1
|
Neuroprotection by Neurotropin through Crosstalk of Neurotrophic and Innate Immune Receptors in PC12 Cells. Int J Mol Sci 2020; 21:ijms21186456. [PMID: 32899630 PMCID: PMC7555716 DOI: 10.3390/ijms21186456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Infected or damaged tissues release multiple “alert” molecules such as alarmins and damage-associated molecular patterns (DAMPs) that are recognized by innate immune receptors, and induce tissue inflammation, regeneration, and repair. Recently, an extract from inflamed rabbit skin inoculated with vaccinia virus (Neurotropin®, NTP) was found to induce infarct tolerance in mice receiving permanent ischemic attack to the middle cerebral artery. Likewise, we report herein that NTP prevented the neurite retraction in PC12 cells by nerve growth factor (NGF) deprivation. This effect was accompanied by interaction of Fyn with high-affinity NGF receptor TrkA. Sucrose density gradient subcellular fractionation of NTP-treated cells showed heretofore unidentified membrane fractions with a high-buoyant density containing Trk, B subunit of cholera toxin-bound ganglioside, flotillin-1 and Fyn. Additionally, these new membrane fractions also contained Toll-like receptor 4 (TLR4). Inhibition of TLR4 function by TAK-242 prevented the formation of these unidentified membrane fractions and suppressed neuroprotection by NTP. These observations indicate that NTP controls TrkA-mediated signaling through the formation of clusters of new membrane microdomains, thus providing a platform for crosstalk between neurotrophic and innate immune receptors. Neuroprotective mechanisms through the interaction with innate immune systems may provide novel mechanism for neuroprotection.
Collapse
|
2
|
Matsuzaki K. Aβ-ganglioside interactions in the pathogenesis of Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183233. [PMID: 32142821 DOI: 10.1016/j.bbamem.2020.183233] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/20/2023]
Abstract
It is widely accepted that the abnormal self-association of amyloid β-protein (Aβ) is central to the pathogenesis of Alzheimer's disease, the most common form of dementia. Accumulating evidence, both in vivo and in vitro, suggests that the binding of Aβ to gangliosides, especially monosialoganglioside GM1, plays an important role in the aggregation of Aβ. This review summarizes the molecular details of the binding of Aβ to ganglioside-containing membranes and subsequent structural changes, as revealed by liposomal and cellular studies. Furthermore, mechanisms of cytotoxicity by aggregated Aβ are also discussed.
Collapse
Affiliation(s)
- Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
3
|
Meng XY, Yau LF, Huang H, Chan WH, Luo P, Chen L, Tong TT, Mi JN, Yang Z, Jiang ZH, Wang JR. Improved approach for comprehensive profiling of gangliosides and sulfatides in rat brain tissues by using UHPLC-Q-TOF-MS. Chem Phys Lipids 2019; 225:104813. [DOI: 10.1016/j.chemphyslip.2019.104813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/05/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023]
|
4
|
On the use of cholera toxin. Glycoconj J 2018; 35:161-163. [PMID: 29627921 DOI: 10.1007/s10719-018-9818-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
|
5
|
Ariga T. The Pathogenic Role of Ganglioside Metabolism in Alzheimer's Disease-Cholinergic Neuron-Specific Gangliosides and Neurogenesis. Mol Neurobiol 2018; 54:623-638. [PMID: 26748510 DOI: 10.1007/s12035-015-9641-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia with clinical symptoms that include deficits in memory, judgment, thinking, and behavior. Gangliosides are present on the outer surface of plasma membranes and are especially abundant in the nervous tissues of vertebrates. Ganglioside metabolism, especially the cholinergic neuron-specific gangliosides, GQ1bα and GT1aα, is altered in mouse model of AD and patients with AD. Thus, alterations in ganglioside metabolism may participate in several events related to the pathogenesis of AD. Increased expressions of GT1aα may reflect cholinergic neurogenesis. Most changes in ganglioside metabolism occur in the specific brain areas and their lipid rafts. Targeting ganglioside metabolism in lipid rafts may represent an underexploited opportunity to design novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Institute of Neuroscience, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA. .,Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo, 101-8308, Japan.
| |
Collapse
|
6
|
Miyazaki Y, Aoki M, Yano Y, Matsuzaki K. Interaction of antimicrobial peptide magainin 2 with gangliosides as a target for human cell binding. Biochemistry 2012. [PMID: 23194027 DOI: 10.1021/bi301470h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Understanding how antimicrobial peptides (AMPs) interact with human cells is important to the development of antimicrobial agents as well as anticancer drugs. However, little is known about the mechanisms by which AMPs bind to cells and exert cytotoxicity. Negatively charged gangliosides on the cell surface are a potential target for cell binding. In this study, we investigated the interaction of F5W-magainin 2 (MG) with gangliosides in detail. MG was colocalized with gangliosides on HeLa cells, indicating that gangliosides act as a receptor for MG. MG also bound to gangliosides in model membranes. The affinity increased with the number of negatively charged sialic acid residues. Physicochemical studies revealed that MG interacts with the monosialoganglioside GM1 differently from the typical bacterial anionic phospholipid phosphatidylglycerol. MG bound to GM1 more strongly than to phosphatidylglycerol, and the binding isotherm for GM1 could be analyzed by the Langmuir equation assuming charge neutralization. This is in contrast to the binding of AMPs to phosphatidylglycerol-containing bilayers, which has been described by the electrostatic attraction-surface partitioning model. Fluorescence resonance energy transfer experiments supported the clustering of GM1, but not phosphatidylglycerol, by MG. Quenching data suggested that MG is bound to the sugar region of GM1. The bound peptide assumed a helical structure and induced the leakage of calcein and the coupled flip-flop of lipids, indicating the peptide also forms a toroidal pore in GM1-containing vesicles. However, the membrane permeabilizing activity was weaker against GM1-containing membranes than phosphatidylglycerol-doped liposomes in accordance with the trapping of the peptide in the sugar region. These results shed light on AMP-human cell interaction.
Collapse
Affiliation(s)
- Yu Miyazaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
7
|
Ariga T, Wakade C, Yu RK. The pathological roles of ganglioside metabolism in Alzheimer's disease: effects of gangliosides on neurogenesis. Int J Alzheimers Dis 2011; 2011:193618. [PMID: 21274438 PMCID: PMC3025365 DOI: 10.4061/2011/193618] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/08/2010] [Indexed: 12/21/2022] Open
Abstract
Conversion of the soluble, nontoxic amyloid β-protein (Aβ) into an aggregated, toxic form rich in β-sheets is a key step in the onset of Alzheimer's disease (AD). It has been suggested that Aβ induces changes in neuronal membrane fluidity as a result of its interactions with membrane components such as cholesterol, phospholipids, and gangliosides. Gangliosides are known to bind Aβ. A complex of GM1 and Aβ, termed “GAβ”, has been identified in AD brains. Abnormal ganglioside metabolism also may occur in AD brains. We have reported an increase of Chol-1α antigens, GQ1bα and GT1aα, in the brain of transgenic mouse AD model. GQ1bα and GT1aα exhibit high affinities to Aβs. The presence of Chol-1α gangliosides represents evidence for genesis of cholinergic neurons in AD brains. We evaluated the effects of GM1 and Aβ1–40 on mouse neuroepithelial cells. Treatment of these cells simultaneously with GM1 and Aβ1–40 caused a significant reduction of cell number, suggesting that Aβ1–40 and GM1 cooperatively exert a cytotoxic effect on neuroepithelial cells. An understanding of the mechanism on the interaction of GM1 and Aβs in AD may contribute to the development of new neuroregenerative therapies for this disorder.
Collapse
Affiliation(s)
- Toshio Ariga
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, 15th street, Augusta, GA 30912, USA
| | | | | |
Collapse
|
8
|
|
9
|
Cytotoxic effects of G(M1) ganglioside and amyloid β-peptide on mouse embryonic neural stem cells. ASN Neuro 2010; 2:e00029. [PMID: 20305711 PMCID: PMC2838405 DOI: 10.1042/an20090063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 01/29/2010] [Indexed: 12/21/2022] Open
Abstract
AD (Alzheimer’s disease) is a neurodegenerative disease and the most common form of dementia. One of the pathological hallmarks of AD is the aggregation of extracellular Aβs (amyloid β-peptides) in senile plaques in the brain. The process could be initiated by seeding provided by an interaction between GM1 ganglioside and Aβs. Several reports have documented the bifunctional roles of Aβs in NSCs (neural stem cells), but the precise effects of GM1 and Aβ on NSCs have not yet been clarified. We evaluated the effect of GM1 and Aβ-(1–40) on mouse NECs (neuroepithelial cells), which are known to be rich in NSCs. No change of cell number was detected in NECs cultured in the presence of either GM1 or Aβ-(1–40). On the contrary, a decreased number of NECs were cultured in the presence of a combination of GM1 and Aβ-(1–40). The exogenously added GM1 and Aβ-(1–40) were confirmed to incorporate into NECs. The Ras–MAPK (mitogen-activated protein kinase) pathway, important for cell proliferation, was intact in NECs simultaneously treated with GM1 and Aβ-(1–40), but caspase 3 was activated. NECs treated with GM1 and Aβ-(1–40) were positive in the TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) assay, an indicator of cell death. It was found that GM1 and Aβ-(1–40) interacted in the presence of cholesterol and sphingomyelin, components of cell surface microdomains. The cytotoxic effect was found also in NSCs prepared via neurospheres. These results indicate that Aβ-(1–40) and GM1 co-operatively exert a cytotoxic effect on NSCs, likely via incorporation into NEC membranes, where they form a complex for the activation of cell death signalling.
Collapse
Key Words
- AD, Alzheimer’s disease
- Alzheimer’s disease (AD)
- Aβ, amyloid β-peptide
- CCD, charge-coupled device
- DMEM, Dulbecco’s modified Eagle’s medium
- ERK, extracellular-signal-regulated kinase
- FITC-Aβ-(1–40), FITC-conjugated Aβ-(1–40)
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GM1 ganglioside
- IACUC, Institutional Animal Care and Use Committee
- IL, interleukin
- MAP2, microtubule-associated protein 2
- MAPK, mitogen-activated protein kinase
- N2-DMEM/F12, N2-supplemented DMEM/Ham’s Nutrient Mixture F12
- NEC, neuroepithelial cell
- NSC, neural stem cell
- RT–PCR, reverse transcription–PCR
- TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling
- amyloid β-peptide (Aβ)
- apoptosis
- bFGF, basic fibroblast growth factor
- biotin-Ctxb, biotin-conjugated cholera toxin B subunit
- glycosphingolipid
- neural stem cell
Collapse
|
10
|
Lingwood CA, Manis A, Mahfoud R, Khan F, Binnington B, Mylvaganam M. New aspects of the regulation of glycosphingolipid receptor function. Chem Phys Lipids 2010; 163:27-35. [DOI: 10.1016/j.chemphyslip.2009.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/15/2009] [Accepted: 09/16/2009] [Indexed: 12/19/2022]
|
11
|
Prinetti A, Loberto N, Chigorno V, Sonnino S. Glycosphingolipid behaviour in complex membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:184-93. [DOI: 10.1016/j.bbamem.2008.09.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 12/12/2022]
|
12
|
Crespo PM, Silvestre DC, Gil GA, Maccioni HJF, Daniotti JL, Caputto BL. c-Fos activates glucosylceramide synthase and glycolipid synthesis in PC12 cells. J Biol Chem 2008; 283:31163-71. [PMID: 18784083 PMCID: PMC2662181 DOI: 10.1074/jbc.m709257200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 09/02/2008] [Indexed: 11/06/2022] Open
Abstract
It has been demonstrated that c-Fos has, in addition to its well recognized AP-1 transcription factor activity, the capacity to associate to the endoplasmic reticulum and activate key enzymes involved in the synthesis of phospholipids required for membrane biogenesis during cell growth and neurite formation. Because membrane genesis requires the coordinated supply of all its integral membrane components, the question emerges as to whether c-Fos also activates the synthesis of glycolipids, another ubiquitous membrane component. We show that c-Fos activates the metabolic labeling of glycolipids in differentiating PC12 cells. Specifically, c-Fos activates the enzyme glucosylceramide synthase (GlcCerS), the product of which, GlcCer, is the first glycosylated intermediate in the pathway of synthesis of glycolipids. By contrast, the activities of GlcCer galactosyltransferase 1 and lactosylceramide sialyltransferase 1 are essentially unaffected by c-Fos. Co-immunoprecipitation experiments in cells co-transfected with c-Fos and a V5-tagged version of GlcCerS evidenced that both proteins participate in a physical association. c-Fos expression is tightly regulated by specific environmental cues. This strict regulation assures that lipid metabolism activation will occur as a response to cell requirements thus pointing to c-Fos as an important regulator of key membrane metabolisms in membrane biogenesis-demanding processes.
Collapse
Affiliation(s)
- Pilar M Crespo
- Centro de Investigaciones en Química Biológica de Córdoba, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | | | | | | | | | | |
Collapse
|
13
|
Ariga T, McDonald MP, Yu RK. Role of ganglioside metabolism in the pathogenesis of Alzheimer's disease--a review. J Lipid Res 2008; 49:1157-75. [PMID: 18334715 DOI: 10.1194/jlr.r800007-jlr200] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Gangliosides are expressed in the outer leaflet of the plasma membrane of the cells of all vertebrates and are particularly abundant in the nervous system. Ganglioside metabolism is closely associated with the pathology of Alzheimer's disease (AD). AD, the most common form of dementia, is a progressive degenerative disease of the brain characterized clinically by progressive loss of memory and cognitive function and eventually death. Neuropathologically, AD is characterized by amyloid deposits or "senile plaques," which consist mainly of aggregated variants of amyloid beta-protein (Abeta). Abeta undergoes a conformational transition from random coil to ordered structure rich in beta-sheets, especially after addition of lipid vesicles containing GM1 ganglioside. In AD brain, a complex of GM1 and Abeta, termed "GAbeta," has been found to accumulate. In recent years, Abeta and GM1 have been identified in microdomains or lipid rafts. The functional roles of these microdomains in cellular processes are now beginning to unfold. Several articles also have documented the involvement of these microdomains in the pathogenesis of certain neurodegenerative diseases, such as AD. A pivotal neuroprotective role of gangliosides has been reported in in vivo and in vitro models of neuronal injury, Parkinsonism, and related diseases. Here we describe the possible involvement of gangliosides in the development of AD and the therapeutic potentials of gangliosides in this disorder.
Collapse
Affiliation(s)
- Toshio Ariga
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
14
|
Ariga T, Suetake K, Nakane M, Kubota M, Usuki S, Kawashima I, Yu RK. Glycosphingolipid antigens in neural tumor cell lines and anti-glycosphingolipid antibodies in sera of patients with neural tumors. Neurosignals 2008; 16:226-34. [PMID: 18253060 DOI: 10.1159/000111565] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To characterize biomarkers in neural tumors, we analyzed the acidic lipid fractions of 13 neural tumor cell lines using enzyme-linked immunoabsorbent assay (ELISA) and high-performance thin-layer chromatography (HPTLC) immunostaining. Sulfated glucuronosyl glycosphingolipids (SGGLs) are cell surface molecules that are endowed with the Human Natural Killer-1 (HNK-1) carbohydrate epitope. These glycosphingolipids (GSLs) were expressed in all cell lines with concentrations ranging from 210 to 330 ng per 2 x 10(6) cells. Sulfoglucuronosyl paragloboside (SGPG) was the prominent species with lesser amounts of sulfoglucuronosyl lactosaminyl paragloboside (SGLPG) in these tumor cell lines as assessed by quantitative HPTLC immunostaining. Among the gangliosides surveyed, GD3 and 9-O-acetylated GD3 (OAc-GD3) were expressed in all tumor cell lines. In contrast, fucosyl-GM1 was not found to restrict to small cell lung carcinoma cells. In addition, we have analyzed serum antibody titers against SGPG, GD3, and OAc-GD3 in patients with neural tumors by ELISA and HPTLC immunostaining. All sera had high titers of antibodies of the IgM isotype against SGPG (titers over 1:3,200), especially in tumors such as meningiomas, germinomas, orbital tumors, glioblastomas, medulloblastomas, and subependymomas. Serum in a patient with subependymomas also had a high anti-SGGL antibody titer of the IgG and IgA types (titers over 12,800). The titer of anti-GD3 antibody was also elevated in patients with subependymomas and medulloblastomas; the latter cases also had a high titer of antibody against OAc-GD3. Our data indicate that certain GSL antigens, especially SGGLs, GD3, and OAc-GD3, are expressed in neural tumor cells and may be considered as tumor-associated antigens that represent important biomarkers for neural tumors. Furthermore, antibody titers in sera of patients with these tumors may be of diagnostic value for monitoring the presence of tumor cells and tumor progression.
Collapse
Affiliation(s)
- Toshio Ariga
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Yuyama K, Yamamoto N, Yanagisawa K. Accelerated release of exosome-associated GM1 ganglioside (GM1) by endocytic pathway abnormality: another putative pathway for GM1-induced amyloid fibril formation. J Neurochem 2007; 105:217-24. [PMID: 18021298 DOI: 10.1111/j.1471-4159.2007.05128.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exosomes are extracellularly released small vesicles that are derived from multivesicular bodies formed via the endocytic pathway. We treated pheochromocytoma PC12 cells with chloroquine, an acidotropic agent, which potently perturbs membrane trafficking from endosomes to lysosomes. Chloroquine treatment increased the level of GM1 ganglioside in cell media only when the cells were exposed to KCl for depolarization, which is known to enhance exosome release from neurons. In the sucrose-density-gradient fractionation of cell media, GM1 ganglioside was exclusively recovered with Alix, a specific marker of exosomes, in the fractions with the density corrresponding to that of exosomes. Notably, amyloid-beta assembly was markedly accelerated when incubated with the exosome fraction prepared from the culture media of PC12 cells treated with chloroquine and KCl. Furthermore, amyloid-beta assembly was significantly suppressed by the co-incubation with an antibody specific to GM1-bound amyloid-beta, an endogenous seed for amyloid formation of Alzheimer's disease. Together with our previous finding that chloroquine treatment induces the accumulation of GM1 ganglioside in early endosomes, results of this study suggest that endocytic pathway abnormality accelerates the release of exosome-associated GM1 ganglioside following its accumulation in early endosomes. Furthermore, this study also suggests that extracellular amyloid fibril formation is induced by not only GM1 gangliosides accumulated on the surface of the cells but also those released in association with exosomes.
Collapse
Affiliation(s)
- Kohei Yuyama
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Japan
| | | | | |
Collapse
|
16
|
Wakabayashi M, Matsuzaki K. Formation of Amyloids by Aβ-(1–42) on NGF-differentiated PC12 Cells: Roles of Gangliosides and Cholesterol. J Mol Biol 2007; 371:924-33. [PMID: 17597153 DOI: 10.1016/j.jmb.2007.06.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 06/01/2007] [Accepted: 06/01/2007] [Indexed: 01/10/2023]
Abstract
The conversion of soluble, non-toxic amyloid beta-protein (Abeta) to aggregated, toxic Abeta could be the key step in the development of Alzheimer's disease. Liposomal studies have proposed that Abeta-(1-40) preferentially recognizes a cholesterol-dependent cluster of gangliosides and a conformationally altered form of Abeta promotes the aggregation of the protein. Cell experiments using fluorescein-labeled Abeta-(1-40) supported this model. Here, the interaction of native Abeta-(1-42) with unfixed rat pheochromocytoma PC12 cells was visualized using the amyloid-specific dye Congo red. Abeta-(1-42) preferentially bound to ganglioside and cholesterol-rich domains of cell membranes and formed amyloids in a time-dependent manner. These observations corroborate the model involving ganglioside-mediated accumulation of Abeta. The NGF-induced differentiation of PC12 cells into neuron-like cells caused a marked increase in both gangliosides and cholesterol, and thereby greatly potentiated the accumulation and cytotoxicity of Abeta-(1-42). NGF-differentiated cells exposed to Abeta-(1-42) had degenerated neurites, in which ganglioside and cholesterol-rich domains were localized, preceding cell death. A reduction in the amount of cholesterol by the cholesterol synthesis inhibitor compactin almost nullified the formation of amyloids by Abeta-(1-42). Our system using NGF-differentiated PC12 cells and Congo red is useful for screening inhibitors of the formation of amyloids by and cytotoxicity of Abeta.
Collapse
Affiliation(s)
- Masaki Wakabayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | | |
Collapse
|
17
|
Abstract
The mammalian central nervous system is organized by a variety of cells such as neurons and glial cells. These cells are generated from a common progenitor, the neural stem cell (NSC). NSCs are defined as undifferentiated neural cells that are characterized by their high proliferative potential while retaining the capacity for self-renewal and multipotency. Glycoconjugates carrying carbohydrate antigens, including glycoproteins, glycolipids, and proteoglycans, are primarily localized on the plasma-membrane surface of cells and serve as excellent biomarkers at various stages of cellular differentiation. Moreover, they also play important functional roles in determining cell fate such as self-renewal, proliferation, and differentiation. In the present review, we discuss the expression pattern and possible functions of glycoconjugates and carbohydrate antigens in NSCs, with an emphasis on stage-specific embryonic antigen-1, human natural killer antigen-1, polysialic acid-neural cell-adhesion molecule, prominin-1, gp130, chondroitin sulfate proteoglycans, heparan sulfate proteoglycans, cystatin C, galectin-1, glycolipids, and Notch.
Collapse
Affiliation(s)
- Makoto Yanagisawa
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Augusta, GA 30912, USA
| | | |
Collapse
|