324:489-96. [PMID: 15474454 DOI: 10.1016/j.bbrc.2004.09.076] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Indexed: 10/26/2022]
Abstract
Recent studies have advanced the notion that the axonal organization of neurofilaments (NFs) is based on mutual steric repulsion between the unstructured "sidearm" domains of adjacent NFs. Here, we present experimental evidence that these repulsive forces are modulated by the degree of sidearm phosphorylation. When NFs are sedimented into a gelatinous pellet, pellet volume falls with increasing ionic strength and enzymatic dephosphorylation; sedimentation of phosphorylated NFs in the presence of divalent cations also dramatically reduces pellet volume. Further, atomic force microscopy imaging of isolated mammalian NFs reveals robust exclusion of colloidal particles from the NF backbone that is reduced at high ionic strength and attenuated when the filaments are enzymatically dephosphorylated. Phosphate-phosphate repulsion on the NF sidearm appears to modulate NF excluded volume in a graded fashion, thereby controlling axonal NF organization through interfilament forces.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
20
|
Mukhopadhyay R, Kumar S, Hoh JH. Molecular mechanisms for organizing the neuronal cytoskeleton. Bioessays 2004; 26:1017-25. [PMID: 15351972 DOI: 10.1002/bies.20088] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurofilaments and microtubules are important components of the neuronal cytoskeleton. In axons or dendrites, these filaments are aligned in parallel arrays, and separated from one another by nonrandom distances. This distinctive organization has been attributed to cross bridges formed by NF side arms or microtubule-associated proteins. We recently proposed a polymer-brush-based mechanism for regulating interactions between neurofilaments and between microtubules. In this model, the side arms of neurofilaments and the projection domains of microtubule-associated proteins are highly unstructured and exert long-range repulsive forces that are largely entropic in origin; these forces then act to organize the cytoskeleton in axons and dendrites. Here, we review the biochemical, biophysical, genetic and cell biological data for the polymer-brush and cross-bridging models. We explore how the data traditionally used to support cross bridging may be reconciled with a polymer-brush mechanism and compare the implications of recent experimental insights into axonal transport and physiology for each model.
Collapse
|
21
|
Wagner OI, Ascaño J, Tokito M, Leterrier JF, Janmey PA, Holzbaur ELF. The interaction of neurofilaments with the microtubule motor cytoplasmic dynein. Mol Biol Cell 2004; 15:5092-100. [PMID: 15342782 PMCID: PMC524780 DOI: 10.1091/mbc.e04-05-0401] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neurofilaments are synthesized in the cell body of neurons and transported outward along the axon via slow axonal transport. Direct observation of neurofilaments trafficking in live cells suggests that the slow outward rate of transport is due to the net effects of anterograde and retrograde microtubule motors pulling in opposition. Previous studies have suggested that cytoplasmic dynein is required for efficient neurofilament transport. In this study, we examine the interaction of neurofilaments with cytoplasmic dynein. We used fluid tapping mode atomic force microscopy to visualize single neurofilaments, microtubules, dynein/dynactin, and physical interactions between these neuronal components. AFM images suggest that neurofilaments act as cargo for dynein, associating with the base of the motor complex. Yeast two-hybrid and affinity chromatography assays confirm this hypothesis, indicating that neurofilament subunit M binds directly to dynein IC. This interaction is blocked by monoclonal antibodies directed either to NF-M or to dynein. Together these data suggest that a specific interaction between neurofilament subunit M and cytoplasmic dynein is involved in the saltatory bidirectional motility of neurofilaments undergoing axonal transport in the neuron.
Collapse
Affiliation(s)
- Oliver I Wagner
- Institute of Medicine and Engineering, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085, USA
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The entire length of myelinated axons is organized into a series of polarized domains that center around nodes of Ranvier. These domains, which are crucial for normal saltatory conduction, consist of distinct multiprotein complexes of cell adhesion molecules, ion channels, and scaffolding molecules; they also differ in their diameter, organelle content, and rates of axonal transport. Juxtacrine signals from myelinating glia direct their sequential assembly. The composition, mechanisms of assembly, and function of these molecular domains will be reviewed. I also discuss similarities of this domain organization to that of polarized epithelia and present emerging evidence that disorders of domain organization and function contribute to the axonopathies of myelin and other neurologic disorders.
Collapse
Affiliation(s)
- James L Salzer
- Department of Cell Biology and Neurology, Program in Molecular Neurobiology, Skirball Institute of Biomedical Research, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
23
|
Abstract
Mitochondria are localized to regions of the cell where ATP consumption is high and are dispersed according to changes in local energy needs. In addition to motion directed by molecular motors, mitochondrial distribution in neuronal cells appears to depend on the docking of mitochondria to microtubules and neurofilaments. We examined interactions between mitochondria and neurofilaments using fluorescence microscopy, dynamic light scattering, atomic force microscopy, and sedimentation assays. Mitochondria-neurofilament interactions depend on mitochondrial membrane potential, as revealed by staining with a membrane potential sensitive dye (JC-1) in the presence of substrates/ADP or uncouplers (valinomycin/carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone) and are affected by the phosphorylation status of neurofilaments and neurofilament sidearms. Antibodies against the neurofilament heavy subunit disrupt binding between mitochondria and neurofilaments, and isolated neurofilament sidearms alone interact with mitochondria, suggesting that they mediate the interactions between the two structures. These data suggest that specific and regulated mitochondrial-neurofilament interactions occur in situ and may contribute to the dynamic distribution of these organelles within the cytoplasm of neurons.
Collapse
|
24
|
|