1
|
Namba T, Haffner C, Huttner WB. Ex vivo Tissue Culture Protocols for Studying the Developing Neocortex. Bio Protoc 2021; 11:e4031. [PMID: 34150938 DOI: 10.21769/bioprotoc.4031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 11/02/2022] Open
Abstract
The size of the neocortex and its morphology are highly divergent across mammalian species. Several approaches have been utilized for the analysis of neocortical development and comparison among different species. In the present protocol (Note: This protocol requires basic knowledge of brain anatomy), we describe three ex vivo neocortical slice/tissue culture methods: (i) organotypic slice culture (mouse, ferret, human); (ii) hemisphere rotation culture (mouse, ferret); and (iii) free-floating tissue culture (mouse, ferret, human). Each of these three culture methods offers distinct features with regard to the analyses to be performed and can be combined with genetic manipulation by electroporation and treatment with specific inhibitors. These three culture methods are therefore powerful techniques to examine the function of genes involved in neocortical development.
Collapse
Affiliation(s)
- Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, FI-00014 Helsinki, Finland
| | - Christiane Haffner
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
2
|
Namba T, Shinohara H, Seki T. Non-radial tortuous migration with cell polarity alterations of newly generated granule neurons in the neonatal rat dentate gyrus. Brain Struct Funct 2019; 224:3247-3262. [PMID: 31659443 DOI: 10.1007/s00429-019-01971-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/17/2019] [Indexed: 01/08/2023]
Abstract
To establish functional neuronal circuits, newborn neurons generally migrate from the ventricular germinal zones to their final positions during embryonic periods. However, most excitatory neurons of the hippocampal dentate gyrus are born postnatally in the hilus, far from the lateral ventricle. Newly generated granule neurons must then migrate to the surrounding granule cell layer (GCL), which suggests that newborn granule cells may migrate by unique cellular mechanisms. In the present study, we describe the migratory behaviors of postnatally generated granule neurons using combined retroviral labeling and time-lapse imaging analysis. Our results show that whereas half of the newly generated neurons undergo radial migration, the remainder engages in more complex migratory patterns with veering and turning movements accompanied by process formation and cell polarity alterations. These data reveal a previously unappreciated diversity of mechanisms by which granule neurons distribute throughout the GCL to contribute to hippocampal circuitry.
Collapse
Affiliation(s)
- Takashi Namba
- Department of Anatomy, Juntendo University School of Medicine, Tokyo, 113-8421, Japan.
- Integrative Bioscience and Biomedical Engineering, School of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Hiroshi Shinohara
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, 160-8421, Japan
| | - Tatsunori Seki
- Department of Anatomy, Juntendo University School of Medicine, Tokyo, 113-8421, Japan.
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, 160-8421, Japan.
| |
Collapse
|
3
|
Abstract
BACKGROUND The microtubule-associated protein Tau plays a role in neurodegeneration as well as neurogenesis. Previous work has shown that the expression of the pro-aggregant mutant Tau repeat domain causes strong aggregation and pronounced neuronal loss in the hippocampus whereas the anti-aggregant form has no deleterious effects. These two proteins differ mainly in their propensity to form ß structure and hence to aggregate. METHODS To elucidate the basis of these contrasting effects, we analyzed organotypic hippocampal slice cultures (OHSCs) from transgenic mice expressing the repeat domain (RD) of Tau with the anti-aggregant mutation (TauRDΔKPP) and compared them with slices containing pro-aggregant TauRDΔK. Transgene expression in the hippocampus was monitored via a sensitive bioluminescence reporter gene assay (luciferase). RESULTS The expression of the anti-aggregant TauRDΔKPP leads to a larger volume of the hippocampus at a young age due to enhanced neurogenesis, resulting in an increase in neuronal number. There were no signs of activation of microglia and astrocytes, indicating the absence of an inflammatory reaction. Investigation of signaling pathways showed that Wnt-5a was strongly decreased whereas Wnt3 was increased. A pronounced increase in hippocampal stem cell proliferation (seen by BrdU) was observed as early as P8, in the CA regions where neurogenesis is normally not observed. The increase in neurons persisted up to 16 months of age. CONCLUSION The data suggest that the expression of anti-aggregant TauRDΔKPP enhances hippocampal neurogenesis mediated by the canonical Wnt signaling pathway, without an inflammatory reaction. This study points to a role of tau in brain development and neurogenesis, in contrast to its detrimental role in neurodegeneration at later age.
Collapse
|
4
|
Time-lapse imaging reveals highly dynamic structural maturation of postnatally born dentate granule cells in organotypic entorhino-hippocampal slice cultures. Sci Rep 2017; 7:43724. [PMID: 28256620 PMCID: PMC5335612 DOI: 10.1038/srep43724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/27/2017] [Indexed: 12/18/2022] Open
Abstract
Neurogenesis of hippocampal granule cells (GCs) persists throughout mammalian life and is important for learning and memory. How newborn GCs differentiate and mature into an existing circuit during this time period is not yet fully understood. We established a method to visualize postnatally generated GCs in organotypic entorhino-hippocampal slice cultures (OTCs) using retroviral (RV) GFP-labeling and performed time-lapse imaging to study their morphological development in vitro. Using anterograde tracing we could, furthermore, demonstrate that the postnatally generated GCs in OTCs, similar to adult born GCs, grow into an existing entorhino-dentate circuitry. RV-labeled GCs were identified and individual cells were followed for up to four weeks post injection. Postnatally born GCs exhibited highly dynamic structural changes, including dendritic growth spurts but also retraction of dendrites and phases of dendritic stabilization. In contrast, older, presumably prenatally born GCs labeled with an adeno-associated virus (AAV), were far less dynamic. We propose that the high degree of structural flexibility seen in our preparations is necessary for the integration of newborn granule cells into an already existing neuronal circuit of the dentate gyrus in which they have to compete for entorhinal input with cells generated and integrated earlier.
Collapse
|
5
|
Gerlach J, Donkels C, Münzner G, Haas CA. Persistent Gliosis Interferes with Neurogenesis in Organotypic Hippocampal Slice Cultures. Front Cell Neurosci 2016; 10:131. [PMID: 27242442 PMCID: PMC4870256 DOI: 10.3389/fncel.2016.00131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/29/2016] [Indexed: 12/20/2022] Open
Abstract
Neurogenesis in the adult hippocampus has become an intensively investigated research topic, as it is essential for proper hippocampal function and considered to bear therapeutic potential for the replacement of pathologically lost neurons. On the other hand, neurogenesis itself is frequently affected by CNS insults. To identify processes leading to the disturbance of neurogenesis, we made use of organotypic hippocampal slice cultures (OHSC), which, for unknown reasons, lose their neurogenic potential during cultivation. In the present study, we show by BrdU/Prox1 double-immunostaining that the generation of new granule cells drops by 90% during the first week of cultivation. Monitoring neurogenesis dynamically in OHSC from POMC-eGFP mice, in which immature granule cells are endogenously labeled, revealed a gradual decay of the eGFP signal, reaching 10% of initial values within 7 days of cultivation. Accordingly, reverse transcription quantitative polymerase chain reaction analysis showed the downregulation of the neurogenesis-related genes doublecortin and Hes5, a crucial target of the stem cell-maintaining Notch signaling pathway. In parallel, we demonstrate a strong and long-lasting activation of astrocytes and microglial cells, both, morphologically and on the level of gene expression. Enhancement of astroglial activation by treating OHSC with ciliary neurotrophic factor accelerated the loss of neurogenesis, whereas treatment with indomethacin or an antagonist of the purinergic P2Y12 receptor exhibited potent protective effects on the neurogenic outcome. Therefore, we conclude that OHSC rapidly lose their neurogenic capacity due to persistent inflammatory processes taking place after the slice preparation. As inflammation is also considered to affect neurogenesis in many CNS pathologies, OHSC appear as a useful tool to study this interplay and its molecular basis. Furthermore, we propose that modification of glial activation might bear the therapeutic potential of enabling neurogenesis under neuropathological conditions.
Collapse
Affiliation(s)
- Johannes Gerlach
- Department of Neurosurgery, Experimental Epilepsy Research, Medical Center - University of FreiburgFreiburg, Germany; Faculty of Medicine, University of FreiburgFreiburg, Germany; Faculty of Biology, University of FreiburgFreiburg, Germany
| | - Catharina Donkels
- Department of Neurosurgery, Experimental Epilepsy Research, Medical Center - University of FreiburgFreiburg, Germany; Faculty of Medicine, University of FreiburgFreiburg, Germany; Faculty of Biology, University of FreiburgFreiburg, Germany
| | - Gert Münzner
- Department of Neurosurgery, Experimental Epilepsy Research, Medical Center - University of FreiburgFreiburg, Germany; Faculty of Medicine, University of FreiburgFreiburg, Germany; Faculty of Biology, University of FreiburgFreiburg, Germany
| | - Carola A Haas
- Department of Neurosurgery, Experimental Epilepsy Research, Medical Center - University of FreiburgFreiburg, Germany; Faculty of Medicine, University of FreiburgFreiburg, Germany; BrainLinks-BrainTools, Cluster of Excellence, University of FreiburgFreiburg, Germany
| |
Collapse
|
6
|
Almeida AS, Soares NL, Vieira M, Gramsbergen JB, Vieira HLA. Carbon Monoxide Releasing Molecule-A1 (CORM-A1) Improves Neurogenesis: Increase of Neuronal Differentiation Yield by Preventing Cell Death. PLoS One 2016; 11:e0154781. [PMID: 27144388 PMCID: PMC4856303 DOI: 10.1371/journal.pone.0154781] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 04/19/2016] [Indexed: 11/19/2022] Open
Abstract
Cerebral ischemia and neurodegenerative diseases lead to impairment or death of neurons in the central nervous system. Stem cell based therapies are promising strategies currently under investigation. Carbon monoxide (CO) is an endogenous product of heme degradation by heme oxygenase (HO) activity. Administration of CO at low concentrations produces several beneficial effects in distinct tissues, namely anti-apoptotic and anti-inflammatory. Herein the CO role on modulation of neuronal differentiation was assessed. Three different models with increasing complexity were used: human neuroblastoma SH-S5Y5 cell line, human teratocarcinoma NT2 cell line and organotypic hippocampal slice cultures (OHSC). Cell lines were differentiated into post-mitotic neurons by treatment with retinoic acid (RA) supplemented with CO-releasing molecule A1 (CORM-A1). CORM-A1 positively modulated neuronal differentiation, since it increased final neuronal production and enhanced the expression of specific neuronal genes: Nestin, Tuj1 and MAP2. Furthermore, during neuronal differentiation process, there was an increase in proliferative cell number (ki67 mRNA expressing cells) and a decrease in cell death (lower propidium iodide (PI) uptake, limitation of caspase-3 activation and higher Bcl-2 expressing cells). CO supplementation did not increase the expression of RA receptors. In the case of SH-S5Y5 model, small amounts of reactive oxygen species (ROS) generation emerges as important signaling molecules during CO-promoted neuronal differentiation. CO's improvement of neuronal differentiation yield was validated using OHSC as ex vivo model. CORM-A1 treatment of OHSC promoted higher levels of cells expressing the neuronal marker Tuj1. Still, CORM-A1 increased cell proliferation assessed by ki67 expression and also prevented cell death, which was followed by increased Bcl-2 expression, decreased levels of active caspase-3 and PI uptake. Likewise, ROS signaling emerged as key factors in CO's increasing number of differentiated neurons in OHSC. In conclusion, CO's increasing number of differentiated neurons is a novel biological role disclosed herein. CO improves neuronal yield due to its capacity to reduce cell death, promoting an increase in proliferative population. However, one cannot disregard a direct CO's effect on specific cellular processes of neuronal differentiation. Further studies are needed to evaluate how CO can potentially modulate cell mechanisms involved in neuronal differentiation. In summary, CO appears as a promising therapeutic molecule to stimulate endogenous neurogenesis or to improve in vitro neuronal production for cell therapy strategies.
Collapse
Affiliation(s)
- Ana S. Almeida
- CEDOC, Faculdade de Ciência Médicas, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal
| | - Nuno L. Soares
- CEDOC, Faculdade de Ciência Médicas, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - Melissa Vieira
- CEDOC, Faculdade de Ciência Médicas, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - Jan Bert Gramsbergen
- Institute of Molecular Medicine, University of Southern Denmark, Winsløwparken 21, DK-5000 Odense C, Denmark
| | - Helena L. A. Vieira
- CEDOC, Faculdade de Ciência Médicas, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal
| |
Collapse
|
7
|
Bidirectional Signaling of Neuregulin-2 Mediates Formation of GABAergic Synapses and Maturation of Glutamatergic Synapses in Newborn Granule Cells of Postnatal Hippocampus. J Neurosci 2016; 35:16479-93. [PMID: 26674872 DOI: 10.1523/jneurosci.1585-15.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Expression of neuregulin-2 (NRG2) is intense in a few regions of the adult brain where neurogenesis persists; however, little is understood about its role in developments of newborn neurons. To study the role of NRG2 in synaptogenesis at different developmental stages, newborn granule cells in rat hippocampal slice cultures were labeled with retrovirus encoding tetracycline-inducible microRNA targeting NRG2 and treated with doxycycline (Dox) at the fourth or seventh postinfection day (dpi). The developmental increase of GABAergic postsynaptic currents (GPSCs) was suppressed by the early Dox treatment (4 dpi), but not by late treatment (7 dpi). The late Dox treatment was used to study the effect of NRG2 depletion specific to excitatory synaptogenesis. The Dox effect on EPSCs emerged 4 d after the impairment in dendritic outgrowth became evident (10 dpi). Notably, Dox treatment abolished the developmental increases of AMPA-receptor mediated EPSCs and the AMPA/NMDA ratio, indicating impaired maturation of glutamatergic synapses. In contrast to GPSCs, Dox effects on EPSCs and dendritic growth were independent of ErbB4 and rescued by concurrent overexpression of NRG2 intracellular domain. These results suggest that forward signaling of NRG2 mediates GABAergic synaptogenesis and its reverse signaling contributes to dendritic outgrowth and maturation of glutamatergic synapses. SIGNIFICANCE STATEMENT The hippocampal dentate gyrus is one of special brain regions where neurogenesis persists throughout adulthood. Synaptogenesis is a critical step for newborn neurons to be integrated into preexisting neural network. Because neuregulin-2 (NRG2), a growth factor, is intensely expressed in these regions, we investigated whether it plays a role in synaptogenesis and dendritic growth. We found that NRG2 has dual roles in the development of newborn neurons. For GABAergic synaptogenesis, the extracellular domain of NRG2 acts as a ligand for a receptor on GABAergic neurons. In contrast, its intracellular domain was essential for dendritic outgrowth and glutamatergic synapse maturation. These results imply that NRG2 may play a critical role in network integration of newborn neurons.
Collapse
|
8
|
Ortega F, Costa MR. Live Imaging of Adult Neural Stem Cells in Rodents. Front Neurosci 2016; 10:78. [PMID: 27013941 PMCID: PMC4779908 DOI: 10.3389/fnins.2016.00078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/18/2016] [Indexed: 11/13/2022] Open
Abstract
The generation of cells of the neural lineage within the brain is not restricted to early development. New neurons, oligodendrocytes, and astrocytes are produced in the adult brain throughout the entire murine life. However, despite the extensive research performed in the field of adult neurogenesis during the past years, fundamental questions regarding the cell biology of adult neural stem cells (aNSCs) remain to be uncovered. For instance, it is crucial to elucidate whether a single aNSC is capable of differentiating into all three different macroglial cell types in vivo or these distinct progenies constitute entirely separate lineages. Similarly, the cell cycle length, the time and mode of division (symmetric vs. asymmetric) that these cells undergo within their lineage progression are interesting questions under current investigation. In this sense, live imaging constitutes a valuable ally in the search of reliable answers to the previous questions. In spite of the current limitations of technology new approaches are being developed and outstanding amount of knowledge is being piled up providing interesting insights in the behavior of aNSCs. Here, we will review the state of the art of live imaging as well as the alternative models that currently offer new answers to critical questions.
Collapse
Affiliation(s)
- Felipe Ortega
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Complutense University Madrid, Spain
| | - Marcos R Costa
- Brain Institute, Federal University of Rio Grande do Norte Natal, Brazil
| |
Collapse
|
9
|
Mosa AJ, Wang S, Tan YF, Wojtowicz JM. Organotypic slice cultures for studies of postnatal neurogenesis. J Vis Exp 2015:52353. [PMID: 25867138 PMCID: PMC4401176 DOI: 10.3791/52353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Here we describe a technique for studying hippocampal postnatal neurogenesis in the rodent brain using the organotypic slice culture technique. This method maintains the characteristic topographical morphology of the hippocampus while allowing direct application of pharmacological agents to the developing hippocampal dentate gyrus. Additionally, slice cultures can be maintained for up to 4 weeks and thus, allow one to study the maturation process of newborn granule neurons. Slice cultures allow for efficient pharmacological manipulation of hippocampal slices while excluding complex variables such as uncertainties related to the deep anatomic location of the hippocampus as well as the blood brain barrier. For these reasons, we sought to optimize organotypic slice cultures specifically for postnatal neurogenesis research.
Collapse
Affiliation(s)
- Adam J Mosa
- Department of Physiology, University of Toronto
| | - Sabrina Wang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University; Department of Education and Research, Taipei City Hospital
| | | | | |
Collapse
|
10
|
Seki T, Sato T, Toda K, Osumi N, Imura T, Shioda S. Distinctive population of Gfap-expressing neural progenitors arising around the dentate notch migrate and form the granule cell layer in the developing hippocampus. J Comp Neurol 2014; 522:261-83. [PMID: 23983092 DOI: 10.1002/cne.23460] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 01/24/2023]
Abstract
In the adult hippocampus, granule cells continue to be generated from astrocyte-like progenitors expressing glial fibrillary acidic protein (GFAP) that differ from embryonic neocortical progenitors. However, during the embryonic period, dentate granule neurons and neocortical pyramidal neurons are derived from the ventricular zone (VZ) of the pallium. Our question is when do GFAP+ progenitors of granule neurons appear in the developing hippocampus during the embryonic period, and how do they form the granule cell layer. The present analysis using Gfap-GFP transgenic mice shows that the GFP+ distinct cell population first appears in the VZ of the medial pallium at the dorsal edge of the fimbria on embryonic day 13.5. During the perinatal period, they form a migratory stream from the VZ to the developing dentate gyrus, and establish the germinal zones in the migratory stream, and the marginal and hilar regions in the developing dentate gyrus. GFP+ cells in these regions were positive for Sox2 and Ki67, but negative for BLBP. GFP+ cells with Neurogenin2 expression were largely distributed in the VZ, whereas GFP+ cells with Tbr2 and NeuroD expressions were seen in the migratory stream and developing dentate gyrus. Prox1-expressing GFP+ cells were restricted to the developing dentate gyrus. These results suggest that distinctive Gfap-expressing progenitors arising around the dentate notch form germinal regions in the migratory stream and the developing dentate gyrus where they differentiate into granule neurons, indicating that distinct astrocyte-like neural progenitors continue to generate granule neurons, from the beginning of dentate development and throughout life. J. Comp. Neurol. 522:261-283, 2014. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, 160-8402, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Kirchheim F, Tinnes S, Haas CA, Stegen M, Wolfart J. Regulation of action potential delays via voltage-gated potassium Kv1.1 channels in dentate granule cells during hippocampal epilepsy. Front Cell Neurosci 2013; 7:248. [PMID: 24367293 PMCID: PMC3852106 DOI: 10.3389/fncel.2013.00248] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/20/2013] [Indexed: 11/13/2022] Open
Abstract
Action potential (AP) responses of dentate gyrus granule (DG) cells have to be tightly regulated to maintain hippocampal function. However, which ion channels control the response delay of DG cells is not known. In some neuron types, spike latency is influenced by a dendrotoxin (DTX)-sensitive delay current (ID) mediated by unidentified combinations of voltage-gated K(+) (Kv) channels of the Kv1 family Kv1.1-6. In DG cells, the ID has not been characterized and its molecular basis is unknown. The response phenotype of mature DG cells is usually considered homogenous but intrinsic plasticity likely occurs in particular in conditions of hyperexcitability, for example during temporal lobe epilepsy (TLE). In this study, we examined response delays of DG cells and underlying ion channel molecules by employing a combination of gramicidin-perforated patch-clamp recordings in acute brain slices and single-cell reverse transcriptase quantitative polymerase chain reaction (SC RT-qPCR) experiments. An in vivo mouse model of TLE consisting of intrahippocampal kainate (KA) injection was used to examine epilepsy-related plasticity. Response delays of DG cells were DTX-sensitive and strongly increased in KA-injected hippocampi; Kv1.1 mRNA was elevated 10-fold, and the response delays correlated with Kv1.1 mRNA abundance on the single cell level. Other Kv1 subunits did not show overt changes in mRNA levels. Kv1.1 immunolabeling was enhanced in KA DG cells. The biophysical properties of ID and a delay heterogeneity within the DG cell population was characterized. Using organotypic hippocampal slice cultures (OHCs), where KA incubation also induced ID upregulation, the homeostatic reversibility and neuroprotective potential for DG cells were tested. In summary, the AP timing of DG cells is effectively controlled via scaling of Kv1.1 subunit transcription. With this antiepileptic mechanism, DG cells delay their responses during hyperexcitation.
Collapse
Affiliation(s)
- Florian Kirchheim
- Cellular Neurophysiology, Department of Neurosurgery, University Medical Center Freiburg Freiburg, Germany ; Faculty of Biology, University of Freiburg Freiburg, Germany
| | - Stefanie Tinnes
- Experimental Epilepsy Research, Department of Neurosurgery, University Medical Center Freiburg Freiburg, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, University Medical Center Freiburg Freiburg, Germany
| | - Michael Stegen
- Cellular Neurophysiology, Department of Neurosurgery, University Medical Center Freiburg Freiburg, Germany ; Department of Biomedicine, Institute of Physiology, University of Basel Basel, Switzerland
| | - Jakob Wolfart
- Cellular Neurophysiology, Department of Neurosurgery, University Medical Center Freiburg Freiburg, Germany ; Oscar Langendorff Institute of Physiology, University of Rostock Rostock, Germany
| |
Collapse
|
12
|
Changes in the Neurogenesis and Axonal Sprouting in the Organotypic Hippocampal Slice Culture by Aβ 25-35Treatment. Appl Microsc 2012. [DOI: 10.9729/am.2012.42.4.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Lee H, Lee D, Park CH, Ho WK, Lee SH. GABA mediates the network activity-dependent facilitation of axonal outgrowth from the newborn granule cells in the early postnatal rat hippocampus. Eur J Neurosci 2012; 36:2743-52. [PMID: 22780325 DOI: 10.1111/j.1460-9568.2012.08192.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neural network activity regulates the development of hippocampal newborn granule cells (GCs). Excitatory GABAergic input is known to be a key player in this regulation. Although calcium signaling is thought to be a downstream mediator of GABA, GABA-induced calcium signaling in newborn GCs is not well understood. We investigated Ca(2+) signaling and its regulatory role in axon and dendrite outgrowth in newborn GCs identified in the organotypic slice culture of early postnatal rat hippocampus. Here, we report that hippocampal network activity can induce calcium transients (CaTs) in newborn GCs during the first post-mitotic week via GABAergic inputs. The GABA-induced CaTs were mediated mainly by L-type Ca(2+) channels. Furthermore, we found that inhibiting any step in the signaling pathway, network activity → GABA → L-type Ca(2+) channels, selectively suppressed the axonal outgrowth and pruning of newborn GCs, but not dendritic outgrowth. The GABA(A) receptor blocker bicuculline significantly suppressed axonal outgrowth, despite increasing network activity, thus indicating an essential role of GABAergic inputs. Therefore, we conclude that network activity-dependent GABAergic inputs open L-type Ca(2+) channels and promote axonal outgrowth in newborn GC during the first post-mitotic week.
Collapse
Affiliation(s)
- Hyunsu Lee
- Cell Physiology Lab., Department of Physiology and bioMembrane Plasticity Research Center, Seoul National University College of Medicine and Neuroscience Research Institute, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul, 110-799, Korea. Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
14
|
Goodman T, Crandall JE, Nanescu SE, Quadro L, Shearer K, Ross A, McCaffery P. Patterning of retinoic acid signaling and cell proliferation in the hippocampus. Hippocampus 2012; 22:2171-83. [PMID: 22689466 PMCID: PMC3505796 DOI: 10.1002/hipo.22037] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2012] [Indexed: 12/23/2022]
Abstract
The nuclear receptor ligand retinoic acid (RA) has been identified as an endogenous regulatory factor in the hippocampus, acting on pyramidal neurons and granule neuron progenitors, but almost nothing is known about the distribution of RA itself in the hippocampus. This study describes the source of RA for the rodent hippocampus in the meninges via the key RA synthetic enzyme retinaldehyde dehydrogenase 2 (RALDH2). Diffusion of RA from the meninges potentially creates a gradient of RA across the infrapyramidal and suprapyramidal blades of the dentate gyrus, enhanced by the expression of the RA catabolic enzyme Cyp26B1 between the blades, and an infrapyramidal and suprapyramidal blade difference is evident in RA-regulated transcription. This asymmetry may contribute to some of the physiological and molecular differences between the blades, including a disparity in the rates of cell proliferation in the subgranular zone of the two blades through RA inhibition of cell proliferation. Such differences can be altered by either the application of excess RA, its effect dependent on the relative position along the septotemporal axis, or change in RA signaling through mutation of retinol binding protein, while the capacity of RA to inhibit proliferation of cells in the dentate gyrus is demonstrated using in vitro slice culture. Use of synthetic and catabolic enzymes in the hippocampus to create differing zones of RA concentration parallels the mechanisms used in the developing brain to generate patterns of RA-regulated transcription. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Timothy Goodman
- Institute of Medical Sciences, University of Aberdeen, Aberdeenshire, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
15
|
Zou J, Crews FT. Inflammasome-IL-1β Signaling Mediates Ethanol Inhibition of Hippocampal Neurogenesis. Front Neurosci 2012; 6:77. [PMID: 22661925 PMCID: PMC3362805 DOI: 10.3389/fnins.2012.00077] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/09/2012] [Indexed: 02/06/2023] Open
Abstract
Regulation of hippocampal neurogenesis is poorly understood, but appears to contribute to mood and cognition. Ethanol and neuroinflammation are known to reduce neurogenesis. We have found that ethanol induces neuroinflammation supporting the hypothesis that ethanol induction of neuroinflammation contributes to ethanol inhibition of neurogenesis. To identify the key proinflammatory molecule that may be responsible for ethanol-impaired neurogenesis we used an ex vivo model of organotypic hippocampal-entorhinal cortex brain slice cultures. Here, we demonstrated a key role of proinflammatory cytokine IL-1β signaling in mediating ethanol inhibition of neurogenesis. Ethanol inhibition of neurogenesis was reversed by neutralizing antibody to IL-1β or blockade of the IL-1β receptor with antagonist IL-1RIa. Ethanol-impaired neurogenesis is associated with strong induction of IL-1β and inflammasome proteins NALP1 and NALP3 in both neurons and astrocytes. Blockade of IL-1β synthesis with inflammasome inhibitors Parthenolide and Bay11708 significantly reversed ethanol inhibited neurogenesis. Furthermore, we also found that IL-1β and inflammasome proteins NALP1 and NALP3 are increased in hippocampal neurons and astrocytes in postmortem alcoholic human brain. Together, these novel findings demonstrate that targeting inflammasome-IL-1β signaling can normalize ethanol-impaired hippocampal neurogenesis, which may have therapeutic implications for treatment of cognitive impairment associated with hippocampal dysfunction in alcoholics.
Collapse
Affiliation(s)
- Jian Zou
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | | |
Collapse
|
16
|
Pérez-Gómez A, Tasker RA. Enhanced neurogenesis in organotypic cultures of rat hippocampus after transient subfield-selective excitotoxic insult induced by domoic acid. Neuroscience 2012; 208:97-108. [PMID: 22366222 DOI: 10.1016/j.neuroscience.2012.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/27/2012] [Accepted: 02/01/2012] [Indexed: 01/19/2023]
Abstract
New neurons are continuously generated in the hippocampus and may play an important role in many physiological and pathological conditions. Here we present evidence of cell proliferation and neurogenesis after a selective and transient excitotoxic injury to the hippocampal cornu ammonis 1 (CA1) area induced by low concentrations of domoic acid (DOM) in rat organotypic hippocampal slice cultures (OHSC). DOM is an excitatory amino acid analog to kainic acid that acts through glutamate receptors to elicit a rapid and potent excitotoxic response. Exposure of slice cultures to varying concentrations of DOM for 24 h induced dose-dependent neuronal toxicity that was independent of activation of classic apoptotic markers. Treatment with 2 μM DOM for 24 h caused a selective yet transient neurotoxic injury in the CA1 subfield of the hippocampus that appeared recovered after 7 days of incubation in a DOM-free medium and showed significant microgliosis but no sign of astrogliosis. The DOM insult (2 μM, 24 h) resulted in a significant upregulation of cell proliferation, as assessed by 5-bromo-2-deoxyuridine (BrdU) incorporation, and a concurrent increase of the neuronal precursor cell marker doublecortin (DCX) within the subgranular zone of the dentate gyrus and area CA1. Neurogenesis occurred primarily during the first week after termination of the DOM exposure. Our study shows that exposure of OHSC to concentrations of DOM below those required to induce permanent neurotoxicity can induce proliferation and differentiation of neural progenitor cells that may contribute to recovery from mild injury and to develop abnormal circuits relevant to disease.
Collapse
Affiliation(s)
- A Pérez-Gómez
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PEI, Canada
| | | |
Collapse
|
17
|
Zou J, Vetreno RP, Crews FT. ATP-P2X7 receptor signaling controls basal and TNFα-stimulated glial cell proliferation. Glia 2012; 60:661-73. [PMID: 22298391 DOI: 10.1002/glia.22302] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/05/2012] [Accepted: 01/12/2012] [Indexed: 01/25/2023]
Abstract
Activation and proliferation of glial cells and their progenitors is a key process of neuroinflammation associated with many neurodegenerative disorders. Under neuropathological conditions where glial cell activation and proliferation is evident, controlling the population of glia might be of therapeutic importance. The proliferative action of the cytokine tumor necrosis factor alpha (TNFα) on microglia has been reported, but the molecular mechanism of TNFα regulation of glial cell proliferation is largely unknown. Using a model of organotypic hippocampal-entorhinal cortex (HEC) slice culture, we investigated the role of ATP-P2X(7) receptor signaling in glial proliferation by TNFα. Populations of proliferating cells in HEC culture were labeled with 5-bromo-2'-deoxyuridine (BrdU). Treatment with TNFα induced strong expression of P2X(7) receptor mRNA and immunoreactivity in BrdU+ cells while markedly increasing proliferation of BrdU+ cells. In addition, TNFα increased aquaporin 4 (AQP4) expression, an ion channel involved in glial proliferation. The proliferative action of TNFα was attenuated by blocking the P2X(7) receptors with the specific antagonists oxATP, BBG, and KN62, or by lowering extracellular ATP with ATP hydrolysis apyrase. Basal proliferation of BrdU+ cells was also sensitive to blockade of ATP-P2X(7) signaling. Furthermore, TNFα activation of P2X(7) receptors appear to regulate AQP4 expression through protein kinase C cascade and down regulation of AQP4 expression can reduce TNFα-stimulated BrdU+ cell proliferation. Taken together, these novel findings demonstrate the importance of ATP-P2X(7) signaling in controlling proliferation of glial progenitors under the pathological conditions associated with increased TNFα.
Collapse
Affiliation(s)
- Jian Zou
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7178, USA.
| | | | | |
Collapse
|
18
|
Namba T, Mochizuki H, Suzuki R, Onodera M, Yamaguchi M, Namiki H, Shioda S, Seki T. Time-lapse imaging reveals symmetric neurogenic cell division of GFAP-expressing progenitors for expansion of postnatal dentate granule neurons. PLoS One 2011; 6:e25303. [PMID: 21966492 PMCID: PMC3179506 DOI: 10.1371/journal.pone.0025303] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 08/31/2011] [Indexed: 01/19/2023] Open
Abstract
Granule cells in the hippocampus, a region critical for memory and learning, are generated mainly during the early postnatal period but neurogenesis continues in adulthood. Postnatal neuronal production is carried out by primary progenitors that express glial fibrillary acidic protein (GFAP) and they are assumed to function as stem cells. A central question regarding postnatal dentate neurogenesis is how astrocyte-like progenitors produce neurons. To reveal cell division patterns and the process of neuronal differentiation of astrocyte-like neural progenitors, we performed time-lapse imaging in cultured hippocampal slices from early postnatal transgenic mice with mouse GFAP promoter-controlled enhanced green fluorescent protein (mGFAP-eGFP Tg mice) in combination with a retrovirus carrying a red fluorescent protein gene. Our results showed that the majority of GFAP-eGFP+ progenitor cells that express GFAP, Sox2 and nestin divided symmetrically to produce pairs of GFAP+ cells (45%) or pairs of neuron-committed cells (45%), whereas a minority divided asymmetrically to generate GFAP+ cells and neuron-committed cells (10%). The present results suggest that a substantial number of GFAP-expressing progenitors functions as transient amplifying progenitors, at least in an early postnatal dentate gyrus, although a small population appears to be stem cell-like progenitors. From the present data, we discuss possible cell division patterns of adult GFAP+ progenitors.
Collapse
Affiliation(s)
- Takashi Namba
- Department of Anatomy, Juntendo University School of Medicine, Tokyo, Japan
- Integrative Bioscience and Biomedical Engineering, School of Science and Engineering, Waseda University, Tokyo, Japan
| | - Hideki Mochizuki
- Department of Neurology, Kitasato University School of Medicine, Kanagawa, Japan
| | - Ryusuke Suzuki
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Masafumi Onodera
- Department of Hematology, Institute of Clinical Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masahiro Yamaguchi
- Departments of Otolaryngology and Physiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hideo Namiki
- Integrative Bioscience and Biomedical Engineering, School of Science and Engineering, Waseda University, Tokyo, Japan
| | - Seiji Shioda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Tatsunori Seki
- Department of Anatomy, Juntendo University School of Medicine, Tokyo, Japan
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
19
|
Adeno-associated viral vector-mediated gene transduction in mesencephalic slice culture. J Neurosci Methods 2011; 201:55-60. [DOI: 10.1016/j.jneumeth.2011.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 11/19/2022]
|
20
|
Gonzalez-Castaneda RE, Galvez-Contreras AY, Luquín S, Gonzalez-Perez O. Neurogenesis in Alzheimer´s disease: a realistic alternative to neuronal degeneration? CURRENT SIGNAL TRANSDUCTION THERAPY 2011; 6:314-319. [PMID: 22125505 PMCID: PMC3223938 DOI: 10.2174/157436211797483949] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neural stem cells (NSC) are cells that have the capacity to generate multiple types of differentiated brain cells. In conditions in which there is a loss of key functional cell groups, such as neurons, inducing or introducing neural stem cells to replace the function of those cells that were lost during the disease has the greatest potential therapeutic applications. Indeed, the achievement of one of the main objectives of various investigations is already on the horizon for some conditions, such as Alzheimer's disease. It is not known whether impaired neurogenesis contributes to neuronal depletion and cognitive dysfunction in Alzheimer's disease (AD). The results of the different investigations are controversial; some studies have found that neurogenesis is increased in AD brains, but others have not.
Collapse
Affiliation(s)
- Rocío E Gonzalez-Castaneda
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México 44340
| | | | | | | |
Collapse
|
21
|
Armentano M, Canalia N, Crociara P, Bonfanti L. Culturing conditions remarkably affect viability and organization of mouse subventricular zone in ex vivo cultured forebrain slices. J Neurosci Methods 2011; 197:65-81. [DOI: 10.1016/j.jneumeth.2011.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/29/2010] [Accepted: 01/29/2011] [Indexed: 10/18/2022]
|
22
|
Yokose J, Ishizuka T, Yoshida T, Aoki J, Koyanagi Y, Yawo H. Lineage analysis of newly generated neurons in organotypic culture of rat hippocampus. Neurosci Res 2011; 69:223-33. [DOI: 10.1016/j.neures.2010.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/08/2010] [Accepted: 11/26/2010] [Indexed: 10/18/2022]
|
23
|
Bunk EC, König HG, Bonner HP, Kirby BP, Prehn JH. NMDA-induced injury of mouse organotypic hippocampal slice cultures triggers delayed neuroblast proliferation in the dentate gyrus: An in vitro model for the study of neural precursor cell proliferation. Brain Res 2010; 1359:22-32. [DOI: 10.1016/j.brainres.2010.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/03/2010] [Accepted: 05/06/2010] [Indexed: 01/18/2023]
|
24
|
Goto T, Hatanaka R, Ogawa T, Sumiyoshi A, Riera J, Kawashima R. An evaluation of the conductivity profile in the somatosensory barrel cortex of Wistar rats. J Neurophysiol 2010; 104:3388-412. [PMID: 20810682 DOI: 10.1152/jn.00122.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microelectrode arrays used to record local field potentials from the brain are being built with increasingly more spatial resolution, ranging from the initially developed laminar arrays to those with planar and three-dimensional (3D) formats. In parallel with such development in recording techniques, current source density (CSD) analyses have recently been expanded up to the continuous-3D form. Unfortunately, the effect of the conductivity profile on the CSD analysis performed with contemporary microelectrode arrays has not yet been evaluated and most of the studies assumed it was homogeneous and isotropic. In this study, we measured the conductivity profile in the somatosensory barrel cortex of Wistar rats. To that end, we combined multisite electrophysiological data recorded with a homemade assembly of silicon-based probes and a nonlinear least-squares algorithm that implicitly assumed that the cerebral cortex of rodents could be locally approximated as a layered anisotropic spherical volume conductor. The eccentricity of the six cortical layers in the somatosensory barrel cortex was evaluated from postmortem histological images. We provided evidence for the local spherical character of the entire barrels field, with concentric cortical layers. We found significant laminar dependencies in the conductivity values with radial/tangential anisotropies. These results were in agreement with the layer-dependent orientations of myelinated axons, but hardly related to densities of cells. Finally, we demonstrated through simulations that ignoring the real conductivity profile in the somatosensory barrel cortex of rats caused considerable errors in the CSD reconstruction, with pronounced effects on the continuous-3D form and charge-unbalanced CSD. We concluded that the conductivity profile must be included in future developments of CSD analysis, especially for rodents.
Collapse
Affiliation(s)
- Takakuni Goto
- Tohoku University, Institute of Development, Aging and Cancer, Sendai 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Namba T, Maekawa M, Yuasa S, Kohsaka S, Uchino S. The Alzheimer's disease drug memantine increases the number of radial glia-like progenitor cells in adult hippocampus. Glia 2009; 57:1082-90. [PMID: 19115386 DOI: 10.1002/glia.20831] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
New neurons are continuously generated in the hippocampus of the adult mammalian brain, and N-methyl-D-aspartate receptor (NMDA-R) antagonists have been found to increase the number of newly generated neurons in the dentate gyrus (DG) of the adult hippocampus. In this study, we examined the effect of memantine, an NMDA-R antagonist that is clinically used for the treatment of Alzheimer's disease, on primary progenitor cells exhibiting a radial glia-like (RGL) morphology in the DG. We injected 3-month-old mice with memantine (50 mg/kg body weight, intraperitoneally [i.p.]); 3 days later, we injected the mice with 5-bromo-2-deoxyuridine (BrdU; 75 mg/kg body weight, i.p.). We then counted the number of BrdU-labeled RGL progenitor cells in the DG 1 or 7 days after the BrdU-injection. The number of BrdU-labeled RGL progenitor cells had increased significantly by 5.1-fold on day 1 and by 13.7-fold on day 7 after BrdU-injection. Immunohistochemical staining revealed that the BrdU-labeled RGL progenitor cells expressed two primary progenitor cell marker proteins, nestin and Sox2. These results clearly demonstrated that memantine promotes the proliferation of RGL progenitor cells. We also found that memantine increased the ratio of horizontally aligned RGL progenitor cells, which are probably produced by symmetric division. These findings suggest that memantine increases the proliferation of primary progenitor cells and expands the primary progenitor cell pool in the adult hippocampus by stimulating symmetric division.
Collapse
Affiliation(s)
- Takashi Namba
- Department of Neurochemistry, National Institute of Neuroscience, Kodaira, Tokyo, Japan
| | | | | | | | | |
Collapse
|
26
|
Non-cell-autonomous effects of presenilin 1 variants on enrichment-mediated hippocampal progenitor cell proliferation and differentiation. Neuron 2008; 59:568-80. [PMID: 18760694 DOI: 10.1016/j.neuron.2008.07.033] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 05/30/2008] [Accepted: 07/22/2008] [Indexed: 11/22/2022]
Abstract
Presenilin 1 (PS1) regulates environmental enrichment (EE)-mediated neural progenitor cell (NPC) proliferation and neurogenesis in the adult hippocampus. We now report that transgenic mice that ubiquitously express human PS1 variants linked to early-onset familial Alzheimer's disease (FAD) neither exhibit EE-induced proliferation, nor neuronal lineage commitment of NPCs. Remarkably, the proliferation and differentiation of cultured NPCs from standard-housed mice expressing wild-type PS1 or PS1 variants are indistinguishable. On the other hand, wild-type NPCs cocultured with primary microglia from mice expressing PS1 variants exhibit impaired proliferation and neuronal lineage commitment, phenotypes that are recapitulated with mutant microglia conditioned media in which we detect altered levels of selected soluble signaling factors. These findings lead us to conclude that factors secreted from microglia play a central role in modulating hippocampal neurogenesis, and argue for non-cell-autonomous mechanisms that govern FAD-linked PS1-mediated impairments in adult hippocampal neurogenesis.
Collapse
|