1
|
Park YS, Sung KW, Kim IB. IK Channel Confers Fine-tuning of Rod Bipolar Cell Excitation and Synaptic Transmission in the Retina. FUNCTION 2025; 6:zqae054. [PMID: 39716393 DOI: 10.1093/function/zqae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
During retinal visual processing, rod bipolar cells (RBC) transfer scotopic signals from rods to AII amacrine cells as second-order neurons. Elucidation of the RBC's excitation/inhibition is essential for understanding the visual signal transmission. Excitation mechanisms via mGluR6 and voltage-gated Ca2+ channels in the RBCs and GABAergic inhibitory synaptic inputs have been studied in previous studies. However, its intrinsic inhibitory mechanisms like K+ and Cl- channels remain unclear. We focused on RBC's prominent K+ current, which exhibits voltage and Ca2+ dependence. We isolated and confirmed the expression of intermediate-conductance Ca2+-activated K+ channels (IK) in RBCs using the patch-clamp method with IK inhibitors (clotrimazole and TRAM34) and immunohistochemistry. The regulation of the IK channel primarily relies on Ca2+ influx via low-threshold Ca2+ channels during RBC's excitation. Additionally, IK mediates late repolarization and suppresses excessive oscillation of the membrane potential in the RBCs, enabling fast and transient synaptic transmission to AII amacrine cells. Our findings highlight the unique role of the IK channel in RBCs, suggesting that it plays a critical role in the scotopic pathway by fine-tuning RBC activity.
Collapse
Affiliation(s)
- Yong Soo Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Ki-Wug Sung
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
2
|
Pang VY, Yang Z, Wu SM, Pang JJ. The co-expression of the depolarizing and hyperpolarizing mechanosensitive ion channels in mammalian retinal neurons. Front Med (Lausanne) 2024; 11:1463898. [PMID: 39606631 PMCID: PMC11601153 DOI: 10.3389/fmed.2024.1463898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction The elevation of the intraocular and extraocular pressures is associated with various visual conditions, including glaucoma and traumatic retinal injury. The retina expresses mechanosensitive channels (MSCs), but the role of MSCs in retinal physiology and pathologies has been unclear. Methods Using immunocytochemistry, confocal microscopy, and patch-clamp recording techniques, we studied the co-expression of K+-permeable (K-MSCs) TRAAK and big potassium channel BK with the epithelial sodium channel ENaC and transient receptor potential channel vanilloid TPRV4 and TRPV2 favorably permeable to Ca2+ than Na+ (together named N-MSCs), and TRPV4 activity in the mouse retina. Results TRAAK immunoreactivity (IR) was mainly located in Müller cells. Photoreceptor outer segments (OSs) expressed BK and ENaCα intensively and TRAAK, TRPV2, and TRPV4 weakly. Somas and axons of retinal ganglion cells (RGCs) retrograde-identified clearly expressed ENaCα, TRPV4, and TRPV2 but lacked TRAAK and BK. Rod bipolar cells (RBCs) showed TRPV4-IR in somas and BK-IR in axonal globules. Horizontal cells were BK-negative, and some cone BCs lacked TRPV4-IR. TRPV4 agonist depolarized RGCs, enhanced spontaneous spikes and excitatory postsynaptic currents, reduced the visual signal reliability (VSR = 1-noise/signal) by ~50%, and resulted in ATP crisis, which could inactivate voltage-gated sodium channels in RGCs. Conclusion Individual neurons co-express hyperpolarizing K-MSCs with depolarizing N-MSCs to counterbalance the pressure-induced excitation, and the level of K-MSCs relative to N-MSCs (RK/N ratio) is balanced in the outer retina but low in RGCs, bringing out novel determinants for the pressure vulnerability of retinal neurons and new targets for clinical interventions.
Collapse
Affiliation(s)
| | | | | | - Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Pang JJ. The Variety of Mechanosensitive Ion Channels in Retinal Neurons. Int J Mol Sci 2024; 25:4877. [PMID: 38732096 PMCID: PMC11084373 DOI: 10.3390/ijms25094877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Alterations in intraocular and external pressure critically involve the pathogenesis of glaucoma, traumatic retinal injury (TRI), and other retinal disorders, and retinal neurons have been reported to express multiple mechanical-sensitive channels (MSCs) in recent decades. However, the role of MSCs in visual functions and pressure-related retinal conditions has been unclear. This review will focus on the variety and functional significance of the MSCs permeable to K+, Na+, and Ca2+, primarily including the big potassium channel (BK); the two-pore domain potassium channels TRAAK and TREK; Piezo; the epithelial sodium channel (ENaC); and the transient receptor potential channels vanilloid TRPV1, TRPV2, and TRPV4 in retinal photoreceptors, bipolar cells, horizontal cells, amacrine cells, and ganglion cells. Most MSCs do not directly mediate visual signals in vertebrate retinas. On the other hand, some studies have shown that MSCs can open in physiological conditions and regulate the activities of retinal neurons. While these data reasonably predict the crossing of visual and mechanical signals, how retinal light pathways deal with endogenous and exogenous mechanical stimulation is uncertain.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Schilardi G, Kleinlogel S. Two Functional Classes of Rod Bipolar Cells in the Healthy and Degenerated Optogenetically Treated Murine Retina. Front Cell Neurosci 2022; 15:809531. [PMID: 35095426 PMCID: PMC8793500 DOI: 10.3389/fncel.2021.809531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Bipolar cells have become successful targets for optogenetic gene therapies that restore vision after photoreceptor degeneration. However, degeneration was shown to cause changes in neuronal connectivity and protein expression, which may impact the quality of synthetically restored signaling. Further, the expression of an optogenetic protein may alter passive membrane properties of bipolar cells affecting signal propagation. We here investigated the passive membrane properties of rod bipolar cells in three different systems, the healthy retina, the degenerated retina, and the degenerated retina expressing the optogenetic actuator Opto-mGluR6. We found that, based on the shape of their current-voltage relations, rod bipolar cells in healthy and degenerated retinas form two clear functional groups (type 1 and type 2 cells). Depolarizing the membrane potential changed recorded current-voltage curves from type 1 to type 2, confirming a single cell identity with two functional states. Expression of Opto-mGluR6 did not alter the passive properties of the rod bipolar cell. With progressing degeneration, dominant outward rectifying currents recorded in type 2 rod bipolar cells decreased significantly. We demonstrate that this is caused by a downregulation of BK channel expression in the degenerated retina. Since this BK conductance will normally recover the membrane potential after RBCs are excited by open TRPM1 channels, a loss in BK will decrease high-pass filtering at the rod bipolar cell level. A better understanding of the changes of bipolar cell physiology during retinal degeneration may pave the way to optimize future treatment strategies of blindness.
Collapse
|
5
|
Sahu G, Turner RW. The Molecular Basis for the Calcium-Dependent Slow Afterhyperpolarization in CA1 Hippocampal Pyramidal Neurons. Front Physiol 2022; 12:759707. [PMID: 35002757 PMCID: PMC8730529 DOI: 10.3389/fphys.2021.759707] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 12/02/2022] Open
Abstract
Neuronal signal transmission depends on the frequency, pattern, and timing of spike output, each of which are shaped by spike afterhyperpolarizations (AHPs). There are classically three post-spike AHPs of increasing duration categorized as fast, medium and slow AHPs that hyperpolarize a cell over a range of 10 ms to 30 s. Intensive early work on CA1 hippocampal pyramidal cells revealed that all three AHPs incorporate activation of calcium-gated potassium channels. The ionic basis for a fAHP was rapidly attributed to the actions of big conductance (BK) and the mAHP to small conductance (SK) or Kv7 potassium channels. In stark contrast, the ionic basis for a prominent slow AHP of up to 30 s duration remained an enigma for over 30 years. Recent advances in pharmacological, molecular, and imaging tools have uncovered the expression of a calcium-gated intermediate conductance potassium channel (IK, KCa3.1) in central neurons that proves to contribute to the slow AHP in CA1 hippocampal pyramidal cells. Together the data show that the sAHP arises in part from a core tripartite complex between Cav1.3 (L-type) calcium channels, ryanodine receptors, and IK channels at endoplasmic reticulum-plasma membrane junctions. Work on the sAHP in CA1 pyramidal neurons has again quickened pace, with identified contributions by both IK channels and the Na-K pump providing answers to several mysteries in the pharmacological properties of the sAHP.
Collapse
Affiliation(s)
- Giriraj Sahu
- National Institute of Pharmaceutical Education and Research Ahmedabad, Ahmedabad, India
| | - Ray W Turner
- Department Cell Biology & Anatomy, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Pang JJ, Gao F, Wu SM. Generators of Pressure-Evoked Currents in Vertebrate Outer Retinal Neurons. Cells 2021; 10:cells10061288. [PMID: 34067375 PMCID: PMC8224636 DOI: 10.3390/cells10061288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: High-tension glaucoma damages the peripheral vision dominated by rods. How mechanosensitive channels (MSCs) in the outer retina mediate pressure responses is unclear. (2) Methods: Immunocytochemistry, patch clamp, and channel fluorescence were used to study MSCs in salamander photoreceptors. (3) Results: Immunoreactivity of transient receptor potential channel vanilloid 4 (TRPV4) was revealed in the outer plexiform layer, K+ channel TRAAK in the photoreceptor outer segment (OS), and TRPV2 in some rod OS disks. Pressure on the rod inner segment evoked sustained currents of three components: (A) the inward current at <-50 mV (Ipi), sensitive to Co2+; (B) leak outward current at ≥-80 mV (Ipo), sensitive to intracellular Cs+ and ruthenium red; and (C) cation current reversed at ~10 mV (Ipc). Hypotonicity induced slow currents like Ipc. Environmental pressure and light increased the FM 1-43-identified open MSCs in the OS membrane, while pressure on the OS with internal Cs+ closed a Ca2+-dependent current reversed at ~0 mV. Rod photocurrents were thermosensitive and affected by MSC blockers. (4) Conclusions: Rods possess depolarizing (TRPV) and hyperpolarizing (K+) MSCs, which mediate mutually compensating currents between -50 mV and 10 mV, serve as an electrical cushion to minimize the impact of ocular mechanical stress.
Collapse
|
7
|
Lankford CK, Laird JG, Inamdar SM, Baker SA. A Comparison of the Primary Sensory Neurons Used in Olfaction and Vision. Front Cell Neurosci 2020; 14:595523. [PMID: 33250719 PMCID: PMC7676898 DOI: 10.3389/fncel.2020.595523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Vision, hearing, smell, taste, and touch are the tools used to perceive and navigate the world. They enable us to obtain essential resources such as food and highly desired resources such as mates. Thanks to the investments in biomedical research the molecular unpinning’s of human sensation are rivaled only by our knowledge of sensation in the laboratory mouse. Humans rely heavily on vision whereas mice use smell as their dominant sense. Both modalities have many features in common, starting with signal detection by highly specialized primary sensory neurons—rod and cone photoreceptors (PR) for vision, and olfactory sensory neurons (OSN) for the smell. In this chapter, we provide an overview of how these two types of primary sensory neurons operate while highlighting the similarities and distinctions.
Collapse
Affiliation(s)
- Colten K Lankford
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Joseph G Laird
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Shivangi M Inamdar
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States
| | - Sheila A Baker
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
8
|
Ingram NT, Sampath AP, Fain GL. Membrane conductances of mouse cone photoreceptors. J Gen Physiol 2020; 152:e201912520. [PMID: 31986199 PMCID: PMC7054858 DOI: 10.1085/jgp.201912520] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Vertebrate photoreceptor cells respond to light through a closure of CNG channels located in the outer segment. Multiple voltage-sensitive channels in the photoreceptor inner segment serve to transform and transmit the light-induced outer-segment current response. Despite extensive studies in lower vertebrates, we do not know how these channels produce the photoresponse of mammalian photoreceptors. Here we examined these ionic conductances recorded from single mouse cones in unlabeled, dark-adapted retinal slices. First, we show measurements of the voltage dependence of the light response. After block of voltage-gated Ca2+ channels, the light-dependent current was nearly linear within the physiological range of voltages with constant chord conductance and a reversal potential similar to that previously determined in lower vertebrate photoreceptors. At a dark resting membrane potential of -45 mV, cones maintain a standing Ca2+ current (iCa) between 15 and 20 pA. We characterized the time and voltage dependence of iCa and a calcium-activated anion channel. After constitutive closure of the CNG channels by the nonhydrolysable analogue GTP-γ-S, we observed a light-dependent increase in iCa followed by a Ca2+-activated K+ current, both probably the result of feedback from horizontal cells. We also recorded the hyperpolarization-activated cyclic nucleotide-gated (HCN) conductance (ih) and measured its current-voltage relationship and reversal potential. With small hyperpolarizations, ih activated with a time constant of 25 ms; activation was speeded with larger hyperpolarizations. Finally, we characterized two voltage-gated K+-conductances (iK). Depolarizing steps beginning at -10 mV activated a transient, outwardly rectifying iK blocked by 4-AP and insensitive to TEA. A sustained iK isolated through subtraction was blocked by TEA but was insensitive to 4-AP. The sustained iK had a nearly linear voltage dependence throughout the physiological voltage range of the cone. Together these data constitute the first comprehensive study of the channel conductances of mouse photoreceptors.
Collapse
Affiliation(s)
- Norianne T. Ingram
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA
| | - Alapakkam P. Sampath
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA
| | - Gordon L. Fain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA
| |
Collapse
|
9
|
Li X, Abou Tayoun A, Song Z, Dau A, Rien D, Jaciuch D, Dongre S, Blanchard F, Nikolaev A, Zheng L, Bollepalli MK, Chu B, Hardie RC, Dolph PJ, Juusola M. Ca 2+-Activated K + Channels Reduce Network Excitability, Improving Adaptability and Energetics for Transmitting and Perceiving Sensory Information. J Neurosci 2019; 39:7132-7154. [PMID: 31350259 PMCID: PMC6733542 DOI: 10.1523/jneurosci.3213-18.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 11/21/2022] Open
Abstract
Ca2+-activated K+ channels (BK and SK) are ubiquitous in synaptic circuits, but their role in network adaptation and sensory perception remains largely unknown. Using electrophysiological and behavioral assays and biophysical modeling, we discover how visual information transfer in mutants lacking the BK channel (dSlo- ), SK channel (dSK- ), or both (dSK- ;; dSlo- ) is shaped in the female fruit fly (Drosophila melanogaster) R1-R6 photoreceptor-LMC circuits (R-LMC-R system) through synaptic feedforward-feedback interactions and reduced R1-R6 Shaker and Shab K+ conductances. This homeostatic compensation is specific for each mutant, leading to distinctive adaptive dynamics. We show how these dynamics inescapably increase the energy cost of information and promote the mutants' distorted motion perception, determining the true price and limits of chronic homeostatic compensation in an in vivo genetic animal model. These results reveal why Ca2+-activated K+ channels reduce network excitability (energetics), improving neural adaptability for transmitting and perceiving sensory information.SIGNIFICANCE STATEMENT In this study, we directly link in vivo and ex vivo experiments with detailed stochastically operating biophysical models to extract new mechanistic knowledge of how Drosophila photoreceptor-interneuron-photoreceptor (R-LMC-R) circuitry homeostatically retains its information sampling and transmission capacity against chronic perturbations in its ion-channel composition, and what is the cost of this compensation and its impact on optomotor behavior. We anticipate that this novel approach will provide a useful template to other model organisms and computational neuroscience, in general, in dissecting fundamental mechanisms of homeostatic compensation and deepening our understanding of how biological neural networks work.
Collapse
Affiliation(s)
- Xiaofeng Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Ahmad Abou Tayoun
- Department of Biology, Dartmouth College, Hanover, New Hampshire 03755
| | - Zhuoyi Song
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China, and
| | - An Dau
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Diana Rien
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - David Jaciuch
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Sidhartha Dongre
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Florence Blanchard
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Anton Nikolaev
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Lei Zheng
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Murali K Bollepalli
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China, and
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Brian Chu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China, and
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Roger C Hardie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, and Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China, and
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Patrick J Dolph
- Department of Biology, Dartmouth College, Hanover, New Hampshire 03755,
| | - Mikko Juusola
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China,
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
10
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
11
|
Abstract
Large conductance Ca(2+)- and voltage-activated K(+) (BK) channels are widely distributed in the postnatal central nervous system (CNS). BK channels play a pleiotropic role in regulating the activity of brain and spinal cord neural circuits by providing a negative feedback mechanism for local increases in intracellular Ca(2+) concentrations. In neurons, they regulate the timing and duration of K(+) influx such that they can either increase or decrease firing depending on the cellular context, and they can suppress neurotransmitter release from presynaptic terminals. In addition, BK channels located in astrocytes and arterial myocytes modulate cerebral blood flow. Not surprisingly, both loss and gain of BK channel function have been associated with CNS disorders such as epilepsy, ataxia, mental retardation, and chronic pain. On the other hand, the neuroprotective role played by BK channels in a number of pathological situations could potentially be leveraged to correct neurological dysfunction.
Collapse
|
12
|
Neuronal expression of the intermediate conductance calcium-activated potassium channel KCa3.1 in the mammalian central nervous system. Pflugers Arch 2014; 467:311-28. [PMID: 24797146 DOI: 10.1007/s00424-014-1523-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 01/09/2023]
Abstract
The expression pattern and functional roles for calcium-activated potassium channels of the KCa2.x family and KCa1.1 have been extensively examined in central neurons. Recent work indicates that intermediate conductance calcium-activated potassium channels (KCa3.1) are also expressed in central neurons of the cerebellum and spinal cord. The current study used immunocytochemistry and GFP linked to KCNN4 promoter activity in a transgenic mouse to determine the expression pattern of KCa3.1 channels in rat or mouse neocortex, hippocampus, thalamus, and cerebellum. KCa3.1 immunolabel and GFP expression were closely matched and detected in both excitatory and inhibitory cells of all regions examined. KCa3.1 immunolabel was localized primarily to the somatic region of excitatory cells in cortical structures but at the soma and over longer segments of dendrites of cells in deep cerebellar nuclei. More extensive labeling was apparent for inhibitory cells at the somatic and dendritic level with no detectable label associated with axon tracts or regions of intense synaptic innervation. The data indicate that KCa3.1 channels are expressed in the CNS with a differential pattern of distribution between cells, suggesting important functional roles for these calcium-activated potassium channels in regulating the excitability of central neurons.
Collapse
|
13
|
Cabo R, Zichichi R, Viña E, Guerrera MC, Vázquez G, García-Suárez O, Vega JA, Germanà A. Calcium-activated potassium channel SK1 is widely expressed in the peripheral nervous system and sensory organs of adult zebrafish. Neurosci Lett 2013; 555:62-7. [PMID: 24060674 DOI: 10.1016/j.neulet.2013.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 06/13/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
Abstract
Sensory cells contain ion channels involved in the organ-specific transduction mechanisms that convert different types of stimuli into electric energy. Here we focus on small-conductance calcium-activated potassium channel 1 (SK1) which plays an important role in all excitable cells acting as feedback regulators in after-hyperpolarization. This study was undertaken to analyze the pattern of expression of SK1 in the zebrafish peripheral nervous system and sensory organs using RT-PRC, Westernblot and immunohistochemistry. Expression of SK1 mRNA was observed at all developmental stages analyzed (from 10 to 100 days post fertilization, dpf), and the antibody used identified a protein with a molecular weight of 70kDa, at 100dpf (regarded to be adult). Cell expressing SK1 in adult animals were neurons of dorsal root and cranial nerve sensory ganglia, sympathetic neurons, sensory cells in neuromasts of the lateral line system and taste buds, crypt olfactory neurons and photoreceptors. Present results report for the first time the expression and the distribution of SK1 in the peripheral nervous system and sensory organs of adult zebrafish, and may contribute to set zebrafish as an interesting experimental model for calcium-activated potassium channels research. Moreover these findings are of potential interest because the potential role of SK as targets for the treatment of neurological diseases and sensory disorders.
Collapse
Affiliation(s)
- R Cabo
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Photoreceptors are exquisitely adapted to transform light stimuli into electrical signals that modulate neurotransmitter release. These cells are organized into several compartments including the unique outer segment (OS). Its whole function is to absorb light and transduce this signal into a change of membrane potential. Another compartment is the inner segment where much of metabolism and regulation of membrane potential takes place and that connects the OS and synapse. The synapse is the compartment where changes in membrane potentials are relayed to other neurons in the retina via release of neurotransmitter. The composition of the plasma membrane surrounding these compartments varies to accommodate their specific functions. In this chapter, we discuss the organization of the plasma membrane emphasizing the protein composition of each region as it relates to visual signaling. We also point out examples where mutations in these proteins cause visual impairment.
Collapse
Affiliation(s)
- Sheila A Baker
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| | | |
Collapse
|
15
|
BK channels mediate pathway-specific modulation of visual signals in the in vivo mouse retina. J Neurosci 2012; 32:4861-6. [PMID: 22492042 DOI: 10.1523/jneurosci.4654-11.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The modulatory role of large-conductance Ca(2+)-activated K(+) (BK) channels in the nervous system has been extensively studied. In the retina, it has been shown that BK channels play a pivotal role in modulating feedback from A17 amacrine cells to rod bipolar cells (RBCs). Here, we used electroretinography to examine the functional role of BK channels for rod and cone vision in the retina in vivo using a genetically engineered mouse lacking functional BK channels (Bk(-/-)). Under dark-adapted and light-adapted conditions, the lack of BK channels had no effect on photoreceptor activity, suggesting that these ion channels do not modulate photoreceptor responses. At the bipolar cell level, the ERG signals attributed to RBCs in Bk(-/-) mice were not different from those in wild-type mice at low scotopic stimulus intensities. However, at high scotopic and low mesopic stimulus intensities, close to RBC saturation, a significant reduction of ERG signals reflecting RBC activity was present in the Bk(-/-) retina. At higher mesopic stimulus intensities activating both RBCs and cone bipolar cells (CBCs), no difference in ERG signals between Bk(-/-) and wild-type mice was found. In photopic stimulus paradigms, activity of ON- and OFF-CBCs in Bk(-/-) and wild-type retinae was indistinguishable. These findings demonstrate that BK channels modulate visual responses in vivo at the bipolar cell level at intermediate stimulus conditions.
Collapse
|
16
|
Abstract
Ion channels are the gatekeepers to neuronal excitability. Retinal neurons of vertebrates and invertebrates, neurons of the suprachiasmatic nucleus (SCN) of vertebrates, and pinealocytes of non-mammalian vertebrates display daily rhythms in their activities. The interlocking transcription-translation feedback loops with specific post-translational modulations within individual cells form the molecular clock, the basic mechanism that maintains the autonomic approximately 24-h rhythm. The molecular clock regulates downstream output signaling pathways that further modulate activities of various ion channels. Ultimately, it is the circadian regulation of ion channel properties that govern excitability and behavior output of these neurons. In this review, we focus on the recent development of research in circadian neurobiology mainly from 1980 forward. We will emphasize the circadian regulation of various ion channels, including cGMP-gated cation channels, various voltage-gated calcium and potassium channels, Na(+)/K(+)-ATPase, and a long-opening cation channel. The cellular mechanisms underlying the circadian regulation of these ion channels and their functions in various tissues and organisms will also be discussed. Despite the magnitude of chronobiological studies in recent years, the circadian regulation of ion channels still remains largely unexplored. Through more investigation and understanding of the circadian regulation of ion channels, the future development of therapeutic strategies for the treatment of sleep disorders, cardiovascular diseases, and other illnesses linked to circadian misalignment will benefit.
Collapse
Affiliation(s)
- Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA.
| | | | | |
Collapse
|
17
|
Nemargut JP, Zhu J, Savoie BT, Wang GY. Differential effects of charybdotoxin on the activity of retinal ganglion cells in the dark- and light-adapted mouse retina. Vision Res 2009; 49:388-97. [PMID: 19084033 PMCID: PMC2721325 DOI: 10.1016/j.visres.2008.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/12/2008] [Accepted: 11/18/2008] [Indexed: 11/29/2022]
Abstract
Patch-clamp recordings were made from retinal ganglion cells in the mouse retina. Under dark adaptation, blockage of BK(Ca) channels increases the spontaneous excitatory postsynaptic currents (EPSCs) and light-evoked On-EPSCs, while it decreases the light-evoked Off inhibitory postsynaptic currents (IPSCs). However, under light adaptation it decreases the light-evoked On-EPSCs, the spontaneous IPSCs and the light-evoked On- and Off-IPSCs. Blockage of BK(Ca) channels significantly altered the outputs of RGCs by changing their light-evoked responses into a bursting pattern and increasing the light-evoked depolarization of the membrane potentials, while it did not significantly change the peak firing rates of light-evoked responses.
Collapse
Affiliation(s)
- Joseph P Nemargut
- Department of Structural and Cellular Biology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|