1
|
Hou TY, Zhou Y, Zhu LS, Wang X, Pang P, Wang DQ, Liuyang ZY, Man H, Lu Y, Zhu LQ, Liu D. Correcting abnormalities in miR-124/PTPN1 signaling rescues tau pathology in Alzheimer's disease. J Neurochem 2020; 154:441-457. [PMID: 31951013 DOI: 10.1111/jnc.14961] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs have been implicated in diverse physiological and pathological processes. We previously reported that aberrant microRNA-124 (miR-124)/non-receptor-type protein phosphatase 1 (PTPN1) signaling plays an important role in the synaptic disorders associated with Alzheimer's disease (AD). In this study, we further investigated the potential role of miR-124/PTPN1 in the tau pathology of AD. We first treated the mice with intra-hippocampal stereotactic injections. Then, we used quantitative real-time reverse transcription PCR (qRT-PCR) to detect the expression of microRNAs. Western blotting was used to measure the level of PTPN1, the level of tau protein, the phosphorylation of tau at AD-related sites, and alterations in the activity of glycogen synthase kinase 3β (GSK-3β) and protein phosphatase 2 (PP2A). Immunohistochemistry was also used to detect changes in tau phosphorylation levels at AD-related sites and somadendritic aggregation. Soluble and insoluble tau protein was separated by 70% formic acid (FA) extraction to examine tau solubility. Finally, behavioral experiments (including the Morris water maze, fear conditioning, and elevated plus maze) were performed to examine learning and memory ability and emotion-related behavior. We found that artificially replicating the abnormalities in miR-124/PTPN1 signaling induced AD-like tau pathology in the hippocampus of wild-type mice, including hyperphosphorylation at multiple sites, insolubility and somadendritic aggregation, as well as learning/memory deficits. We also found that disruption of miR-124/PTPN1 signaling was caused by the loss of RE1-silencing transcription factor protein, which can be initiated by Aβ insults or oxidative stress, as observed in the brains of P301S mice. Correcting the deregulation of miR-124/PTPN1 signaling rescued the tau pathology and learning/memory impairments in the P301S mice. We also found that miR-124/PTPN1 abnormalities induced activation of glycogen synthase kinase 3 (GSK-3) and inactivation of protein phosphatase 2A (PP2A) by promoting tyrosine phosphorylation, implicating an imbalance in tau kinase/phosphatase. Thus, targeting the miR-124/PTPN1 signaling pathway is a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Tong-Yao Hou
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yang Zhou
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ling-Shuang Zhu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiong Wang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Pei Pang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ding-Qi Wang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhen-Yu Liuyang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hengye Man
- Department of Biology, Boston University, Boston, MA, USA
| | - Youming Lu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Dan Liu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China.,Department of Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
2
|
Chiku T, Hayashishita M, Saito T, Oka M, Shinno K, Ohtake Y, Shimizu S, Asada A, Hisanaga SI, Iijima KM, Ando K. S6K/p70S6K1 protects against tau-mediated neurodegeneration by decreasing the level of tau phosphorylated at Ser262 in a Drosophila model of tauopathy. Neurobiol Aging 2018; 71:255-264. [DOI: 10.1016/j.neurobiolaging.2018.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 02/08/2023]
|
3
|
|
4
|
Cowan CM, Quraishe S, Hands S, Sealey M, Mahajan S, Allan DW, Mudher A. Rescue from tau-induced neuronal dysfunction produces insoluble tau oligomers. Sci Rep 2015; 5:17191. [PMID: 26608845 PMCID: PMC4660438 DOI: 10.1038/srep17191] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 10/12/2015] [Indexed: 12/18/2022] Open
Abstract
Aggregation of highly phosphorylated tau is a hallmark of Alzheimer’s
disease and other tauopathies. Nevertheless, animal models demonstrate that
tau-mediated dysfunction/toxicity may not require large tau aggregates but instead
may be caused by soluble hyper-phosphorylated tau or by small tau oligomers.
Challenging this widely held view, we use multiple techniques to show that insoluble
tau oligomers form in conditions where tau-mediated dysfunction is rescued in
vivo. This shows that tau oligomers are not necessarily always toxic.
Furthermore, their formation correlates with increased tau levels, caused
intriguingly, by either pharmacological or genetic inhibition of tau kinase
glycogen-synthase-kinase-3beta (GSK-3β). Moreover, contrary to common
belief, these tau oligomers were neither highly phosphorylated, and nor did they
contain beta-pleated sheet structure. This may explain their lack of toxicity. Our
study makes the novel observation that tau also forms non-toxic insoluble oligomers
in vivo in addition to toxic oligomers, which have been reported by
others. Whether these are inert or actively protective remains to be established.
Nevertheless, this has wide implications for emerging therapeutic strategies such as
those that target dissolution of tau oligomers as they may be ineffective or even
counterproductive unless they act on the relevant toxic oligomeric tau species.
Collapse
Affiliation(s)
- Catherine M Cowan
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Shmma Quraishe
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Sarah Hands
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Megan Sealey
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Sumeet Mahajan
- Institute of Life Sciences and Department of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Amritpal Mudher
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
5
|
Papanikolopoulou K, Skoulakis EMC. Temporally distinct phosphorylations differentiate Tau-dependent learning deficits and premature mortality in Drosophila. Hum Mol Genet 2014; 24:2065-77. [PMID: 25524708 DOI: 10.1093/hmg/ddu726] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abnormally phosphorylated Tau protein, the major component of neurofibrillary tangles, is critical in the pathogenesis of Alzheimer's disease and related Tauopathies. We used Drosophila to examine the role of key disease-associated phosphorylation sites on Tau-mediated neurotoxicity. We present evidence that the late-appearing phosphorylation on Ser(238) rather than hyperphosphorylation per se is essential for Tau toxicity underlying premature mortality in adult flies. This site is also occupied at the time of neurodegeneration onset in a mouse Tauopathy model and in damaged brain areas of confirmed Tauopathy patients, suggesting a similar critical role on Tau toxicity in humans. In contrast, occupation of Ser(262) is necessary for Tau-dependent learning deficits in adult Drosophila. Significantly, occupation of Ser(262) precedes and is required for Ser(238) phosphorylation, and these temporally distinct phosphorylations likely reflect conformational changes. Because sequential occupation of Ser(262) and Ser(238) is required for the progression from Tau-mediated learning deficits to premature mortality in Drosophila, they may also play similar roles in the escalating symptom severity in Tauopathy patients, congruent with their presence in damaged regions of their brains.
Collapse
Affiliation(s)
- Katerina Papanikolopoulou
- Division of Neuroscience, Biomedical Sciences Research Centre 'Alexander Fleming', Vari 16672, Greece
| | - Efthimios M C Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre 'Alexander Fleming', Vari 16672, Greece
| |
Collapse
|
6
|
Olfactory Deprivation Hastens Alzheimer-Like Pathologies in a Human Tau-Overexpressed Mouse Model via Activation of cdk5. Mol Neurobiol 2014; 53:391-401. [PMID: 25465240 DOI: 10.1007/s12035-014-9007-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/13/2014] [Indexed: 01/12/2023]
Abstract
Olfactory dysfunction is a recognized risk factor for the pathogenesis of Alzheimer's disease (AD), while the mechanisms are still not clear. Here, we applied bilateral olfactory bulbectomy (OBX), an olfactory deprivation surgery to cause permanent anosmia, in human tau-overexpressed mice (htau mice) to investigate changes of AD-like pathologies including aggregation of abnormally phosphorylated tau and cholinergic neuron loss. We found that tau phosphorylation in hippocampus was increased at Thr-205, Ser-214, Thr-231, and Ser-396 after OBX. OBX also increased the level of sarkosyl-insoluble Tau at those epitopes and accelerated accumulation of somatodendritic tau. Moreover, OBX resulted in the elevation of calpain activity accompanied by an increased expression of the cyclin-dependent kinase 5 (cdk5) neuronal activators, p35 and p25, in hippocampus. Furthermore, OBX induces the loss of the cholinergic neurons in medial septal. Administration of cdk5 pharmacological inhibitor roscovitine into lateral ventricles suppressed tau hyperphosphorylation and mislocalization and restored the cholinergic neuron loss. These findings suggest that olfactory deprivation by OBX hastens tau pathology and cholinergic system impairment in htau mice possibly via activation of cdk5.
Collapse
|
7
|
Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M. Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. ACTA ACUST UNITED AC 2012; 135:2169-77. [PMID: 22689910 PMCID: PMC3381726 DOI: 10.1093/brain/aws143] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The accumulation of insoluble proteins is a pathological hallmark of several neurodegenerative disorders. Tauopathies are caused by the dysfunction and aggregation of tau protein and an impairment of cellular protein degradation pathways may contribute to their pathogenesis. Thus, a deficiency in autophagy can cause neurodegeneration, while activation of autophagy is protective against some proteinopathies. Little is known about the role of autophagy in animal models of human tauopathy. In the present report, we assessed the effects of autophagy stimulation by trehalose in a transgenic mouse model of tauopathy, the human mutant P301S tau mouse, using biochemical and immunohistochemical analyses. Neuronal survival was evaluated by stereology. Autophagy was activated in the brain, where the number of neurons containing tau inclusions was significantly reduced, as was the amount of insoluble tau protein. This reduction in tau aggregates was associated with improved neuronal survival in the cerebral cortex and the brainstem. We also observed a decrease of p62 protein, suggesting that it may contribute to the removal of tau inclusions. Trehalose failed to activate autophagy in the spinal cord, where it had no impact on the level of sarkosyl-insoluble tau. Accordingly, trehalose had no effect on the motor impairment of human mutant P301S tau transgenic mice. Our findings provide direct evidence in favour of the degradation of tau aggregates by autophagy. Activation of autophagy may be worth investigating in the context of therapies for human tauopathies.
Collapse
Affiliation(s)
- Véronique Schaeffer
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | |
Collapse
|
8
|
Cowan CM, Sealey MA, Quraishe S, Targett MT, Marcellus K, Allan D, Mudher A. Modelling tauopathies in Drosophila: insights from the fruit fly. Int J Alzheimers Dis 2011; 2011:598157. [PMID: 22254145 PMCID: PMC3255107 DOI: 10.4061/2011/598157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/02/2011] [Indexed: 01/04/2023] Open
Abstract
Drosophila melanogaster is an experimentally tractable model organism that has been used successfully to model aspects of many human neurodegenerative diseases. Drosophila models of tauopathy have provided valuable insights into tau-mediated mechanisms of neuronal dysfunction and death. Here we review the findings from Drosophila models of tauopathy reported over the past ten years and discuss how they have furthered our understanding of the pathogenesis of tauopathies. We also discuss the multitude of technical advantages that Drosophila offers, which make it highly attractive as a model for such studies.
Collapse
Affiliation(s)
- Catherine M Cowan
- Centre for Biological Sciences, University of Southampton, University Road, Southampton SO17 3JD, UK
| | | | | | | | | | | | | |
Collapse
|
9
|
Ali YO, Ruan K, Zhai RG. NMNAT suppresses tau-induced neurodegeneration by promoting clearance of hyperphosphorylated tau oligomers in a Drosophila model of tauopathy. Hum Mol Genet 2011; 21:237-50. [PMID: 21965302 DOI: 10.1093/hmg/ddr449] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tauopathies, including Alzheimer's disease, are a group of neurodegenerative diseases characterized by abnormal tau hyperphosphorylation that leads to formation of neurofibrillary tangles. Drosophila models of tauopathy display prominent features of the human disease including compromised lifespan, impairments of learning, memory and locomotor functions and age-dependent neurodegeneration visible as vacuolization. Here, we use a Drosophila model of frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), in order to study the neuroprotective capacity of a recently identified neuronal maintenance factor, nicotinamide mononucleotide (NAD) adenylyl transferase (NMNAT), a protein that has both NAD synthase and chaperone function. NMNAT is essential for maintaining neuronal integrity under normal conditions and has been shown to protect against several neurodegenerative conditions. However, its protective role in tauopathy has not been examined. Here, we show that overexpression of NMNAT significantly suppresses both behavioral and morphological deficits associated with tauopathy by means of reducing the levels of hyperphosphorylated tau oligomers. Importantly, the protective activity of NMNAT protein is independent of its NAD synthesis activity, indicating a role for direct protein-protein interaction. Next, we show that NMNAT interacts with phosphorylated tau in vivo and promotes the ubiquitination and clearance of toxic tau species. Consequently, apoptosis activation was significantly reduced in brains overexpressing NMNAT, and neurodegeneration was suppressed. Our report on the molecular basis of NMNAT-mediated neuroprotection in tauopathies opens future investigation of this factor in other protein foldopathies.
Collapse
Affiliation(s)
- Yousuf O Ali
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | |
Collapse
|
10
|
Abstract
Tau pathology is characterized by intracellular aggregates of abnormally and hyperphosphorylated tau proteins. It is encountered in many neurodegenerative disorders, but also in aging. These neurodegenerative disorders are referred to as tauopathies. Comparative biochemistry of the tau aggregates shows that they differ in both tau isoform phosphorylation and content, which enables a molecular classification of tauopathies. In conditions of dementia, NFD (neurofibrillary degeneration) severity is correlated to cognitive impairment and is often considered as neuronal death. Using tau animal models, analysis of the kinetics of tau phosphorylation, aggregation and neuronal death in parallel to electrophysiological and behavioural parameters indicates a disconnection between cognition deficits and neuronal cell death. Tau phosphorylation and aggregation are early events followed by cognitive impairment. Neuronal death is not observed before the oldest ages. A sequence of events may be the formation of toxic phosphorylated tau species, their aggregation, the formation of neurofibrillary tangles (from pre-tangles to ghost tangles) and finally neuronal cell death. This sequence will last from 15 to 25 years and one can ask whether the aggregation of toxic phosphorylated tau species is a protection against cell death. Apoptosis takes 24 h, but NFD lasts for 24 years to finally kill the neuron or rather to protect it for more than 20 years. Altogether, these data suggest that NFD is a transient state before neuronal death and that therapeutic interventions are possible at that stage.
Collapse
|
11
|
Chaves RS, Melo TQ, Martins SA, Ferrari MFR. Protein aggregation containing β-amyloid, α-synuclein and hyperphosphorylated τ in cultured cells of hippocampus, substantia nigra and locus coeruleus after rotenone exposure. BMC Neurosci 2010; 11:144. [PMID: 21067569 PMCID: PMC2989321 DOI: 10.1186/1471-2202-11-144] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 11/10/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein aggregates containing alpha-synuclein, beta-amyloid and hyperphosphorylated tau are commonly found during neurodegenerative processes which is often accompanied by the impairment of mitochondrial complex I respiratory chain and dysfunction of cellular systems of protein degradation. In view of this, we aimed to develop an in vitro model to study protein aggregation associated to neurodegenerative diseases using cultured cells from hippocampus, locus coeruleus and substantia nigra of newborn Lewis rats exposed to 0.5, 1, 10 and 25 nM of rotenone, which is an agricultural pesticide, for 48 hours. RESULTS We demonstrated that the proportion of cells in culture is approximately the same as found in the brain nuclei they were extracted from. Rotenone at 0.5 nM was able to induce alpha-synuclein and beta amyloid aggregation, as well as increased hyperphosphorylation of tau, although high concentrations of this pesticide (over 1 nM) lead cells to death before protein aggregation. We also demonstrated that the 14 kDa isoform of alpha-synuclein is not present in newborn Lewis rats. CONCLUSION Rotenone exposure may lead to constitutive protein aggregation in vitro, which may be of relevance to study the mechanisms involved in idiopathic neurodegeneration.
Collapse
Affiliation(s)
- Rodrigo S Chaves
- Department of Neurology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
12
|
Wentzell J, Kretzschmar D. Alzheimer's disease and tauopathy studies in flies and worms. Neurobiol Dis 2010; 40:21-8. [PMID: 20302939 DOI: 10.1016/j.nbd.2010.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/08/2010] [Accepted: 03/10/2010] [Indexed: 12/24/2022] Open
Abstract
Progressive dementias like Alzheimer's Disease (AD) and other tauopathies are an increasing threat to human health worldwide. Although significant progress has been made in understanding the pathogenesis of these diseases using cell culture and mouse models, the complexity of these diseases has still prevented a comprehensive understanding of their underlying causes. As with other neurological diseases, invertebrate models have provided novel genetic approaches for investigating the molecular pathways that are affected in tauopathies, including AD. This review focuses on transgenic models that have been established in Drosophila melanogaster and Caenorhabditis elegans to investigate these diseases, and the insights that have been gained from these studies. Also included are a brief description of the endogenous versions of human "disease genes" (like tau and the Amyloid Precursor Protein) that are expressed in invertebrates, and an overview of results that have been obtained from animals lacking or overexpressing these genes. These diverse models can be used to advance our knowledge about how these proteins acquire a pathogenic function and how disrupting their normal functions may contribute to neurological pathologies. They also provide powerful assays for identifying molecular and genetic interactions that are important in developing or preventing the deleterious effects.
Collapse
Affiliation(s)
- Jill Wentzell
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
13
|
Feuillette S, Miguel L, Frébourg T, Campion D, Lecourtois M. Drosophila models of human tauopathies indicate that Tau protein toxicity in vivo is mediated by soluble cytosolic phosphorylated forms of the protein. J Neurochem 2010; 113:895-903. [PMID: 20193038 DOI: 10.1111/j.1471-4159.2010.06663.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tau is a neuronal microtubule-associated protein involved in microtubules assembly and stabilization. Tauopathies, including Alzheimer's disease and fronto-temporal dementia with parkinsonism linked to chromosome 17, are a group of neurodegenerative disorders characterized by the presence of intraneuronal filamentous inclusions of abnormally and hyperphosphorylated Tau. Currently, the molecular mechanisms underlying Tau-mediated cellular toxicity remain elusive. To address the determinants of Tau neurotoxicity, we used Drosophila models of human tauopathies to study the microtubule-binding properties of human Tau proteins in vivo. We showed that, in contrast to endogenous Drosophila Tau, human Tau proteins bind very poorly to microtubules in Drosophila, and are mostly recovered as soluble cytosolic hyperphosphorylated species. This weak binding of human Tau to microtubules is neither because of microtubules saturation nor competition with endogenous Drosophila Tau, but clearly depends on its phosphorylation degree. We also reported that accumulation of cytosolic hyperphosphorylated forms of human Tau proteins correlates with human Tau-mediated neurodegeneration in flies, supporting the key role of soluble cytosolic hyperphosphorylated Tau proteins as toxic species in vivo.
Collapse
Affiliation(s)
- Sébastien Feuillette
- Inserm U614, Rouen Institute for Medical Research, Faculty of Medicine, University of Rouen, Rouen Cedex, France
| | | | | | | | | |
Collapse
|
14
|
O-GlcNAc cycling: implications for neurodegenerative disorders. Int J Biochem Cell Biol 2009; 41:2134-46. [PMID: 19782947 DOI: 10.1016/j.biocel.2009.03.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 03/13/2009] [Accepted: 03/18/2009] [Indexed: 12/20/2022]
Abstract
The dynamic post-translational modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc), termed O-GlcNAcylation, is an important mechanism for modulating cellular signaling pathways. O-GlcNAcylation impacts transcription, translation, organelle trafficking, proteasomal degradation and apoptosis. O-GlcNAcylation has been implicated in the etiology of several human diseases including type-2 diabetes and neurodegeneration. This review describes the pair of enzymes responsible for the cycling of this post-translational modification: O-GlcNAc transferase (OGT) and beta-N-acetylglucosaminidase (OGA), with a focus on the function of their structural domains. We will also highlight the important processes and substrates regulated by these enzymes, with an emphasis on the role of O-GlcNAc as a nutrient sensor impacting insulin signaling and the cellular stress response. Finally, we will focus attention on the many ways by which O-GlcNAc cycling may affect the cellular machinery in the neuroendocrine and central nervous systems.
Collapse
|
15
|
Proteasome inhibition increases tau accumulation independent of phosphorylation. Neurobiol Aging 2008; 30:1949-61. [PMID: 18403053 DOI: 10.1016/j.neurobiolaging.2008.02.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 02/18/2008] [Accepted: 02/19/2008] [Indexed: 11/20/2022]
Abstract
An intrinsic link between proteasome and tau degradation in Alzheimer's disease (AD) has been suggested, however, the role of proteasome in the proteolysis of tau is still uncertain. Here, we investigated the influence of proteasome inhibition on the accumulation, phosphorylation, ubiquitination, solubility of tau and the memory retention in rats. We observed that lactacystin inhibited the proteasome activities and increased the level and insolubility of different tau species, including phosphorylated tau. The elevation of the phosphorylated tau was no longer present and the level of pS214 and pT231 tau was even lower than normal level after normalized to total tau. Inhibition of proteasome resulted in activation of cAMP-dependent protein kinase, glycogen synthase kinases-3beta and cyclin-dependent kinase-5, and inhibition of protein phosphatase-2A and c-Jun N-terminal kinase (JNK). Proteasome inhibition did not affect the memory retention of the rats. We conclude that proteasome inhibition increases accumulation and insolubility of tau proteins independent of tau phosphorylation, and JNK inhibition may be partially responsible for the relatively decreased phosphorylation of tau in the rat brains.
Collapse
|
16
|
Wang JZ, Liu F. Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol 2008; 85:148-75. [PMID: 18448228 DOI: 10.1016/j.pneurobio.2008.03.002] [Citation(s) in RCA: 295] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 12/29/2007] [Accepted: 03/13/2008] [Indexed: 12/11/2022]
Abstract
As a principal neuronal microtubule-associated protein, tau has been recognized to play major roles in promoting microtubule assembly and stabilizing the microtubules and to maintain the normal morphology of the neurons. Recent studies suggest that tau, upon alternative mRNA splicing and multiple posttranslational modifications, may participate in the regulations of intracellular signal transduction, development and viability of the neurons. Furthermore, tau gene mutations, aberrant mRNA splicing and abnormal posttranslational modifications, such as hyperphosphorylation, have also been found in a number of neurodegenerative disorders, collectively known as tauopathies. Therefore, changes in expression of the tau gene, alternative splicing of its mRNA and its posttranslational modification can modulate the normal architecture and functions of neurons as well as in a situation of tauopathies, such as Alzheimer's disease. The primary aim of this review is to summarize the latest developments and perspectives in our understanding about the roles of tau, especially hyperphosphorylation, in the development, degeneration and protection of neurons.
Collapse
Affiliation(s)
- Jian-Zhi Wang
- Pathophysiology Department, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | | |
Collapse
|
17
|
Blard O, Feuillette S, Bou J, Chaumette B, Frébourg T, Campion D, Lecourtois M. Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila. Hum Mol Genet 2007; 16:555-66. [PMID: 17309878 DOI: 10.1093/hmg/ddm011] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tauopathies, including Alzheimer's disease and fronto-temporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), are a group of neurodegenerative disorders characterized by the presence of intraneuronal filamentous inclusions of aberrantly phosphorylated-tau. Tau is a neuronal microtubule-associated protein involved in microtubule assembly and stabilization. Currently, the molecular mechanisms underlying tau-mediated cellular toxicity remain elusive. To address the determinants of tau neurotoxicity, we first characterized the cellular alterations resulting from the over-expression of a mutant form of human tau associated with FTDP-17 (tau V337M) in Drosophila. We found that the over-expression of tau V337M, in Drosophila larval motor neurons, induced disruption of the microtubular network at presynaptic nerve terminals and changes in neuromuscular junctions morphological features. Secondly, we performed a misexpression screen to identify genetic modifiers of the tau V337M-mediated rough eye phenotype. The screening of 1250 mutant Drosophila lines allowed us to identify several components of the cytoskeleton, and particularly from the actin network, as specific modifiers of tau V337M-induced neurodegeneration. Furthermore, we found that numerous tau modulators identified in our screen were involved in the maintenance of synaptic function. Taken together, these findings suggest that disruption of the microtubule network in presynaptic nerve terminals could constitute early events in the pathological process leading to synaptic dysfunction in tau V337M pathology.
Collapse
Affiliation(s)
- Olivier Blard
- Inserm U614 (IFRMP), University of Rouen & Department of Genetics, Rouen University Hospital, Institute for Biomedical Research, Rouen, France
| | | | | | | | | | | | | |
Collapse
|