1
|
Kato A, Tani A, Kamijo F, Otsuka T, Kamiya T, Hara H. Involvement of iron ions in 6-hydroxydopamine-induced disruption of intracellular copper metabolism. Free Radic Res 2025; 59:129-137. [PMID: 39930764 DOI: 10.1080/10715762.2025.2465276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/10/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Recently, disorders in metabolism of metals, including copper (Cu) and iron (Fe), have been reported to be linked to the pathogenesis of PD. We previously demonstrated that 6-hydoroxydopamine (6-OHDA), a neurotoxin used for the production of PD model animals, decreases Atox1, a Cu chaperone, and ATP7A, a Cu transporter, and disrupts intracellular Cu metabolism in human neuroblastoma SH-SY5Y cells. However, the exact mechanisms remain unclear. Meanwhile, intracellular Fe modulates 6-OHDA-induced cellular responses. In this study, we investigated whether Fe participates in 6-OHDA-induced abnormality in Cu metabolism. 6-OHDA-induced reactive oxygen species (ROS) production and cellular injury were suppressed by Fe chelators, deferoxamine and 2,2'-bipyridyl (BIP). These chelators also restored 6-OHDA-induced degradation of Atox1 and ATP7A proteins and subsequent Cu accumulation, indicating that intracellular Fe is involved in the disruption of Cu homeostasis associated with 6-OHDA. Atox1 has redox-sensitive cysteine (Cys) residues in its Cu-binding site. The Cys residues of Atox1 were oxidized by 6-OHDA, and BIP suppressed their oxidation. Moreover, the replacement of Cys with histidine in the Cu-binding site conferred resistance to 6-OHDA-induced Atox1 degradation. These results suggest that oxidized modification of Atox1 by 6-OHDA is likely to accelerate its degradation. Thus, we conclude that Fe and Cu metabolisms are closely related to each other in the pathogenesis of PD.
Collapse
Affiliation(s)
- Ami Kato
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Ayano Tani
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Fuka Kamijo
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomohiro Otsuka
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
2
|
Hiramatsu G, Mizutani R, Toume K, Inada Y, Sawahata M, Uta D, Komatsu K, Kume T. Preventive Effects of Psoraleae Semen Extracts on Cognitive Dysfunction in Alzheimer's Disease Model App NL-P-F Mice. Biol Pharm Bull 2025; 48:75-79. [PMID: 39894558 DOI: 10.1248/bpb.b24-00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Oxidative stress and neuroinflammation accompanied by microglial activation are increased in Alzheimer's disease (AD) and contribute to the pathogenesis of AD. Nuclear factor erythroid-derived 2-related factor 2 (Nrf2) is a master transcription factor that acts as an endogenous defense mechanism against oxidative stress and inflammation and is a potential target for preventing AD. Psoraleae Semen (PS) reportedly has antioxidant and anti-inflammatory effects. This study aimed to examine the effects of PS extract (PSE) on Nrf2 activation and prevention of cognitive dysfunction in AppNL-P-F AD model mice. The effects of PSE on antioxidant response element (ARE) activity and cytoprotection in PC12 cells and on microglial activation in BV-2 cells were evaluated. PSE showed high ARE activity and prevented 6-hydroxydopamine-induced cytotoxicity in PC12 cells. Moreover, PSE suppressed lipopolysaccharide-induced nitric oxide production in BV-2 cells. Oral administration of PSE prevented cognitive dysfunction in AppNL-P-F mice without affecting motor function. Our results support that PSE can contribute to the development of new preventive and therapeutic agents for AD focusing on Nrf2 activation.
Collapse
Affiliation(s)
- Genki Hiramatsu
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Reina Mizutani
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kazufumi Toume
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Department of Natural Medicine, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto 610-0395, Japan
| | - Yosuke Inada
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Masahito Sawahata
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Katsuko Komatsu
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Toshiaki Kume
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
3
|
Vestuto V, Conte M, Vietri M, Mensitieri F, Santoro V, Di Muro A, Alfieri M, Moros M, Miranda MR, Amante C, Delli Carri M, Campiglia P, Dal Piaz F, Del Gaudio P, De Tommasi N, Leone A, Moltedo O, Pepe G, Cappetta E, Ambrosone A. Multiomic Profiling and Neuroprotective Bioactivity of Salvia Hairy Root-Derived Extracellular Vesicles in a Cellular Model of Parkinson's Disease. Int J Nanomedicine 2024; 19:9373-9393. [PMID: 39286353 PMCID: PMC11403015 DOI: 10.2147/ijn.s479959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Purpose Extracellular vesicles (EVs) are promising tools for nanomedicine and nanobiotechnology. The purification of mammalian-derived EVs involves intensive processes, and their therapeutic application raises multiple safety and regulatory issues. Plants have the potential to serve as nonconventional sources of therapeutically relevant EVs. In this context, we recently identified hairy roots (HRs) of medicinal plants as a novel biotechnological platform to produce EVs for human health. Methods Herein, we report the purification, omics profiling, and bioactivity of EVs isolated from HRs of the medicinal plants S. sclarea and S. dominica. EVs were isolated from conditioned media of HR cultures using differential ultracentrifugation (dUC) and size exclusion chromatography (SEC). The isolated EVs were characterized by nanoparticle tracking analysis (NTA) and electron microscopy. The proteomic and metabolomic profiles of the EVs were determined using mass spectrometry. Uptake studies and bioactivity assays, including confocal microscopy, MTT, flow cytometry, ROS quantification, and untargeted metabolomics analyses, were conducted in SH-SY5Y cells treated with the neurotoxin 6-hydroxydopamine (6-OHDA) to evaluate the therapeutic potential of EVs in an in vitro model of Parkinson's disease. Results S. sclarea HRs released nanosized round-shaped EVs with a distinctive molecular signature. HR EVs from S. sclarea and S. dominica revealed conserved cargo of secondary metabolites, predominantly triterpenoids, which are known for their antioxidant properties. We showed that HR EVs are safe, enter the cells, and strongly inhibit apoptosis in a cellular model of Parkinson's disease. Cellular metabolomics revealed that EVs preserved metabolic homeostasis and mitigated cellular oxidative stress when co-administered with 6-OHDA. Mechanistically, HR EVs inhibited 6-OHDA autoxidation and substantially reduced the accumulation of its oxidative products, which are responsible for 6-OHDA-induced toxicity. Conclusion Collectively, our findings provide compelling evidence that EVs isolated from the hairy roots of Salvia species are promising, non-mammalian alternative for the design of novel therapies targeting neurological disorders.
Collapse
Affiliation(s)
- Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Marisa Conte
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Mariapia Vietri
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, 84081, Italy
| | - Valentina Santoro
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Anna Di Muro
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Mariaevelina Alfieri
- Clinical Pathology, Santobono-Pausilipon Children's Hospital, AORN, Naples, 80122, Italy
| | - Maria Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Chiara Amante
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | | | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, 84081, Italy
- Operative Unit of Clinical Pharmacology, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, 84131, Italy
| | | | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Antonietta Leone
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - Elisa Cappetta
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| | - Alfredo Ambrosone
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Italy
| |
Collapse
|
4
|
Tóth K, S Nagy K, Güler Z, Juhász ÁG, Pállinger É, Varga G, Sarac AS, Zrínyi M, Jedlovszky-Hajdú A, Juriga D. Characterization of Electrospun Polysuccinimide-Dopamine Conjugates and Effect on Cell Viability and Uptake. Macromol Biosci 2023; 23:e2200397. [PMID: 36592964 DOI: 10.1002/mabi.202200397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/14/2022] [Indexed: 01/04/2023]
Abstract
Biocompatible nanofibrous systems made by electrospinning have been studied widely for pharmaceutical applications since they have a high specific surface and the capability to make the entrapped drug molecule amorphous, which increases bioavailability. By covalently conjugating drugs onto polymers, the degradation of the drug as well as the fast clearance from the circulation can be avoided. Although covalent polymer-drug conjugates have a lot of advantages, there is a lack of research focusing on their nano-formulation by electrospinning. In this study, polysuccinimide (PSI) based electrospun fibrous meshes conjugated with dopamine (DA) are prepared. Fiber diameter, mechanical properties, dissolution kinetics and membrane permeability are thoroughly investigated, as these are crucial for drug delivery and implantation. Dopamine release kinetics prove the prolonged release that influenced the viability and morphology of periodontal ligament stem cells (PDLSCs) and SH-SY5Y cells. The presence of dopamine receptors on both cell types is also demonstrated and the uptake of the conjugates is measured. According to flow cytometry analysis, the conjugates are internalized by both cell types, which is influenced by the chemical structure and physical properties. In conclusion, electrospinning of PSI-DA conjugates alters release kinetics, meanwhile, conjugated dopamine can play a key role in cellular uptake.
Collapse
Affiliation(s)
- Krisztina Tóth
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Krisztina S Nagy
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.,Department of Oral Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Zeliha Güler
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, 34469, Turkey.,Department of Obstetrics and Gynecology, Amsterdam Reproduction and Development, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, the Netherlands
| | - Ákos György Juhász
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.,Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - A Sezai Sarac
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Miklós Zrínyi
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Angéla Jedlovszky-Hajdú
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Dávid Juriga
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| |
Collapse
|
5
|
Arya Y, Bera SK, Priego JL, Jiménez-Aparicio R, Lahiri GK. Bidirectional noninnocence of hinge-like deprotonated bis-lawsone on selective ruthenium platform: a function of varying ancillary ligands. Dalton Trans 2022; 51:10441-10456. [PMID: 35762823 DOI: 10.1039/d2dt01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work aimed to obtain discrete heavier metal complexes of unperturbed deprotonated bis-lawsone (hinge-like H2L = 2,2'-bis(3-hydroxy-1,4-napthoquinone). This is primarily due to its limited examples with lighter metal ions (Co, Zn, and Ga) and the fact that our earlier approach with the osmium ion facilitated its functionalisation. Herein, we demonstrated the successful synthesis and structural characterisation of L2--derived diruthenium [(bpy)2RuII(μ-L2-)RuII(bpy)2](ClO4)2 [1](ClO4)2 (S = 0), (acac)2RuIII(μ-L2-)RuIII(acac)22 (S = 1) and monoruthenium (pap)2Ru(L2-) 3 (S = 0) derivatives (bpy = 2,2'-bipyridine, acac = acetylacetonate, and pap = 2-phenylazopyridine). The crystal structures established that (i) O,O-/O,O- donating five-membered bis-bidentate and O-,O- donating seven-membered bidentate chelating modes of deprotonated L2- in rac (ΔΔ/ΛΛ) diastereomeric [1](ClO4)2, 2 and 3, respectively. (ii) The L2- bridging unit in [1](ClO4)2, 2 and 3 underwent twisting its two naphthoquinone rings with respect to the ring connecting C-C bond by 73.01°, 62.15° and 59.12°, respectively. (iii) Intermolecular π-π interactions (∼3.5 Å) between the neighbouring molecules. The paramagnetic complex 2 (S = 1) with two non-interacting Ru(III) (S = 1/2) ions exhibited weak antiferromagnetic coupling only at very low temperatures. In agreement with the magnetic results, 2 displayed typical RuIII-based anisotropic EPR in CH3CN (<g>/Δg: 2.314/0.564) but without any forbidden g1/2 signal at 120 K. The complexes exhibited multiple redox processes in CH3CN in the experimental potential window of ± 2.0 V versus SCE. The analysis of the redox steps via a combined experimental and theoretical (DFT/TD-DFT) approach revealed the involvement of L2- to varying extents in both the oxidative and reductive processes as a consequence of its bidirectional redox non-innocent feature. The mixing of the frontier orbitals of the metal ion and L2- due to their closeness in energy indeed led to the resonating electronic form in certain redox states instead of any precise electronic structural state.
Collapse
Affiliation(s)
- Yogita Arya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Sudip Kumar Bera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - José Luis Priego
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Reyes Jiménez-Aparicio
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
6
|
Fathi M, Vakili K, Yaghoobpoor S, Qadirifard MS, Kosari M, Naghsh N, Asgari taei A, Klegeris A, Dehghani M, Bahrami A, Taheri H, Mohamadkhani A, Hajibeygi R, Rezaei Tavirani M, Sayehmiri F. Pre-clinical Studies Identifying Molecular Pathways of Neuroinflammation in Parkinson's Disease: A Systematic Review. Front Aging Neurosci 2022; 14:855776. [PMID: 35912090 PMCID: PMC9327618 DOI: 10.3389/fnagi.2022.855776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/23/2022] [Indexed: 12/09/2022] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by neuroinflammation, formation of Lewy bodies, and progressive loss of dopaminergic neurons in the substantia nigra of the brain. In this review, we summarize evidence obtained by animal studies demonstrating neuroinflammation as one of the central pathogenetic mechanisms of PD. We also focus on the protein factors that initiate the development of PD and other neurodegenerative diseases. Our targeted literature search identified 40 pre-clinical in vivo and in vitro studies written in English. Nuclear factor kappa B (NF-kB) pathway is demonstrated as a common mechanism engaged by neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), as well as the bacterial lipopolysaccharide (LPS). The α-synuclein protein, which plays a prominent role in PD neuropathology, may also contribute to neuroinflammation by activating mast cells. Meanwhile, 6-OHDA models of PD identify microsomal prostaglandin E synthase-1 (mPGES-1) as one of the contributors to neuroinflammatory processes in this model. Immune responses are used by the central nervous system to fight and remove pathogens; however, hyperactivated and prolonged immune responses can lead to a harmful neuroinflammatory state, which is one of the key mechanisms in the pathogenesis of PD.
Collapse
Affiliation(s)
- Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Qadirifard
- Department of Nursing and Midwifery, Islamic Azad University, Tehran, Iran
- Department of Nursing, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Mohammadreza Kosari
- The First Clinical College, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Navid Naghsh
- Department of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Afsaneh Asgari taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| | - Mina Dehghani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ashkan Bahrami
- Faculty of Medicine, Kashan University of Medical Science, Kashan, Iran
| | - Hamed Taheri
- Dental School, Kazan Federal University, Kazan, Russia
| | - Ashraf Mohamadkhani
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramtin Hajibeygi
- Department of Cardiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mostafa Rezaei Tavirani
| | - Fatemeh Sayehmiri
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Fatemeh Sayehmiri
| |
Collapse
|
7
|
Protective Effects of Jujubosides on 6-OHDA-Induced Neurotoxicity in SH-SY5Y and SK-N-SH Cells. Molecules 2022; 27:molecules27134106. [PMID: 35807356 PMCID: PMC9268520 DOI: 10.3390/molecules27134106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
6-hydroxydopamine (6-OHDA) is used to induce oxidative damage in neuronal cells, which can serve as an experimental model of Parkinson’s disease (PD). Jujuboside A and B confer free radical scavenging effects but have never been examined for their neuroprotective effects, especially in PD; therefore, in this study, we aimed to investigate the feasibility of jujubosides as protectors of neurons against 6-OHDA and the underlying mechanisms. 6-OHDA-induced neurotoxicity in the human neuronal cell lines SH-SY5Y and SK-N-SH, was used to evaluate the protective effects of jujubosides. These findings indicated that jujuboside A and B were both capable of rescuing the 6-OHDA-induced loss of cell viability, activation of apoptosis, elevation of reactive oxygen species, and downregulation of the expression levels of superoxide dismutase, catalase, and glutathione peroxidase. In addition, jujuboside A and B can reverse a 6-OHDA-elevated Bax/Bcl-2 ratio, downregulate phosphorylated PI3K and AKT, and activate caspase-3, -7, and -9. These findings showed that jujubosides were capable of protecting both SH-SY5Y and SK-N-SH neuronal cells from 6-OHDA-induced toxicity via the rebalancing of the redox system, together with the resetting of the PI3K/AKT apoptotic signaling cascade. In conclusion, jujuboside may be a potential drug for PD prevention.
Collapse
|
8
|
Fucoxanthin Prevents 6-OHDA-Induced Neurotoxicity by Targeting Keap1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6688708. [PMID: 33777321 PMCID: PMC7972864 DOI: 10.1155/2021/6688708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
As the most abundant marine carotenoid extracted from seaweeds, fucoxanthin (FUC) is considered to have excellent neuroprotective activity. However, the target of FUC for its neuroprotective properties remains largely unclear. Oxidative stress is one of the initiating factors causing neuronal cell loss and necrosis, and it is also an important inducement of Parkinson's disease (PD). In the present study, the neuroprotective effect of FUC was assessed using a 6-hydroxydopamine- (6-OHDA-) induced neurotoxicity model. FUC suppressed 6-OHDA-induced accumulation of intracellular ROS, the disruption of mitochondrial membrane potential, and cell apoptosis through the Nrf2-ARE pathway. Keap1 as a repressor of Nrf2 can regulate the activity of Nrf2. Here, the biolayer interferometry (BLI) assay demonstrated that FUC specifically targeted Keap1 and inhibited the interaction between Keap1 and Nrf2. FUC bound to the hydrophobic region of Keap1 pocket and formed hydrogen bonding interactions with Arg415 and Tyr525. Besides, it also dose-dependently upregulated the expressions of antioxidant enzymes, such as nicotinamide heme oxygenase-1, glutamate-cysteine ligase modifier subunit, and glutamate-cysteine ligase catalytic subunit, in 6-OHDA-induced PC12 cells. In 6-OHDA-exposed zebrafish, FUC pretreatment significantly increased the total swimming distance of zebrafish larvae and improved the granular region of the brain tissue damage. These results suggested that FUC could protect the neuronal cells against 6-OHDA-induced injury via targeting Keap1.
Collapse
|
9
|
Reddy IR, Tarafder K. Theoretical Investigations of Electronic Structure and Magnetic and Optical Properties of Transition-Metal Dinuclear Molecules. ACS OMEGA 2020; 5:24520-24525. [PMID: 33015469 PMCID: PMC7528315 DOI: 10.1021/acsomega.0c02992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
In this work, we have reported the electronic structure, spin state, and optical properties of a new class of transition-metal (TM) dinuclear molecules (TM = Cr, Mn, Fe, Co, and Ni). The stability of these molecules has been analyzed from the vibration spectra obtained by using density functional theory (DFT) calculations. The ground-state spin configuration of the tetra-coordinated TM atom in each molecule has been predicted from the relative total energy differences in different spin states of the molecule. The DFT + U method has been used to investigate the precise ground-state spin configuration of each molecule. We further performed time-dependent DFT calculations to study the optical properties of these molecules. The planar geometric structure remains intact in most of the cases; hence, these molecules are expected to be well adsorbed and self-assembled on metal substrates. In addition, the optical characterization of these molecules indicates that the absorption spectra have a large peak in the blue-light wavelength range; therefore, it could be suitable for advanced optoelectronic device applications. Our work promotes further computational and experimental studies on TM dinuclear molecules in the field of molecular spintronics and optoelectronics.
Collapse
|
10
|
Hsu SW, Hsu PC, Chang WS, Yu CC, Wang YC, Yang JS, Tsai FJ, Chen KY, Tsai CW, Bau DT. Protective effects of valproic acid on 6-hydroxydopamine-induced neuroinjury. ENVIRONMENTAL TOXICOLOGY 2020; 35:840-848. [PMID: 32167238 DOI: 10.1002/tox.22920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Oxidative stress may play critically important roles in the etiology of Parkinson's disease (PD). 6-Hydroxydopamine (6-OHDA) is a physiological neurotoxin reported to induce oxidative-induced apoptosis of dopaminergic neurons in PD mice models. Valproic acid (VPA), a clinical mood stabilizer, is a HDAC inhibitor with neuroprotective capacities. In the study, we aim at examining the feasibility of VPA as a protector for dopaminergic neurons against damage from 6-OHDA, and the intracellular mechanisms. The 6-OHDA-induced neurotoxicity to the human dopaminergic cell line SH-SY5Y was applied for examining VPA protective effects. Pretreatment with VPA was able to improve cell viability and reduce 6-OHDA-induced reactive oxygen species. Furthermore, a significant suppression of apoptotic caspases including cleaved caspase-3, caspase-7, and caspase-9 was observed. The results also revealed VPA decreased the 6-OHDA-induced Bax/Bcl2 ratio, as measured at protein level. These novel findings indicate that VPA may be capable of protecting the SH-SY5Y dopaminergic neuronal cells from 6-OHDA-induced toxicity via the deceasing of apoptotic caspases (cleaved caspase-3, caspase-7, and caspase-9) and reducing of the Bax/Bcl2 ratio. Very possibly, VPA could serve as not only a mood stabilizer but also a potential antidote for PD prevention.
Collapse
Affiliation(s)
- Shih-Wei Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- National Defense Medical Center, Taipei, Taiwan
- Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Pei-Chen Hsu
- Department of Pediatrics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Chih Yu
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yun-Chi Wang
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jai-Sing Yang
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Kai-Yuan Chen
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
11
|
Varešlija D, Tipton KF, Davey GP, McDonald AG. 6-Hydroxydopamine: a far from simple neurotoxin. J Neural Transm (Vienna) 2020; 127:213-230. [DOI: 10.1007/s00702-019-02133-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/21/2019] [Indexed: 12/13/2022]
|
12
|
Dopaminergic neuroprotective effects of rotigotine via 5-HT1A receptors: Possibly involvement of metallothionein expression in astrocytes. Neurochem Int 2019; 132:104608. [PMID: 31765686 DOI: 10.1016/j.neuint.2019.104608] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022]
Abstract
Astrocytes exert neuroprotective effects through production of antioxidant molecules and neurotrophic factors. A recent study showed that stimulation of astrocyte serotonin 1A (5-HT1A) receptors promotes astrocyte proliferation and upregulation of the antioxidant molecules metallothionein (MT)-1,2, which protect dopaminergic neurons against oxidative stress. Rotigotine, an anti-parkinsonian drug, can bind to dopamine and 5-HT1A receptors. In this study, we examined neuroprotective effects of rotigotine in models of Parkinson's disease and involvement of astrocyte 5-HT1A receptors in neuroprotective effects of rotigotine against dopaminergic neurodegeneration. Rotigotine increased the number of astrocytes and MT-1,2 expression in cultured astrocytes. Pretreatment with conditioned media from rotigotine-treated astrocytes significantly inhibited 6-hydroxydopamine (6-OHDA)-induced dopaminergic neurotoxicity. These effects were completely blocked by a 5-HT1A antagonist or MT-1,2 specific antibody. Subcutaneous administration of rotigotine increased MT-1,2 expression in striatal astrocytes and prevented reduction of dopaminergic neurons in the substantia nigra of a 6-OHDA-lesioned mouse model of Parkinson's disease. These effects were blocked by co-administration with a 5-HT1A antagonist. These results suggest that rotigotine exerts neuroprotective effects through upregulation of MT expression in astrocytes by targeting 5-HT1A receptors. Our findings provide a possible therapeutic application of rotigotine to prevent dopaminergic neurodegeneration in Parkinson's disease.
Collapse
|
13
|
A functionalized hydroxydopamine quinone links thiol modification to neuronal cell death. Redox Biol 2019; 28:101377. [PMID: 31760358 PMCID: PMC6880099 DOI: 10.1016/j.redox.2019.101377] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/09/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023] Open
Abstract
Recent findings suggest that dopamine oxidation contributes to the development of Parkinson's disease (PD); however, the mechanistic details remain elusive. Here, we compare 6-hydroxydopamine (6-OHDA), a product of dopamine oxidation that commonly induces dopaminergic neurodegeneration in laboratory animals, with a synthetic alkyne-functionalized 6-OHDA variant. This synthetic molecule provides insights into the reactivity of quinone and neuromelanin formation. Employing Huisgen cycloaddition chemistry (or “click chemistry”) and fluorescence imaging, we found that reactive 6-OHDA p-quinones cause widespread protein modification in isolated proteins, lysates and cells. We identified cysteine thiols as the target site and investigated the impact of proteome modification by quinones on cell viability. Mass spectrometry following cycloaddition chemistry produced a large number of 6-OHDA modified targets including proteins involved in redox regulation. Functional in vitro assays demonstrated that 6-OHDA inactivates protein disulfide isomerase (PDI), which is a central player in protein folding and redox homeostasis. Our study links dopamine oxidation to protein modification and protein folding in dopaminergic neurons and the PD model. Chemical modification of 6-OHDA increases stability of 6-OHDA p-quinone by preventing neuromelanin formation. Modified 6-OHDA enables visualization of thiol-dependent protein modification by p-quinone. Wide-spread proteome modification by 6-OHDA p-quinone impairs neuroblastoma viability. 6-OHDA p-quinone inactivates PDI linking dopamine oxidation to protein unfolding.
Collapse
|
14
|
Iglesias González PA, Conde MA, González-Pardo V, Uranga RM, Salvador GA. In vitro 6-hydroxydopamine-induced neurotoxicity: New insights on NFκB modulation. Toxicol In Vitro 2019; 60:400-411. [DOI: 10.1016/j.tiv.2019.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
|
15
|
Ganesh K, Balraj C, Satheshkumar A, Elango KP. Spectroscopic studies on the formation of charge transfer complexes of l-phenylalanine with 2,3,5-trichloro-6-alkoxy-1,4-benzoquinones in aqueous medium. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
16
|
Huang C, Wu J, Chen D, Jin J, Wu Y, Chen Z. Effects of sulforaphane in the central nervous system. Eur J Pharmacol 2019; 853:153-168. [PMID: 30858063 DOI: 10.1016/j.ejphar.2019.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
Sulforaphane (SFN) is an active component extracted from vegetables like cauliflower and broccoli. Activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling is a common mechanism for the anti-oxidative and anti-inflammatory activity of some herb-derived compounds, such as icariin and berberine. However, due to its peculiar ability in Nrf2 activation, SFN is recognized as an activator of Nrf2 and recommended as a supplementation for prevention and/or treatment of disorders like neoplasm and heart failure. In the central nervous system (CNS), the prophylactic and/or therapeutic effects of SFN have been revealed in recent years. For example, it has been reported to prevent the progression of Alzheimer's disease, Parkinson's disease, cerebral ischemia, Huntington's disease, multiple sclerosis, epilepsy, and psychiatric disorders via promotion of neurogenesis or inhibition of oxidative stress and neuroinflammation. SFN is also implicated in reversing cognition, learning, and memory impairment in rodents induced by scopolamine, lipopolysaccharide, okadaic acid, and diabetes. In models of neurotoxicity, SFN has been shown to suppress neurotoxicity induced by a wide range of toxic factors, such as hydrogen peroxide, prion protein, hyperammonemia, and methamphetamine. To date, no consolidated source of knowledge about the pharmacological effects of SFN in the CNS has been presented in the literature. In this review, we summarize and discuss the pharmacological effects of SFN as well as their possible mechanisms in prevention and/or therapy of disorders afflicting the CNS, aiming to get a further insight into how SFN affects the pathophysiological process of CNS disorders.
Collapse
Affiliation(s)
- Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Dongjian Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Jie Jin
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Yue Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China.
| |
Collapse
|
17
|
Östreicher C, Gensberger-Reigl S, Pischetsrieder M. Targeted mass spectrometry to monitor nuclear accumulation of endogenous Nrf2 and its application to SH-SY5Y cells stimulated with food components. Anal Bioanal Chem 2019; 411:1273-1286. [PMID: 30637439 DOI: 10.1007/s00216-018-1560-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/07/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
The Nrf2 signaling pathway is highly significant for redox homeostasis. Hence, nutrients and drugs activating Nrf2 can prevent oxidative stress-mediated medical conditions. After activation, Nrf2 accumulates in the cell nucleus; therefore, stimulation of Nrf2 by food components and drugs is usually monitored by measuring nuclear Nrf2 levels. The present study developed a targeted mass spectrometry method for the highly reliable quantification of nuclear Nrf2 levels. Three Nrf2-specific peptides were detected after enzymatic digestion of the nuclear fraction by the developed protocol for micro-liquid chromatography-tandem mass spectrometry in scheduled multiple reaction monitoring mode (microLC-MS/MS-sMRM). The method also identified nuclear Nrf2 unequivocally and specifically in the SDS-PAGE fraction of 100-150 kDa. Moreover, highly precise and linear relative quantification was achieved (mean relative standard deviation 8.3%; coefficient of determination 0.998). Incubation experiments in SH-SY5Y neuroblastoma cells revealed significantly up to 6-fold elevated nuclear Nrf2 levels after stimulation with 10 μM carnosol (rosemary), 10 μM sulforaphane (broccoli), or 20 μM cinnamaldehyde (cinnamon). Our results were in very good accordance with conventional Nrf2 western blotting and were highly correlated with the food components' effect on the expression levels of NAD(P)H dehydrogenase [quinone] 1 and thioredoxin reductase 1, two major Nrf2-regulated cytoprotective enzymes. The newly developed microLC-MS/MS-sMRM method shows broad applicability and can serve as a highly selective and reliable method to analyze Nrf2 activation. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Christiane Östreicher
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Sabrina Gensberger-Reigl
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Monika Pischetsrieder
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.
| |
Collapse
|
18
|
Muraishi A, Haneta E, Saito Y, Hitomi Y, Sano M, Noguchi N. Hydrogen Peroxide-Reducing Factor Released by PC12D Cells Increases Cell Tolerance against Oxidative Stress. Biol Pharm Bull 2018; 41:777-785. [PMID: 29709915 DOI: 10.1248/bpb.b18-00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PC12D cells, a subline of rat adrenal pheochromocytoma PC12 cells, extend neurites rapidly in response to differentiation stimuli and are used to investigate the molecular mechanisms of neurite extension. In the present study, we found significant tolerance of PC12D cells against Parkinson's disease-related stimuli such as dopamine and 6-hydroxydopamine; this tolerance was significantly decreased by a change in the medium. Conditioned medium from PC12D cells induced tolerance against oxidative stress, which suggests that cytoprotective factor may be released by PC12D cells into the culture medium. Conditioned medium-induced tolerance was not found for PC12 cells or human neuroblastoma SH-SY5Y cells. A cytoprotective factor generated by PC12D cells exhibited hydrogen peroxide-reducing activity. Chemical characterization showed that this cytoprotective factor is water soluble and has a molecular weight about 1000 Da, and that its activity is inhibited by sodium cyanide. Release of this cytoprotective factor was increased by differentiation stimuli and oxidative stress. Taken together, these results suggest that release of a hydrogen peroxide-reducing factor by PC12D cells increases cell tolerance against oxidative stress. This study provides new insights into the antioxidative properties of factors in extracellular fluid.
Collapse
Affiliation(s)
- Asami Muraishi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University
| | - Emi Haneta
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University
| | - Yoshiro Saito
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University
| | - Yutaka Hitomi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University
| | - Mamoru Sano
- Department of Biology, Kyoto Prefectural University of Medicine
| | - Noriko Noguchi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University
| |
Collapse
|
19
|
Chandrasekhar Y, Phani Kumar G, Ramya EM, Anilakumar KR. Gallic Acid Protects 6-OHDA Induced Neurotoxicity by Attenuating Oxidative Stress in Human Dopaminergic Cell Line. Neurochem Res 2018; 43:1150-1160. [PMID: 29671234 DOI: 10.1007/s11064-018-2530-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 11/30/2022]
Abstract
Gallic acid is one of the most important polyphenolic compounds, which is considered an excellent free radical scavenger. 6-Hydroxydopamine (6-OHDA) is a neurotoxin, which has been implicated in mainly Parkinson's disease (PD). In this study, we investigated the molecular mechanism of the neuroprotective effects of gallic acid on 6-OHDA induced apoptosis in human dopaminergic cells, SH-SY5Y. Our results showed that 6-OHDA induced cytotoxicity in SH-SY5Y cells was suppressed by pre-treatment with gallic acid. The percentage of live cells (90%) was high in the pre-treatment of gallic acid when compared with 6-OHDA alone treated cell line. Moreover, gallic acid was very effective in attenuating the disruption of mitochondrial membrane potential, elevated levels of intracellular ROS and apoptotic cell death induced by 6-OHDA. Gallic acid also lowered the ratio of the pro-apoptotic Bax protein and the anti-apoptotic Bcl-2 protein in SH-SY5Y cells. 6-OHDA exposure was up-regulated caspase-3 and Keap-1 and, down-regulated Nrf2, BDNF and p-CREB, which were sufficiently reverted by gallic acid pre-treatment. These findings indicate that gallic acid is able to protect the neuronal cells against 6-OHDA induced injury and proved that gallic acid might potentially serve as an agent for prevention of several human neurodegenerative diseases caused by oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Y Chandrasekhar
- Defence Food Research Laboratory, Nutritional Biochemistry and Toxicology Division, Siddhartha Nagar, Mysore, 570011, India
| | - G Phani Kumar
- Defence Food Research Laboratory, Nutritional Biochemistry and Toxicology Division, Siddhartha Nagar, Mysore, 570011, India.
| | - E M Ramya
- Defence Food Research Laboratory, Nutritional Biochemistry and Toxicology Division, Siddhartha Nagar, Mysore, 570011, India
| | - K R Anilakumar
- Defence Food Research Laboratory, Nutritional Biochemistry and Toxicology Division, Siddhartha Nagar, Mysore, 570011, India
| |
Collapse
|
20
|
Saito Y. DJ-1 as a Biomarker of Parkinson's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1037:149-171. [PMID: 29147908 DOI: 10.1007/978-981-10-6583-5_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parkinson's disease is a progressive, age-related, neurodegenerative disorder, and oxidative stress is an important mediator in its pathogenesis. DJ-1 has been identified as a causative gene of a familial form of Parkinson's disease, PARK7, and plays a significant role in antioxidative defense, protecting cells from oxidative stress. A cysteine residue of DJ-1 at position 106 (Cys-106) is preferentially oxidized under oxidative stress. This reactive Cys-106 plays a critical role in the biological function of DJ-1, which could act as a sensor of oxidative stress by regulating antioxidative defense depending on Cys-106 oxidation. Thus, the levels of Cys-106-oxidized DJ-1 (oxDJ-1) could be a possible biomarker of oxidative stress. This chapter focuses on the properties of DJ-1 and oxDJ-1 levels as a biomarker of Parkinson's disease. In particular, the usability of these biomarkers to prevent and treat this neurodegenerative disease is discussed. Further, this section deals with the importance of identifying a biomarker of early-phase Parkinson's disease. Finally, this chapter summarizes the features of oxDJ-1 levels in the brain and blood as a biomarker candidate for early-phase Parkinson's disease based on our results using oxDJ-1-specific antibodies.
Collapse
Affiliation(s)
- Yoshiro Saito
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
21
|
Tong ZB, Huang R, Wang Y, Klumpp-Thomas CA, Braisted JC, Itkin Z, Shinn P, Xia M, Simeonov A, Gerhold DL. The Toxmatrix: Chemo-Genomic Profiling Identifies Interactions That Reveal Mechanisms of Toxicity. Chem Res Toxicol 2018; 31:127-136. [PMID: 29156121 PMCID: PMC9724813 DOI: 10.1021/acs.chemrestox.7b00290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A chemical genomics "Toxmatrix" method was developed to elucidate mechanisms of cytotoxicity using neuronal models. Quantitative high-throughput screening (qHTS) was applied to systematically screen each toxicant against a panel of 70 modulators, drugs or chemicals that act on a known target, to identify interactions that either protect or sensitize cells to each toxicant. Thirty-two toxicants were tested at 10 concentrations for cytotoxicity to SH-SY5Y human neuroblastoma cells, with results fitted to the Hill equation to determine an IC50 for each toxicant. Thirty-three toxicant:modulator interactions were identified in SH-SY5Y cells for 14 toxicants, as modulators that shifted toxicant IC50 values lower or higher. The target of each modulator that sensitizes cells or protects cells from a toxicant suggests a mode of toxicant action or cellular adaptation. In secondary screening, we tested modulator-toxicant pairs identified from the SH-SY5Y primary screening for interactions in three differentiated neuronal human cell lines: dSH-SY5Y, conditionally immortalized dopaminergic neurons (LUHMES), and neural stem cells. Twenty toxicant-modulator pairs showed pronounced interactions in one or several differentiated cell models. Additional testing confirmed that several modulators acted through their primary targets. For example, several chelators protected differentiated LUHMES neurons from four toxicants by chelation of divalent cations and buthionine sulphoximine sensitized cells to 6-hydroxydopamine and 4-(methylamino)phenol hemisulfate by blocking glutathione synthesis. Such modulators that interact with multiple neurotoxicants suggest these may be vulnerable toxicity pathways in neurons. Thus, the Toxmatrix method is a systematic high-throughput approach that can identify mechanisms of toxicity and cellular adaptation.
Collapse
Affiliation(s)
- Zhi-Bin Tong
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| | - Ruili Huang
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| | - Yuhong Wang
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| | - Carleen A. Klumpp-Thomas
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| | - John C. Braisted
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| | - Zina Itkin
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| | - Paul Shinn
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| | - Menghang Xia
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| | - David L. Gerhold
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive C-345E, Bethesda, Maryland 20892
| |
Collapse
|
22
|
Enayah SH, Vanle BC, Fuortes LJ, Doorn JA, Ludewig G. PCB95 and PCB153 change dopamine levels and turn-over in PC12 cells. Toxicology 2017; 394:93-101. [PMID: 29233657 DOI: 10.1016/j.tox.2017.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/10/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
Polychlorinated biphenyls (PCB) exposure at low chronic levels is a significant public health concern. Animal and epidemiological studies indicate that low PCB body burden may cause neurotoxicity and be a risk factor for neurodegenerative diseases. In the current study, we measured the ability of two non-dioxin like PCBs, 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) and 2,2'3,5',6-pentachlorobiphenyl (PCB95), to alter dopamine (DA) levels and metabolism using the dopaminergic PC12 cell line. Our hypothesis is that treatment of PC12 cells with non-toxic concentrations of PCB153 or PCB95 for 12 and 24 h will have different effects due to different congener structures. Levels of DA and of 3,4-dihydroxyphenylacetaldehyde (DOPAL), 3, 4-dihyroxylphenylethanol (DOPET), and 3,4-dihyroxylphenylacetic acid (DOPAC) metabolite, gene expression of the dopamine synthesis enzyme tyrosine hydroxylase (TH) and the vesicular monoamine transporter (VMAT2), and gene expression of the anti-oxidant enzymes Cu/Zn and Mn superoxide oxidase (Cu/ZnSOD, MnSOD), glutathione peroxidase (GPx) and catalase were determined. PCB153 decreased intracellular and extracellular levels of DA after 12 h exposure and this was consistent with an increase in DA metabolites. After 24 h, the level of DA in medium increased compared to the control. In contrast, PCB95 exposure increased the intracellular DA level and decreased DA in medium consistent with a down-regulation of VMAT2 expression at 12 h. After 24 h exposure, PCB95 increased DA levels in media. Expression of TH mRNA increased slightly following 12 h but not at 24 h exposure. MnSOD mRNA increased up to 6-7 fold and Cu/ZnSOD increased less than two-fold after treatment with both congeners. Catalase expression was up-regulated following 24 h exposure to PCB153 and PCB95, but GPx expression was down-regulated after 12 h exposure to PCB95 only. These results suggest that PCB153 and PCB95 are neurotoxic and affect DA turnover with structure-dependent differences between these two congeners.
Collapse
Affiliation(s)
- Sabah H Enayah
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, United States
| | - Brigitte C Vanle
- Department of Pharmaceutical Sciences & Experimental Therapeutics, University of Iowa, United States
| | - Laurence J Fuortes
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, United States; Department of Occupational & Environmental Health, University of Iowa, United States
| | - Jonathan A Doorn
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, United States; Department of Pharmaceutical Sciences & Experimental Therapeutics, University of Iowa, United States
| | - Gabriele Ludewig
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, United States; Department of Occupational & Environmental Health, University of Iowa, United States.
| |
Collapse
|
23
|
Izumi Y, Kataoka H, Inose Y, Akaike A, Koyama Y, Kume T. Neuroprotective effect of an Nrf2-ARE activator identified from a chemical library on dopaminergic neurons. Eur J Pharmacol 2017; 818:470-479. [PMID: 29154837 DOI: 10.1016/j.ejphar.2017.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022]
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway, which induces the production of antioxidant enzymes, is a possible therapeutic target for treating diseases related to oxidative stress. Nrf2 activators often exhibit cytotoxicity due to nonspecific electrophilic reactions with thiol groups. We screened a chemical library to explore Nrf2 activators with a wide safety margin. In at least in vitro experiments, TPNA10168, identified from the library, showed a higher efficacy in Nrf2 activation and a lower cytotoxicity than sulforaphane, a well-known Nrf2 activator. The present study demonstrated the protective effect of TPNA10168 against 6-hydroxydopamine-induced cytotoxicity. In PC12 cells, NAD(P)H:quinone oxidoreductase 1 was upregulated by TPNA10168 and participated in the protective effect. In primary mesencephalic cultures, heme oxygenase-1, upregulated by TPNA10168 in astrocytes, provided protection of dopaminergic neurons via a guanylate cyclase/protein kinase G signaling pathway via carbon monoxide. These results suggest that the compound identified from the chemical library may be suitable as a neuroprotective agent with the ability to induce antioxidant enzymes.
Collapse
Affiliation(s)
- Yasuhiko Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Harue Kataoka
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuri Inose
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akinori Akaike
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yutaka Koyama
- Department of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan
| | - Toshiaki Kume
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
24
|
Inoue Y, Hara H, Mitsugi Y, Yamaguchi E, Kamiya T, Itoh A, Adachi T. 4-Hydroperoxy-2-decenoic acid ethyl ester protects against 6-hydroxydopamine-induced cell death via activation of Nrf2-ARE and eIF2α-ATF4 pathways. Neurochem Int 2017; 112:288-296. [PMID: 28823537 DOI: 10.1016/j.neuint.2017.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/20/2017] [Accepted: 08/13/2017] [Indexed: 02/05/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra. Oxidative stress has been reported to be closely related to the pathogenesis and worsening of symptoms of PD. One therapeutic strategy is to alleviate neuronal injuries caused by oxidative stress. In this study, we investigated protective effects of royal jelly (RJ) fatty acids and their derivatives on oxidative stress-induced cell death using human neuroblastoma SH-SY5Y cells. 4-Hydroperoxy-2-decenoic acid ethyl ester (HPO-DAEE), a synthesized RJ fatty acid derivative, markedly induced antioxidant enzymes such as heme oxygenase-1 (HO-1). Pretreatment with HPO-DAEE protected against 6-hydroxydopamine (6-OHDA)-induced cell death. NF-E2-related factor 2 (Nrf2), a master regulator of antioxidative responses, plays a key role in the acquisition of resistance to oxidative stress. HPO-DAEE elicited nuclear accumulation of Nrf2 and activated antioxidant response element (ARE), a cis-activating regulatory element, indicating that HPO-DAEE induced expression of antioxidant genes through Nrf2-ARE signaling. Recently, the activating transcription factor-4 (ATF4) has been shown to cooperate with Nrf2 and modulate antioxidant gene expression. We also found that HPO-DAEE promoted phosphorylation of eukaryotic initiation factor 2α (eIF2α), which is an upstream effector of ATF4, and subsequent nuclear accumulation of ATF4. The eIF2α phosphatase inhibitor, salubrinal, augmented HPO-DAEE-induced HO-1 expression and protection against 6-OHDA-induced cell death. These results indicate that HPO-DAEE activates both the Nrf2-ARE and eIF2α-ATF4 pathways. Moreover, ROS generation occurred upon treatment of SH-SY5Y cells with HPO-DAEE, and the antioxidants N-acetylcysteine and glutathione suppressed HPO-DAEE-induced activation of the Nrf2-ARE and eIF2α-ATF4 pathways. Therefore, sublethal oxidative stress caused by HPO-DAEE is likely to activate both these pathways. Taken together, we conclude that HPO-DAEE elicits adaptive responses to oxidative stress through cooperative activation of the Nrf2-ARE and eIF2α-ATF4 pathways.
Collapse
Affiliation(s)
- Yuki Inoue
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Yukari Mitsugi
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Eiji Yamaguchi
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Akichika Itoh
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
25
|
Lopes FM, Bristot IJ, da Motta LL, Parsons RB, Klamt F. Mimicking Parkinson's Disease in a Dish: Merits and Pitfalls of the Most Commonly used Dopaminergic In Vitro Models. Neuromolecular Med 2017; 19:241-255. [PMID: 28721669 DOI: 10.1007/s12017-017-8454-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and has both unknown etiology and non-curative therapeutic options. Patients begin to present the classic motor symptoms of PD-tremor at rest, bradykinesia and rigidity-once 50-70% of the dopaminergic neurons of the nigrostriatal pathway have degenerated. As a consequence of this, it is difficult to investigate the early-stage events of disease pathogenesis. In vitro experimental models are used extensively in PD research because they present a controlled environment that enables the direct investigation of the early molecular mechanisms that are potentially involved with dopaminergic degeneration, as well as for the screening of potential therapeutic drugs. However, the establishment of PD in vitro models is a controversial issue for neuroscience research not only because it is challenging to mimic, in isolated cell systems, the physiological neuronal environment, but also the pathophysiological conditions experienced by human dopaminergic cells in vivo during the progression of the disease. Since no previous work has attempted to systematically review the literature regarding the establishment of an optimal in vitro model, and/or the features presented by available models used in the PD field, this review aims to summarize the merits and limitations of the most widely used dopaminergic in vitro models in PD research, which may help the PD researcher to choose the most appropriate model for studies directed at the elucidation of the early-stage molecular events underlying PD onset and progression.
Collapse
Affiliation(s)
- Fernanda Martins Lopes
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil. .,Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| | - Ivi Juliana Bristot
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Leonardo Lisbôa da Motta
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil
| | - Richard B Parsons
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Fabio Klamt
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
26
|
Goswami P, Joshi N, Singh S. Neurodegenerative signaling factors and mechanisms in Parkinson's pathology. Toxicol In Vitro 2017. [PMID: 28627426 DOI: 10.1016/j.tiv.2017.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a chronic and progressive degenerative disorder of central nervous system which is mainly characterized by selective loss of dopaminergic neurons in the nigrostrial pathway. Clinical symptoms of this devastating disease comprise motor impairments such as resting tremor, bradykinesia, postural instability and rigidity. Current medications only provide symptomatic relief but fail to halt the dopaminergic neuronal death. While the etiology of dopaminergic neuronal death is not fully understood, combination of various molecular mechanisms seems to play a critical role. Studies from experimental animal models have provided crucial insights into the molecular mechanisms in disease pathogenesis and recognized possible targets for therapeutic interventions. Recent findings implicate the involvement of abnormal protein accumulation and phosphorylation, mitochondrial dysfunction, oxidative damage and deregulated kinase signaling as key molecular mechanisms affecting the normal function as well survival of dopaminergic neurons. Here we discuss the relevant findings on the PD pathology related mechanisms and recognition of the cell survival mechanisms which could be used as targets for neuroprotective strategies in preventing this devastating disorder.
Collapse
Affiliation(s)
- Poonam Goswami
- Neuronal Cell Death Mechanisms Laboratory, Toxicology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Neeraj Joshi
- Department of Biochemistry and Biophysics, Helen Diller Comprehensive Cancer Center, University of California San Francisco, USA
| | - Sarika Singh
- Neuronal Cell Death Mechanisms Laboratory, Toxicology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.
| |
Collapse
|
27
|
RA Differentiation Enhances Dopaminergic Features, Changes Redox Parameters, and Increases Dopamine Transporter Dependency in 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells. Neurotox Res 2017; 31:545-559. [DOI: 10.1007/s12640-016-9699-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 12/19/2022]
|
28
|
Saha S, Roy Choudhury C, Gómez-García CJ, Benmansour S, Garribba E, Frontera A, Rizzoli C, Mitra S. A trigonal prismatic anionic iron(iii) complex of a radical o-iminobenzosemiquinonate derivative: structural and spectral analyses. NEW J CHEM 2017. [DOI: 10.1039/c7nj01212h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complex [FeIII(L2−˙)2]−is a rare example of a trigonal prismatic Fe(iii) complex with twoS= 1/2 radical isoquinone ligands showing strong antiferromagnetic coupling.
Collapse
Affiliation(s)
- Sandeepta Saha
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | | | - Carlos J. Gómez-García
- Instituto de Ciencia Molecular (ICMol)
- Dpto. Química Inorgánica
- Universidad de Valencia
- 46980 Paterna
- Spain
| | - Samia Benmansour
- Instituto de Ciencia Molecular (ICMol)
- Dpto. Química Inorgánica
- Universidad de Valencia
- 46980 Paterna
- Spain
| | - Eugenio Garribba
- Department of Chemistry and Pharmacy
- University of Sassari
- I-07100 Sassari
- Italy
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- Baleares
- Spain
| | | | - Samiran Mitra
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
- Department of Chemistry
| |
Collapse
|
29
|
Phukan G, Shin TH, Shim JS, Paik MJ, Lee JK, Choi S, Kim YM, Kang SH, Kim HS, Kang Y, Lee SH, Mouradian MM, Lee G. Silica-coated magnetic nanoparticles impair proteasome activity and increase the formation of cytoplasmic inclusion bodies in vitro. Sci Rep 2016; 6:29095. [PMID: 27378605 PMCID: PMC4932509 DOI: 10.1038/srep29095] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/15/2016] [Indexed: 12/28/2022] Open
Abstract
The potential toxicity of nanoparticles, particularly to neurons, is a major concern. In this study, we assessed the cytotoxicity of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye (MNPs@SiO2(RITC)) in HEK293 cells, SH-SY5Y cells, and rat primary cortical and dopaminergic neurons. In cells treated with 1.0 μg/μl MNPs@SiO2(RITC), the expression of several genes related to the proteasome pathway was altered, and proteasome activity was significantly reduced, compared with control and with 0.1 μg/μl MNPs@SiO2(RITC)-treated cells. Due to the reduction of proteasome activity, formation of cytoplasmic inclusions increased significantly in HEK293 cells over-expressing the α-synuclein interacting protein synphilin-1 as well as in primary cortical and dopaminergic neurons. Primary neurons, particularly dopaminergic neurons, were more vulnerable to MNPs@SiO2(RITC) than SH-SY5Y cells. Cellular polyamines, which are associated with protein aggregation, were significantly altered in SH-SY5Y cells treated with MNPs@SiO2(RITC). These findings highlight the mechanisms of neurotoxicity incurred by nanoparticles.
Collapse
Affiliation(s)
- Geetika Phukan
- Department of Physiology and Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Tae Hwan Shin
- Department of Physiology and Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jeom Soon Shim
- Department of Physiology and Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Man Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon, Republic of Korea
| | - Jin-Kyu Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | | | - Seong Ho Kang
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yup Kang
- Department of Physiology and Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Soo Hwan Lee
- Department of Physiology and Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - M. Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers–Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Gwang Lee
- Department of Physiology and Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
30
|
Sahoo D, Singh AK, Rath SP. Binuclear Highly Distorted Iron(III) Porphyrins Bridged by the Dianions of Hydroquinones: Role of the Bridge in Electronic Communication. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dipankar Sahoo
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| | - Akhil Kumar Singh
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| | - Sankar Prasad Rath
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| |
Collapse
|
31
|
Kamatchi TS, Kalaivani P, Fronczek FR, Natarajan K, Prabhakaran R. Impact of chelation on anticancer activities of organometallic ruthenium(ii) complexes containing 2,5-di(1H-pyrazol-1-yl)-1,4-benzoquinone: synthesis, structure, DNA/protein binding, antioxidant activity and cytotoxicity. RSC Adv 2016. [DOI: 10.1039/c6ra05867a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Mondal MK, Mukherjee C. An unprecedented one-step synthesis of octahedral Cu(ii)-bis(iminoquinone) complexes and their reactivity with NaBH4. Dalton Trans 2016; 45:13532-40. [DOI: 10.1039/c6dt02443b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The non-innocent ligands, H2LAP(o-NO2-OPh) and H2LAP, upon reacting with 2 equivalents of CuCl2·2H2O in the presence of Et3N and air provided the corresponding octahedral Cu(ii)-bis(iminoquinone) complexes (2 and 3) in one-step. The complexes underwent reduction by NaBH4 in dry CH3CN and produced H2 gas.
Collapse
Affiliation(s)
- Manas Kumar Mondal
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| | - Chandan Mukherjee
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati
- India
| |
Collapse
|
34
|
Lei S, Zavala-Flores L, Garcia-Garcia A, Nandakumar R, Huang Y, Madayiputhiya N, Stanton RC, Dodds ED, Powers R, Franco R. Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: a specific role for glucose-6-phosphate-dehydrogenase and the pentose phosphate pathway in paraquat toxicity. ACS Chem Biol 2014; 9:2032-48. [PMID: 24937102 PMCID: PMC4168797 DOI: 10.1021/cb400894a] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Parkinson’s
disease (PD) is a multifactorial disorder with
a complex etiology including genetic risk factors, environmental exposures,
and aging. While energy failure and oxidative stress have largely
been associated with the loss of dopaminergic cells in PD and the
toxicity induced by mitochondrial/environmental toxins, very little
is known regarding the alterations in energy metabolism associated
with mitochondrial dysfunction and their causative role in cell death
progression. In this study, we investigated the alterations in the
energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial
toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or
different mechanisms of toxicity. A combined metabolomics approach
using nuclear magnetic resonance (NMR) and direct-infusion electrospray
ionization mass spectrometry (DI-ESI-MS) was used to identify unique
metabolic profile changes in response to these neurotoxins. Paraquat
exposure induced the most profound alterations in the pentose phosphate
pathway (PPP) metabolome. 13C-glucose flux analysis corroborated
that PPP metabolites such as glucose-6-phosphate, fructose-6-phosphate,
glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat
treatment, which was paralleled by inhibition of glycolysis and the
TCA cycle. Proteomic analysis also found an increase in the expression
of glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing
equivalents by regenerating nicotinamide adenine dinucleotide phosphate
(NADPH) levels. Overexpression of G6PD selectively increased paraquat
toxicity, while its inhibition with 6-aminonicotinamide inhibited
paraquat-induced oxidative stress and cell death. These results suggest
that paraquat “hijacks” the PPP to increase NADPH reducing
equivalents and stimulate paraquat redox cycling, oxidative stress,
and cell death. Our study clearly demonstrates that alterations in
energy metabolism, which are specific for distinct mitochondiral/environmental
toxins, are not bystanders to energy failure but also contribute significant
to cell death progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robert C. Stanton
- Research
Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | | | | |
Collapse
|
35
|
Bayrak N, Tuyun AF, Yıldırım H, Onul N. Spectroscopic and structural aspects of the reactions of 1,4-quinones with sulfur and nitrogen nucleophiles. CR CHIM 2014. [DOI: 10.1016/j.crci.2013.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Ahadian S, Ramón-Azcón J, Estili M, Obregón R, Shiku H, Matsue T. Facile and rapid generation of 3D chemical gradients within hydrogels for high-throughput drug screening applications. Biosens Bioelectron 2014; 59:166-73. [PMID: 24727602 DOI: 10.1016/j.bios.2014.03.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/09/2014] [Accepted: 03/12/2014] [Indexed: 11/29/2022]
Abstract
We propose a novel application of dielectrophoresis (DEP) to make three-dimensional (3D) methacrylated gelatin (GelMA) hydrogels with gradients of micro- and nanoparticles. DEP forces were able to manipulate micro- and nanoparticles of different sizes and materials (i.e., C2C12 myoblasts, polystyrene beads, gold microparticles, and carbon nanotubes) within GelMA hydrogels in a rapid and facile way and create 3D gradients of these particles in a microchamber. Immobilization of drugs, such as fluorescein isothiocyanate-dextran (FITC-dextran) and 6-hydroxydopamine (6-OHDA), on gold microparticles allowed us to investigate the high-throughput release of these drugs from GelMA-gold microparticle gradient systems. The latter gradient constructs were incubated with C2C12 myoblasts for 24h to examine the cell viability through the release of 6-OHDA. The drug was released from the microparticles in a gradient manner, inducing a cell viability gradient. This novel approach to create 3D chemical gradients within hydrogels is scalable to any arbitrary length scale. It is useful for making anisotropic biomimetic materials and high-throughput platforms to investigate cell-microenvironment interactions in a rapid, simple, cost-effective, and reproducible manner.
Collapse
Affiliation(s)
- Samad Ahadian
- WPI-Advanced Institute for Materials Research, Tohoku University, P. O. Box 980-8577, Sendai, Japan
| | - Javier Ramón-Azcón
- WPI-Advanced Institute for Materials Research, Tohoku University, P. O. Box 980-8577, Sendai, Japan.
| | - Mehdi Estili
- International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
| | - Raquel Obregón
- Graduate School of Environmental Studies, Tohoku University, P. O. Box 980-8579, Sendai, Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, P. O. Box 980-8579, Sendai, Japan
| | - Tomokazu Matsue
- WPI-Advanced Institute for Materials Research, Tohoku University, P. O. Box 980-8577, Sendai, Japan; Graduate School of Environmental Studies, Tohoku University, P. O. Box 980-8579, Sendai, Japan.
| |
Collapse
|
37
|
Liu X, Yamada N, Osawa T. Amide-type adduct of dopamine - plausible cause of Parkinson diseases. Subcell Biochem 2014; 77:49-60. [PMID: 24374917 DOI: 10.1007/978-94-007-7920-4_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dopamine is the endogenous neurotransmitter produced by nigral neurons. Dopamine loss can trigger not only prominent secondary morphological changes, but also changes in the density and sensitivity of dopamine receptors; therefore, it is a sign of PD development. The reasons for dopamine loss are attributed to dopamine's molecular instability due to it is a member of catecholamine family, whose catechol structure contributes to high oxidative stress through enzymatic and non-enzymatic oxidation. Oxidative stress in the brain easily leads to the lipid peroxidation reaction due to a high concentration of polyunsaturated fatty acids (PUFA), such as docosahexaenoic acid (DHA, C22:6/ω-3) and arachidonic acid (AA, C18:4/ω-6). Recent studies have shown that lipid hydroperoxides, the primary peroxidative products, could non-specifically react with primary amino groups to form N-acyl-type (amide-linkage) adducts. Therefore, based on the NH2-teminals in dopamine's structure, the aims of this chapter are to describes the possibility that reactive LOOH species derived from DHA/AA lipid peroxidation may modify dopamine to form amide-linkage dopamine adducts, which might be related to etiology of Parkinson's diseases.
Collapse
Affiliation(s)
- Xuebo Liu
- The Laboratory of Food and Biodynamics, Graduate School of Bioagricultural Science, Nagoya University, Nagoya, 464-8601, Japan,
| | | | | |
Collapse
|
38
|
Ganesh K, Satheshkumar A, Balraj C, Elango KP. Substituent effect on the electron acceptor property of 1,4-benzoquinone towards the formation of molecular complex with sulfamethoxazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 107:156-166. [PMID: 23416920 DOI: 10.1016/j.saa.2013.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 12/28/2012] [Accepted: 01/10/2013] [Indexed: 06/01/2023]
Abstract
UV-Vis, (1)H NMR, FT-IR, LC-MS and fluorescence spectral techniques were employed to investigate the mechanism of interaction of sulfamethoxazole with varying number of methoxy/chloro substituted 1,4-benzoquinones (MQ1-4) and to characterize the reaction products. The interactions of MQ1-4 with sulfamethoxazole (SULF) were found to proceed through the formation of a donor-acceptor complex, containing radical anion and its conversion to the product. Fluorescence quenching studies showed that the interaction between the donor and the acceptors are spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The results of the correlation of experimentally measured binding constants with electrochemical data and ab initio DFT calculations supported these observations.
Collapse
Affiliation(s)
- K Ganesh
- Department of Chemistry, Gandhigram Rural Institute (Deemed University), Gandhigram 624 302, India
| | | | | | | |
Collapse
|
39
|
Das D, Agarwala H, Chowdhury AD, Patra T, Mobin SM, Sarkar B, Kaim W, Lahiri GK. Four-Center Oxidation State Combinations and Near-Infrared Absorption in [Ru(pap)(Q)2]n(Q=3,5-Di-tert-butyl-N-aryl-1,2-benzoquinonemonoimine, pap=2-Phenylazopyridine). Chemistry 2013; 19:7384-94. [DOI: 10.1002/chem.201204620] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Indexed: 12/26/2022]
Affiliation(s)
- Dipanwita Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Gu H, Wang J, Du N, Tan J, Johnstone B, Du Y. Adipose stromal cells-conditioned medium blocks 6-hydroxydopamine-induced neurotoxicity and reactive oxygen species. Neurosci Lett 2013; 544:15-9. [PMID: 23562515 DOI: 10.1016/j.neulet.2013.02.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 12/21/2022]
Abstract
A recent in vivo study suggested that the delivery of adipose stromal cells (ASCs) protected rat brains from 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. However, the molecular mechanism that underlies this neuroprotection remains unknown. It was suggested that ASCs-induced neuroprotection possibly resulting from released factors from ASCs. In this study, we investigated whether and how cell-free conditioned media collected from ASCs (ASC-CM) protect neurons against neurotoxicity induced by 6-OHDA in cultured rat rostral mesencephalic neurons (RMN) and cerebellar granule neurons (CGN). We now report that ASC-CM protects both RMN and CGN against 6-OHDA neurotoxicity. Exposure of CGN to 6-OHDA resulted in a significant increases in neuronal ROS and cell death. As expected, pretreatments with ASC-CM dramatically block both 6-OHDA-induced ROS and neurotoxicity. Additionally, ASC-CM also directly attenuated H2O2-induced neuronal death. Our results suggest that ASC-CM could block 6-OHDA-induced neuronal death by inhibiting both 6-OHDA-induced ROS generation and ROS-induced neurotoxicity in neurons. Both antioxidative and neuroprotective effects of ASC-CM may be beneficial in the therapy for Parkinson's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Huiying Gu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
41
|
Ganesh K, Balraj C, Satheshkumar A, Elango K. Spectroscopic studies on the formation of molecular complexes of sulfamethoxazole with novel 2,3,5-trichloro-6-alkoxy-1,4-benzoquinones. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2012.09.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Zhang L, Yagnik G, Jiang D, Shi S, Chang P, Zhou F. Separation of intermediates of iron-catalyzed dopamine oxidation reactions using reversed-phase ion-pairing chromatography coupled in tandem with UV-visible and ESI-MS detections. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 911:55-8. [PMID: 23217306 DOI: 10.1016/j.jchromb.2012.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/04/2012] [Accepted: 10/24/2012] [Indexed: 11/27/2022]
Abstract
Reversed-phase ion-pairing chromatography (RP-IPC) is coupled on-line with electrospray ionization-mass spectrometry (ESI-MS) through an interface comprising a four-way switch valve and an anion exchange column. Regeneration of the anion exchange column can be accomplished on-line by switching the four-way switch valve to interconnect the column to a regeneration solution. Positioning the anion exchange column between the RP-IPC and ESI-MS instruments allows the ion-pairing reagent (IPR) sodium octane sulfonate to be removed. The IPC-ESI-MS method enabled us to separate and detect four intermediates of the Fe(III)-catalyzed dopamine oxidation. In particular, 6-hydroxydopamine, which is short-lived and highly neurotoxic, was detected and quantified. Together with the separation of other intermediates, gaining insight into the mechanism and kinetics of the Fe(III)-catalyzed dopamine oxidation becomes possible.
Collapse
Affiliation(s)
- Lin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, People's Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
Izumi Y, Matsumura A, Wakita S, Akagi KI, Fukuda H, Kume T, Irie K, Takada-Takatori Y, Sugimoto H, Hashimoto T, Akaike A. Isolation, identification, and biological evaluation of Nrf2-ARE activator from the leaves of green perilla (Perilla frutescens var. crispa f. viridis). Free Radic Biol Med 2012; 53:669-79. [PMID: 22749808 DOI: 10.1016/j.freeradbiomed.2012.06.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/12/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway is a cellular defense system against oxidative stress. Activation of this pathway increases expression of antioxidant enzymes. Epidemiological studies have demonstrated that the consumption of fruits and vegetables is associated with reduced risk of contracting a variety of human diseases. The aim of this study is to find Nrf2-ARE activators in dietary fruits and vegetables. We first attempted to compare the potency of ARE activation in six fruit and six vegetables extracts. Green perilla (Perilla frutescens var. crispa f. viridis) extract exhibited high ARE activity. We isolated the active fraction from green perilla extract through bioactivity-guided fractionation. Based on nuclear magnetic resonance and mass spectrometric analysis, the active ingredient responsible for the ARE activity was identified as 2',3'-dihydroxy-4',6'-dimethoxychalcone (DDC). DDC induced the expression of antioxidant enzymes, such as γ-glutamylcysteine synthetase (γ-GCS), NAD(P)H: quinone oxidoreductase-1 (NQO1), and heme oxygenase-1. DDC inhibited the formation of intracellular reactive oxygen species and the cytotoxicity induced by 6-hydroxydopamine. Inhibition of the p38 mitogen-activated protein kinase pathway abolished ARE activation, the induction of γ-GCS and NQO1, and the cytoprotective effect brought about by DDC. Thus, this study demonstrated that DDC contained in green perilla enhanced cellular resistance to oxidative damage through activation of the Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Yasuhiko Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Iglesias-González J, Sánchez-Iglesias S, Méndez-Álvarez E, Rose S, Hikima A, Jenner P, Soto-Otero R. Differential toxicity of 6-hydroxydopamine in SH-SY5Y human neuroblastoma cells and rat brain mitochondria: protective role of catalase and superoxide dismutase. Neurochem Res 2012; 37:2150-60. [PMID: 22821477 DOI: 10.1007/s11064-012-0838-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/22/2012] [Accepted: 07/12/2012] [Indexed: 11/24/2022]
Abstract
Oxidative stress and mitochondrial dysfunction are two pathophysiological factors often associated with the neurodegenerative process involved in Parkinson's disease (PD). Although, 6-hydroxydopamine (6-OHDA) is able to cause dopaminergic neurodegeneration in experimental models of PD by an oxidative stress-mediated process, the underlying molecular mechanism remains unclear. It has been established that some antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) are often altered in PD, which suggests a potential role of these enzymes in the onset and/or development of this multifactorial syndrome. In this study we have used high-resolution respirometry to evaluate the effect of 6-OHDA on mitochondrial respiration of isolated rat brain mitochondria and the lactate dehydrogenase cytotoxicity assay to assess the percentage of cell death induced by 6-OHDA in human neuroblastoma cell line SH-SY5Y. Our results show that 6-OHDA affects mitochondrial respiration by causing a reduction in both respiratory control ratio (IC(50) = 200 ± 15 nM) and state 3 respiration (IC(50) = 192 ± 17 nM), with no significant effects on state 4(o). An inhibition in the activity of both complex I and V was also observed. 6-OHDA also caused cellular death in human neuroblastoma SH-SY5Y cells (IC(50) = 100 ± 9 μM). Both SOD and CAT have been shown to protect against the toxic effects caused by 6-OHDA on mitochondrial respiration. However, whereas SOD protects against 6-OHDA-induced cellular death, CAT enhances its cytotoxicity. The here reported data suggest that both superoxide anion and hydroperoxyl radical could account for 6-OHDA toxicity. Furthermore, factors reducing the rate of 6-OHDA autoxidation to its p-quinone appear to enhance its cytotoxicity.
Collapse
Affiliation(s)
- Javier Iglesias-González
- Group of Neurochemistry for Parkinson's Disease, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Santiago de Compostela, San Francisco 1, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Mukai R, Kawabata K, Otsuka S, Ishisaka A, Kawai Y, Ji ZS, Tsuboi H, Terao J. Effect of quercetin and its glucuronide metabolite upon 6-hydorxydopamine-induced oxidative damage in Neuro-2a cells. Free Radic Res 2012; 46:1019-28. [DOI: 10.3109/10715762.2012.673720] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Toxicity of 6-hydroxydopamine: live cell imaging of cytoplasmic redox flux. Cell Biol Toxicol 2012; 28:89-101. [DOI: 10.1007/s10565-011-9209-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 12/20/2011] [Indexed: 12/20/2022]
|
47
|
Miyama A, Saito Y, Yamanaka K, Hayashi K, Hamakubo T, Noguchi N. Oxidation of DJ-1 induced by 6-hydroxydopamine decreasing intracellular glutathione. PLoS One 2011; 6:e27883. [PMID: 22132160 PMCID: PMC3221727 DOI: 10.1371/journal.pone.0027883] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 10/27/2011] [Indexed: 02/08/2023] Open
Abstract
DJ-1, the causative gene of a familial form of Parkinson's disease (PD), has been reported to undergo preferential oxidation of the cysteine residue at position 106 (Cys-106) under oxidative stress; however, details of the molecular mechanisms are not well known. In the present study, mechanisms of DJ-1 oxidation induced by 6-hydroxydopamine (6-OHDA) were investigated by using SH-SY5Y cells. The treatment of these cells with 6-OHDA caused an obvious acidic spot sift of DJ-1 due to its oxidation. However, when catalase, which is an hydrogen peroxide (H(2)O(2))-removing enzyme, was added during the treatment, it failed to prevent the oxidation induced by 6-OHDA, suggesting that electrophilic p-quinone formed from 6-OHDA, but not H(2)O(2), was responsible for the DJ-1 oxidation. Benzoquinone, another electrophilic p-quinone, also induced DJ-1 oxidation. The intracellular glutathione (GSH) levels were significantly decreased by 6-OHDA, irrespective of the presence or absence of catalase. The inhibition of GSH synthesis by buthionine sulfoximine resulted in a decrease in GSH levels and enhancement of DJ-1 oxidation. The pretreatment of cells with N-acetyl-cysteine prevented the loss of intracellular GSH and subsequently DJ-1 oxidation induced by 6-OHDA. Collectively, these results suggest that electrophilic p-quinone formed from 6-OHDA induces DJ-1 oxidation by decreasing intracellular GSH.
Collapse
Affiliation(s)
- Akiko Miyama
- Department of Medical Life Systems, Faculty of Medical and Life Sciences, Doshisha University, Tatara, Kyotanabe, Kyoto, Japan
| | - Yoshiro Saito
- Department of Medical Life Systems, Faculty of Medical and Life Sciences, Doshisha University, Tatara, Kyotanabe, Kyoto, Japan
- * E-mail: (YS); (NN)
| | - Kazunori Yamanaka
- Department of Medical Life Systems, Faculty of Medical and Life Sciences, Doshisha University, Tatara, Kyotanabe, Kyoto, Japan
| | - Kojiro Hayashi
- Department of Medical Life Systems, Faculty of Medical and Life Sciences, Doshisha University, Tatara, Kyotanabe, Kyoto, Japan
| | - Takao Hamakubo
- Laboratory of Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Medical and Life Sciences, Doshisha University, Tatara, Kyotanabe, Kyoto, Japan
- * E-mail: (YS); (NN)
| |
Collapse
|
48
|
Pandurangan K, Murnaghan KD, Walshe A, Müller-Bunz H, Paradisi F, Morgan GG. Design, Synthesis and Structure of Novel Para-Quinones and their Antibacterial Activity. Chem Biol Drug Des 2011; 78:787-99. [DOI: 10.1111/j.1747-0285.2011.01187.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Agarwala H, Das D, Mobin SM, Mondal TK, Lahiri GK. Probing valence and spin situations in selective ruthenium–iminoquinonoid frameworks. An experimental and DFT analysis. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.02.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Seidi A, Kaji H, Annabi N, Ostrovidov S, Ramalingam M, Khademhosseini A. A microfluidic-based neurotoxin concentration gradient for the generation of an in vitro model of Parkinson's disease. BIOMICROFLUIDICS 2011; 5:22214. [PMID: 21799720 PMCID: PMC3145239 DOI: 10.1063/1.3580756] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/30/2011] [Indexed: 05/19/2023]
Abstract
In this study, we developed a miniaturized microfluidic-based high-throughput cell toxicity assay to create an in vitro model of Parkinson's disease (PD). In particular, we generated concentration gradients of 6-hydroxydopamine (6-OHDA) to trigger a process of neuronal apoptosis in pheochromocytoma PC12 neuronal cell line. PC12 cells were cultured in a microfluidic channel, and a concentration gradient of 6-OHDA was generated in the channel by using a back and forth movement of the fluid flow. Cellular apoptosis was then analyzed along the channel. The results indicate that at low concentrations of 6-OHDA along the gradient (i.e., approximately less than 260 μM), the neuronal death in the channel was mainly induced by apoptosis, while at higher concentrations, 6-OHDA induced neuronal death mainly through necrosis. Thus, this concentration appears to be useful for creating an in vitro model of PD by inducing the highest level of apoptosis in PC12 cells. As microfluidic systems are advantageous in a range of properties such as throughput and lower use of reagents, they may provide a useful approach for generating in vitro models of disease for drug discovery applications.
Collapse
|