1
|
Kumarasamy M, Sosnik A. The Nose-To-Brain Transport of Polymeric Nanoparticles Is Mediated by Immune Sentinels and Not by Olfactory Sensory Neurons. ADVANCED BIOSYSTEMS 2019; 3:e1900123. [PMID: 32648679 DOI: 10.1002/adbi.201900123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/02/2019] [Indexed: 11/11/2022]
Abstract
The nose-to-brain (N-to-B) transport mechanism of nanoparticles through the olfactory epithelium (OE) is not fully understood. Most research utilized nasal epithelial cell models completely deprived of olfactory cells. Aiming to shed light into key cellular pathways, in this work, for the first time, the interaction of polymeric nanoparticles in a 17-483 nm size range and with neutral and negatively and positively charged surfaces with primary olfactory sensory neurons, cortical neurons, and microglia isolated from olfactory bulb (OB), OE, and cortex of newborn rats is investigated. After demonstrating the good cell compatibility of the different nanoparticles, the nanoparticle uptake by confocal laser scanning fluorescence microscopy is monitored. Our findings reveal that neither olfactory nor forebrain neurons internalize nanoparticles. Conversely, it is demonstrated that olfactory and cortical microglia phagocytose the nanoparticles independently of their features. Overall, our findings represent the first unambiguous evidence of the possible involvement of microglia in N-to-B nanoparticle transport and the unlikely involvement of neurons. Furthermore, this approach emerges as a completely new experimental tool to screen the biocompatibility, uptake, and transport of nanomaterials by key cellular players of the N-to-B pathway in nanosafety and nanotoxicology and nanomedicine.
Collapse
Affiliation(s)
- Murali Kumarasamy
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
2
|
Liu Q, Hu N, Zhang F, Zhang D, Hsia KJ, Wang P. Olfactory epithelium biosensor: odor discrimination of receptor neurons from a bio-hybrid sensing system. Biomed Microdevices 2013; 14:1055-61. [PMID: 23053447 DOI: 10.1007/s10544-012-9705-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bio-hybrid systems provide an opportunity for integrating a living bio-active unit and a proper biosensing system, to employ the unique properties of the bio-active unit. The biological olfactory system can sense and identify thousands of trace odors. The purpose of this study is to combine olfactory epithelium with microelectrode array (MEA) to establish an olfactory epithelium-MEA hybrid system to record the odor-induced electrophysiological activities of the tissue. In our experiments, extracellular potential of olfactory receptor neurons in intact epithelium were measured in the presence of ethyl ether, acetic acid, butanedione, and acetone, respectively. After the odor-induced response signals were analyzed in the time and frequency domain, the temporal characteristics of response signals were extracted. We found that olfactory epithelium-MEA hybrid system can reflect the in vitro odor information of different signal characteristics and firing modes in vitro. The bio-hybrid sensing system can represent a useful instrument to sense and detect the odorant molecules with well recognizing patterns. With the development of sensor technology, bio-hybrid systems will represent emerging and promising platforms for wide applications, ranging from health care to environmental monitoring.
Collapse
Affiliation(s)
- Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | | | | | | | | | | |
Collapse
|
3
|
Primary culture of embryonic rat olfactory receptor neurons. In Vitro Cell Dev Biol Anim 2012; 48:650-9. [PMID: 23150136 DOI: 10.1007/s11626-012-9560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
Embryonic cells are very robust in surviving dissection and culturing protocols and easily adapt to their in vitro environment. Despite these advantages, research in the olfactory field on cultured embryonic olfactory neurons is sparse. In this study, two primary rat olfactory explant cultures of different embryonic d (E17 and E20) were established, comprising epithelium and bulb. The functionality of these neurons was tested by measuring intracellular calcium responses to cAMP-inducing agents forskolin (FSK) and 3-isobutyl-1-methylxanthine (IBMX) with fluorescence microscopy. For E17, the responsive cell fraction increased over time, from an initial 3% at the 1 d in vitro (DIV) to a maximum of 19% at 11 DIV. The response of E20 neurons fluctuated over time around a more or less stable 13%. A logistic regression analysis indicated a significant difference between both embryonic d in the response to FSK + IBMX. In addition, of these functional neurons, 23.3% of E17 and 54.3% of E20 cultures were responsive to the odorant isoamyl acetate.
Collapse
|
4
|
Cell surface expression of 27C7 by neonatal rat olfactory ensheathing cells in situ and in vitro is independent of axonal contact. Histochem Cell Biol 2011; 135:397-408. [DOI: 10.1007/s00418-011-0796-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2011] [Indexed: 01/09/2023]
|
5
|
Chen Q, Xiao L, Liu Q, Ling S, Yin Y, Dong Q, Wang P. An olfactory bulb slice-based biosensor for multi-site extracellular recording of neural networks. Biosens Bioelectron 2011; 26:3313-9. [PMID: 21295963 DOI: 10.1016/j.bios.2011.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 12/11/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Multi-site recording is the important component for studies of the neural networks. In order to investigate the electrophysiological properties of the olfactory bulb neural networks, we developed a novel slice-based biosensor for synchronous measurement with multi-sites. In the present study, the horizontal olfactory bulb slices with legible layered structures were prepared as the sensing element to construct a tissue-based biosensor with the microelectrode array. This olfactory bulb slice-based biosensor was used to simultaneously record the extracellular potentials from multi-positions. Spike detection and cross-correlation analysis were applied to evaluate the electrophysiological activities. The spontaneous potentials as well as the induced responses by glutamic acid took on different electrophysiological characteristics and firing patterns at the different sites of the olfactory bulb slice. This slice-based biosensor can realize multi-site synchronous monitoring and is advantageous for searching after the firing patterns and synaptic connections in the olfactory bulb neural networks. It is also helpful for further probing into olfactory information encoding of the olfactory neural networks.
Collapse
Affiliation(s)
- Qingmei Chen
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
6
|
Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol 2009; 88:221-45. [DOI: 10.1016/j.pneurobio.2009.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 12/09/2008] [Accepted: 01/07/2009] [Indexed: 11/24/2022]
|
7
|
Markopoulos F, Neubauer FB, Berger T, Scotti AL. Reassembling a system from the sensor to cerebral representation: the olfactory system in vitro. Neuroscience 2008; 156:1048-63. [PMID: 18773940 DOI: 10.1016/j.neuroscience.2008.07.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 07/17/2008] [Accepted: 07/17/2008] [Indexed: 11/24/2022]
Abstract
An odorant's code is represented by activity in a dispersed ensemble of olfactory sensory neurons in the nose, activation of a specific combination of groups of mitral cells in the olfactory bulb and is considered to be mapped at divergent locations in the olfactory cortex. We present here an in vitro model of the mammalian olfactory system developed to gain easy access to all stations of the olfactory pathway. Mouse olfactory epithelial explants are cocultured with a brain slice that includes the olfactory bulb and olfactory cortex areas and maintains the central olfactory pathway intact and functional. Organotypicity of bulb and cortex is preserved and mitral cell axons can be traced to their target areas. Calcium imaging shows propagation of mitral cell activity to the piriform cortex. Long term coculturing with postnatal olfactory epithelial explants restores the peripheral olfactory pathway. Olfactory receptor neurons renew and progressively acquire a mature phenotype. Axons of olfactory receptor neurons grow out of the explant and rewire into the olfactory bulb. The extent of reinnervation exhibits features of a postlesion recovery. Functional imaging confirms the recovery of part of the peripheral olfactory pathway and shows that activity elicited in olfactory receptor neurons or the olfactory nerves is synaptically propagated into olfactory cortex areas. This model is the first attempt to reassemble a sensory system in culture, from the peripheral sensor to the site of cortical representation. It will increase our knowledge on how neuronal circuits in the central olfactory areas integrate sensory input and counterbalance damage.
Collapse
|
8
|
Pinato G, Rievaj J, Pifferi S, Dibattista M, Masten L, Menini A. Electroolfactogram responses from organotypic cultures of the olfactory epithelium from postnatal mice. Chem Senses 2008; 33:397-404. [PMID: 18303030 DOI: 10.1093/chemse/bjn007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Organotypic cultures of the mouse olfactory epithelium connected to the olfactory bulb were obtained with the roller tube technique from postnatal mice aged between 13 and 66 days. To test the functionality of the cultures, we measured electroolfactograms (EOGs) at different days in vitro (DIV), up to 7 DIV, and we compared them with EOGs from identical acute preparations (0 DIV). Average amplitudes of EOG responses to 2 mixtures of various odorants at concentrations of 1 mM or 100 microM decreased in cultures between 2 and 5 DIV compared with 0 DIV. The percentage of responsive cultures was 57%. We also used the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) to trigger the olfactory transduction cascade bypassing odorant receptor activation. Average amplitudes of EOG responses to 500 microM IBMX were not significantly different in cultures up to 6 DIV or 0 DIV, and the average percentage of responsive cultures between 2 and 5 DIV was 72%. The dose-response curve to IBMX measured in cultures up to 7 DIV was similar to that at 0 DIV. Moreover, the percentage of EOG response to IBMX blocked by niflumic acid, a blocker of Ca-activated Cl channels, was not significantly different in cultured or acute preparations.
Collapse
Affiliation(s)
- Giulietta Pinato
- Neurobiology Sector, International School for Advanced Studies, SISSA, SS 14 Km 163.5, 34012 Basovizza, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
9
|
David V, Guignandon A, Martin A, Malaval L, Lafage-Proust MH, Rattner A, Mann V, Noble B, Jones DB, Vico L. Ex Vivo Bone Formation in Bovine Trabecular Bone Cultured in a Dynamic 3D Bioreactor Is Enhanced by Compressive Mechanical Strain. Tissue Eng Part A 2008; 14:117-26. [DOI: 10.1089/ten.a.2007.0051] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Valentin David
- INSERM U890, Laboratoire de Biologie du Tissu Osseux, IFR143, IFRESIS, Université Jean Monnet, St. Etienne, F-42023, France
- Present address: The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Alain Guignandon
- INSERM U890, Laboratoire de Biologie du Tissu Osseux, IFR143, IFRESIS, Université Jean Monnet, St. Etienne, F-42023, France
| | - Aline Martin
- INSERM U890, Laboratoire de Biologie du Tissu Osseux, IFR143, IFRESIS, Université Jean Monnet, St. Etienne, F-42023, France
- Present address: The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Luc Malaval
- INSERM U890, Laboratoire de Biologie du Tissu Osseux, IFR143, IFRESIS, Université Jean Monnet, St. Etienne, F-42023, France
| | - Marie-Hélène Lafage-Proust
- INSERM U890, Laboratoire de Biologie du Tissu Osseux, IFR143, IFRESIS, Université Jean Monnet, St. Etienne, F-42023, France
| | - Aline Rattner
- INSERM U890, Laboratoire de Biologie du Tissu Osseux, IFR143, IFRESIS, Université Jean Monnet, St. Etienne, F-42023, France
| | - Val Mann
- Scottish Mechanotransduction Consortium, Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Brendon Noble
- Scottish Mechanotransduction Consortium, Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - David B. Jones
- Department of Experimental Orthopaedics and Biomechanics, Philipps University, Marburg, Germany
| | - Laurence Vico
- INSERM U890, Laboratoire de Biologie du Tissu Osseux, IFR143, IFRESIS, Université Jean Monnet, St. Etienne, F-42023, France
| |
Collapse
|