1
|
Lafuente JV, Sharma A, Feng L, Muresanu DF, Nozari A, Tian ZR, Buzoianu AD, Sjöquist PO, Wiklund L, Sharma HS. Nanowired Delivery of Mesenchymal Stem Cells with Antioxidant Compound H-290/51 Reduces Exacerbation of Methamphetamine Neurotoxicity in Hot Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:317-352. [PMID: 37480465 DOI: 10.1007/978-3-031-32997-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Military personnel are often exposed to hot environments either for combat operations or peacekeeping missions. Hot environment is a severe stressful situation leading to profound hyperthermia, fatigue and neurological impairments. To avoid stressful environment, some people frequently use methamphetamine (METH) or other psychostimulants to feel comfortable under adverse situations. Our studies show that heat stress alone induces breakdown of the blood-brain barrier (BBB) and edema formation associated with reduced cerebral blood flow (CBF). On the other hand, METH alone induces hyperthermia and neurotoxicity. These effects of METH are exacerbated at high ambient temperatures as seen with greater breakdown of the BBB and brain pathology. Thus, a combination of METH use at hot environment may further enhance the brain damage-associated behavioral dysfunctions. METH is well known to induce severe oxidative stress leading to brain pathology. In this investigation, METH intoxication at hot environment was examined on brain pathology and to explore suitable strategies to induce neuroprotection. Accordingly, TiO2-nanowired delivery of H-290/51 (150 mg/kg, i.p.), a potent chain-breaking antioxidant in combination with mesenchymal stem cells (MSCs), is investigated in attenuating METH-induced brain damage at hot environment in model experiments. Our results show that nanodelivery of H-290/51 with MSCs significantly enhanced CBF and reduced BBB breakdown, edema formation and brain pathology following METH exposure at hot environment. These observations are the first to point out that METH exacerbated brain pathology at hot environment probably due to enhanced oxidative stress, and MSCs attenuate these adverse effects, not reported earlier.
Collapse
Affiliation(s)
- José Vicente Lafuente
- LaNCE, Department Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Dafin F Muresanu
- Department Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Z Ryan Tian
- Department Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
3
|
Ramdial K, Franco MC, Estevez AG. Cellular mechanisms of peroxynitrite-induced neuronal death. Brain Res Bull 2017; 133:4-11. [PMID: 28655600 DOI: 10.1016/j.brainresbull.2017.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/21/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022]
|
4
|
Kim HJ, Jung JI, Kim Y, Lee JS, Yoon YW, Kim J. Loss of hsp70.1 Decreases Functional Motor Recovery after Spinal Cord Injury in Mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:157-61. [PMID: 20631888 DOI: 10.4196/kjpp.2010.14.3.157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 01/30/2023]
Abstract
Heat shock proteins (HSPs) are specifically induced by various forms of stress. Hsp70.1, a member of the hsp70 family is known to play an important role in cytoprotection from stressful insults. However, the functional role of Hsp70 in motor function after spinal cord injury (SCI) is still unclear. To study the role of hsp70.1 in motor recovery following SCI, we assessed locomotor function in hsp70.1 knockout (KO) mice and their wild-type (WT) mice via the Basso, Beattie and Bresnahan (BBB) locomotor rating scale, before and after spinal hemisection at T13 level. We also examined lesion size in the spinal cord using Luxol fast blue/cresyl violet staining. One day after injury, KO and WT mice showed no significant difference in the motor function due to complete paralysis following spinal hemisection. However, when it compared to WT mice, KO mice had significantly delayed and decreased functional outcomes from 4 days up to 21 days after SCI. KO mice also showed significantly greater lesion size in the spinal cord than WT mice showed at 21 days after spinal hemisection. These results suggest that Hsp70 has a protective effect against traumatic SCI and the manipulation of the hsp70.1 gene may help improve the recovery of motor function, thereby enhancing neuroprotection after SCI.
Collapse
Affiliation(s)
- Hyun Jeong Kim
- Department of Dental Anesthesiology and Dental Research Institute, Seoul National University School of Dentistry, Seoul 110-744, Korea
| | | | | | | | | | | |
Collapse
|
5
|
Salauze L, van der Velden C, Lagroye I, Veyret B, Geffard M. Circulating antibodies to cysteinyl catecholamines in amyotrophic lateral sclerosis and Parkinson's disease patients. ACTA ACUST UNITED AC 2009; 6:226-33. [PMID: 16319026 DOI: 10.1080/14660820510044469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerative disease of unknown aetiology, affecting motor neurons. Many radical species, such as O(2)(-) NO, and ONOO(-), and lipoperoxidative products are involved, but not all processes have yet been identified. It is known that the oxidation of catecholamines leads to quinone formation. These orthoquinones react with the sulphhydril group of cysteine to produce neurotoxic cysteinyl catecholamine (Cyst-CA) neo-compounds. We synthesised Cyst-CA in order to mimic their endogenous formation. Using the ELISA method, circulating antibodies to Cyst-CA were found in sporadic ALS sera. First, the antibody titres were compared to those of controls and patients with other neurodegenerative diseases. Significant antibody levels were found for Cyst-CA. The G and A isotypes were found but not the M isotype. A second series of experiments showed that A and G titres were elevated, depending on the type of Cyst-CA and the onset of the disease. IgG to Cyst-3,4-dihydroxyphenylalanine (L-DOPA) were present in cases of bulbar and upper limb onsets. IgA to Cyst-homovanillic acid (HVA), Cyst-adrenaline (A), and Cyst-dopamine (DA) were found in lower limb onset. These results indirectly show that: 1) the oxidation of CA and the formation of Cyst-CA may be involved in ALS; 2) these radical processes have different targets depending on the onset of the disease.
Collapse
Affiliation(s)
- L Salauze
- Laboratoire PIOM, ENSCPB-EPHE, Pessac, France
| | | | | | | | | |
Collapse
|
6
|
Lee H, Park K, Kim JS, Lee SJ. Vasoactive intestinal peptide inhibits toll-like receptor 3-induced nitric oxide production in Schwann cells and subsequent sensory neuronal cell death in vitro. J Neurosci Res 2009; 87:171-8. [PMID: 18683246 DOI: 10.1002/jnr.21820] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously reported that polyinosinic-polycytidylic acids [poly(I:C)], a synthetic toll-like receptor 3 (TLR3) agonist, induce Schwann cell activation, which exerts neurotoxic effects on sensory neurons. In this study, we investigated the effects of vasoactive intestinal peptide (VIP), a neuropeptide implicated in nerve regeneration, on TLR3-induced Schwann cell activation. VIP receptors VPAC1 and VPAC2 were constitutively expressed in rat Schwann cells. VIP pretreatment inhibited TLR3-induced inducible nitric oxide synthase (iNOS) gene expression and NO production in Schwann cells. Studies on the intracellular signal transduction pathways indicate that the VIP effect is mediated by protein kinase A activation. VIP also inhibited the poly(I:C)-induced p38 activation that is responsible for the iNOS gene expression in Schwann cells. Finally, VIP inhibited dorsal rooyt ganglion neuronal cell death caused by NO produced in activated Schwann cells. Taken together, our data suggest that VIP exerts a neuroprotective effect by inhibiting neurotoxic Schwann cell activation.
Collapse
Affiliation(s)
- Hyunkyoung Lee
- Program in Molecular and Cellular Neuroscience, DRI, and Department of Oral Physiology, School of Dentistry, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
7
|
Larsen TR, Söderling AS, Caidahl K, Roepstorff P, Gramsbergen JB. Nitration of soluble proteins in organotypic culture models of Parkinson's disease. Neurochem Int 2008; 52:487-94. [PMID: 17900761 DOI: 10.1016/j.neuint.2007.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 08/15/2007] [Indexed: 12/21/2022]
Abstract
Protein nitration due to oxidative and nitrative stress has been linked to the pathogenesis of Parkinson's disease (PD), but its relationship to the loss of dopamine (DA) or tyrosine hydroxylase (TH) activity is not clear. Here we quantified protein-bound 3-nitrotyrosine (3-NT) by a novel gas chromatography/negative chemical ionization tandem mass spectrometry technique and DA and 3,4-dihydroxyphenylalanine (DOPA) by HPLC in tissues or medium of organotypic, mouse mesencephalon cultures after acute or chronic treatments with the peroxynitrite donor 3-morpholino-sydnonimine (SIN-1), the dopaminergic toxin 1-methyl-4-phenylpyridinium (MPP(+)) or the lipophilic complex I inhibitor rotenone. Incubation with SIN-1 (24 h) or MPP(+) treatments (48 h) caused dose-dependent protein nitration reaching a maximum of eightfold increase by 10 mM SIN-1 or twofold by 10 microM MPP(+), but significant DA depletions occurred at much lower concentrations of MPP(+) (1 microM). Chronic MPP(+) or rotenone treatments (3 weeks) caused maximum protein nitration by 1 microM (twofold) or 10nM (fourfold), respectively. Co-treatment with the nitric oxide synthase inhibitor l-NAME (300 microM) prevented protein nitration by MPP(+), but did not protect against MPP(+)-induced DA depletion or inhibition of TH activity. Acute incubation with 100 microM SIN-1 inhibited TH activity, which could be blocked by co-treatment with the tetrahydrobiopterin precursor l-sepiapterin, but tissue DA depletions required higher doses of SIN-1 (>1 mM, 24 h) and longer survival. In conclusion, protein nitration and TH activity or DA depletion are not directly related in these models.
Collapse
Affiliation(s)
- Trine R Larsen
- Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark, Denmark.
| | | | | | | | | |
Collapse
|
8
|
Burdo J, Schubert D, Maher P. Glutathione production is regulated via distinct pathways in stressed and non-stressed cortical neurons. Brain Res 2007; 1189:12-22. [PMID: 18048013 DOI: 10.1016/j.brainres.2007.10.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 09/26/2007] [Accepted: 10/28/2007] [Indexed: 01/22/2023]
Abstract
Peroxynitrite-mediated damage has been linked to numerous neurological and neurodegenerative diseases, including stroke, Alzheimer's and Parkinson's Diseases, amyotrophic lateral sclerosis and multiple sclerosis. Studies on the toxic effects of peroxynitrite in neurons have focused primarily on adverse effects resulting from the nitration of cellular proteins as the principal mode of toxicity while the consequences of the modulation of kinase pathways by peroxynitrite have received relatively less attention. Our results show that treatment of primary rat neurons with the peroxynitrite donor, SIN-1, leads to decreases in glutathione (GSH) levels and cell viability via a novel extracellular-signal-related kinase (ERK)/c-Myc phosphorylation pathway and a reduction in the nuclear expression of NF-E2-related factor-2 (Nrf2) that down-regulate the expression of glutamate cysteine ligase, the rate limiting enzyme for GSH synthesis. The flavonoid fisetin protects against the SIN-1-mediated alterations in ERK/c-Myc phosphorylation, nuclear Nrf2 levels, glutamate cysteine ligase levels, GSH concentration and cell viability. We also show that inhibition of mitogen-activated protein kinase kinase or Raf kinase can increase GSH levels in unstressed primary rat neurons through the same ERK/c-Myc phosphorylation pathway. Together, these results demonstrate that distinct signaling pathways modulate GSH metabolism in unstressed and stressed cortical neurons.
Collapse
Affiliation(s)
- Joseph Burdo
- The Salk Institute For Biological Studies, Cellular Neurobiology Laboratory, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | |
Collapse
|
9
|
Négrerie M, Martin JL, Nghiêm HO. Functionality of nitrated acetylcholine receptor: The two-step formation of nitrotyrosines reveals their differential role in effectors binding. FEBS Lett 2005; 579:2643-7. [PMID: 15862303 DOI: 10.1016/j.febslet.2005.03.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 03/20/2005] [Indexed: 10/25/2022]
Abstract
The presence of nitrotyrosines is associated with several neurodegenerative pathologies. We evaluated the functionality of the nicotinic acetylcholine receptor possessing nitrotyrosines. The spectrum of the nitrated receptor displays an absorption band characteristic of ortho-nitrophenol. The presence of carbamylcholine in the agonist site prevented the effect of nitration by tetranitromethane in some conditions. The nitration occurred with two discrete steps and pointed out the differential involvement of tyrosines in the binding of acetylcholine and neurotoxin. We concluded that at least two residues involved in agonist binding can be nitrated, which bring similar contributions to the binding energy of the neurotransmitter.
Collapse
Affiliation(s)
- Michel Négrerie
- INSERM U696, UMR7645, Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Palaiseau, France.
| | | | | |
Collapse
|
10
|
Koeberle PD, Gauldie J, Ball AK. Effects of adenoviral-mediated gene transfer of interleukin-10, interleukin-4, and transforming growth factor-beta on the survival of axotomized retinal ganglion cells. Neuroscience 2004; 125:903-20. [PMID: 15120851 DOI: 10.1016/s0306-4522(03)00398-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2003] [Indexed: 12/21/2022]
Abstract
Nitric oxide, synthesized by reactive microglia and astrocytes has been implicated in promoting neuronal degeneration observed in many diseases and insults of the central nervous system. We have recently shown that inducible nitric oxide synthase is expressed by retinal glial cells following optic nerve transection and that inhibition of nitric oxide synthesis enhances the survival of injured retinal ganglion cells. Anti-inflammatory cytokines including interleukin-10 (IL-10), interleukin-4 (IL-4), and transforming growth factor-beta (TGF-beta) have been shown to prevent inducible nitric oxide synthase expression, and inhibit nitric oxide synthesis by microglia and astrocytes in culture. In the present study, we examined the effects of adenoviral mediated gene transfer of anti-inflammatory cytokines on the survival of axotomized retinal ganglion cells. Intraocular administration of adenoviral vectors encoding interleukin-10 (Ad.IL-10) and interleukin-4 (Ad.IL-4) enhanced the survival of axotomized retinal ganglion cells at 14 days after axotomy. Adenoviral vectors encoding TGF-beta (Ad.TGF-beta) had no effect on retinal ganglion cell survival. Separate animals were pretreated by injection of Ad.IL-10 or Ad.IL-4 into the superior colliculus (s.c.), the major target of ganglion cells, 7 days prior to axotomy. S.c. administration of Ad.IL-10 or Ad.IL-4 significantly increased ganglion cell survival compared with intraocular injection. IL-10 and IL-4 gene transfer also reduced the density of infiltrating ED1 positive monocytes in the nerve fiber layer at 14 days postaxotomy. Ad.TGF-beta increased the density of ED1 positive monocytes infiltrating the nerve fiber layer after axotomy. Vectors encoding IL-10 or IL-4 also decreased nitrotyrosine immunoreactivity in the inner retina at 7 days postaxotomy, suggesting that these cytokines protect retinal ganglion cells from peroxynitrite formation that results from nitric oxide synthesis by activated glial cells. The present study has implications for the treatment of CNS injury and diseases that involve reactive microglia and astrocytes. Our results suggest that interleukin-10 and interleukin-4 may help prevent neurodegeneration caused by the activation of glial cells after CNS injury.
Collapse
Affiliation(s)
- P D Koeberle
- Department of Pathology and Molecular Medicine, McMaster University, Anatomy, HSC 1R1, 1200 Main Street West, Hamilton, Canada
| | | | | |
Collapse
|
11
|
Manabe Y, Nagano I, Gazi MSA, Murakami T, Shiote M, Shoji M, Kitagawa H, Abe K. Glial cell line-derived neurotrophic factor protein prevents motor neuron loss of transgenic model mice for amyotrophic lateral sclerosis. Neurol Res 2003; 25:195-200. [PMID: 12635522 DOI: 10.1179/016164103101201193] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Effects of glial cell line-derived neurotrophic factor (GDNF) were studied in transgenic (Tg) mice model for amyotrophic lateral sclerosis. GDNF protein or vehicle was injected three times a week from 35 weeks of age into the right gastrocnemius muscle of Tg mice carrying mutant human Cu/Zn superoxide dismutase gene, and histological analysis was performed at 46 weeks. Clinical data showed a tendency of improvement, but was not significantly different between the two animal groups. In contrast, total number of and phospho-Akt (p-Akt) positive large motor neurons in the treated side was significantly more preserved in GDNF-treated group than in vehicle group (p < 0.05). Immunoreactivity of phospho-ERK and active caspases-3 and -9 showed no difference. These results indicate that the intramuscular injection of GDNF protein prevented motor neuron loss while preserving survival p-Akt signal and without affecting caspase activations, suggesting a future possibility for the therapy of the disease.
Collapse
Affiliation(s)
- Y Manabe
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Warita H, Manabe Y, Murakami T, Shiote M, Shiro Y, Hayashi T, Nagano I, Shoji M, Abe K. Tardive decrease of astrocytic glutamate transporter protein in transgenic mice with ALS-linked mutant SOD1. Neurol Res 2002; 24:577-81. [PMID: 12238624 DOI: 10.1179/016164102101200384] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The expressions of glutamate transporter proteins were immunocytochemically examined in the spinal cord of transgenic mice harboring a Gly93 --> Ala (G93A) mutant human SOD1 gene. Astroglial EAAT2 protein level was preserved in the ventral horn even after the beginning of paralysis, and finally decreased at terminal stage of the disease (35 weeks of age), when neuronal EAAT3 protein level was also decreased. In contrast, glial fibrillary acidic protein (GFAP) immunoreactivity progressively increased from 25 weeks of age in the ventral horn. The present results show interesting dissociative expressions of astroglial proteins EAAT2 and GFAP in the same ventral horn, but suggest not an early and primary role of EAAT2 in the motoneuronal death of this model.
Collapse
Affiliation(s)
- H Warita
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Manabe Y, Warita H, Murakami T, Shiote M, Hayashi T, Omori N, Nagano I, Shoji M, Abe K. Early decrease of the immunophilin FKBP 52 in the spinal cord of a transgenic model for amyotrophic lateral sclerosis. Brain Res 2002; 935:124-8. [PMID: 12062482 DOI: 10.1016/s0006-8993(02)02466-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Expressions of immunophilin FKBP-12 and FKBP-52 were examined in the spinal cord of transgenic mice with an ALS-linked mutant Cu/Zn superoxide dismutase (SOD1) gene. The immunoreactivity of FKBP-12 was present predominantly in the cytoplasm, but did not show a difference between age-matched wild type and transgenic (Tg) mice at 25 and 35 weeks. In contrast, the immunoreactivity of FKBP-52 was predominantly present in the nucleus, which progressively declined only in the Tg mice as early as an early presymptomatic stage at 25 weeks of age in the anterior horn neurons. The present result suggests that the downregulation of FKBP-52 may be involved in the pathogenesis in the early stages of amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Y Manabe
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|