1
|
Li Y, Tang C, Song Y. Protocol to establish a demyelinated animal model to study hippocampal neurogenesis and cognitive function in adult rodents. STAR Protoc 2024; 5:103242. [PMID: 39093706 PMCID: PMC11342265 DOI: 10.1016/j.xpro.2024.103242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/30/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
Cognitive dysfunction is a prevalent feature in multiple sclerosis, a chronic inflammatory demyelinating disease, which may be correlated with the impairment of adult hippocampal neurogenesis. Here, we present a detailed protocol for the induction of cuprizone demyelinated mice to assess the cognitive function and explore the precise mechanisms underlying cognitive deficits in demyelinated hippocampus. We describe steps for behavioral tests, 5-Ethynyl-2'-deoxyuridine (EdU) and bromodeoxyuridine (BrdU) administration, retrovirus packaging and stereotactic injection, hippocampal tissue preparation, and immunofluorescence staining. For complete details on the use and execution of this protocol, please refer to Song et al.1.
Collapse
Affiliation(s)
- Yuhan Li
- Department of Neurology, The Third Affiliated Hospital of SUN Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of SUN Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| | - Yanna Song
- Department of Neurology, The Third Affiliated Hospital of SUN Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| |
Collapse
|
2
|
Louie AY, Drnevich J, Johnson JL, Woodard M, Kukekova AV, Johnson RW, Steelman AJ. Respiratory infection with influenza A virus delays remyelination and alters oligodendrocyte metabolism. iScience 2024; 27:110464. [PMID: 39104416 PMCID: PMC11298649 DOI: 10.1016/j.isci.2024.110464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Peripheral viral infection disrupts oligodendrocyte (OL) homeostasis such that endogenous remyelination may be affected. Here, we demonstrate that influenza A virus infection perpetuated a demyelination- and disease-associated OL phenotype following cuprizone-induced demyelination that resulted in delayed OL maturation and remyelination in the prefrontal cortex. Furthermore, we assessed cellular metabolism ex vivo, and found that infection altered brain OL and microglia metabolism in a manner that opposed the metabolic profile induced by remyelination. Specifically, infection increased glycolytic capacity of OLs and microglia, an effect that was recapitulated by lipopolysaccharide (LPS) stimulation of mixed glia cultures. In contrast, mitochondrial dependence was increased in OLs during remyelination, which was similarly observed in OLs of myelinating P14 mice compared to adult and aged mice. Collectively, our data indicate that respiratory viral infection is capable of suppressing remyelination, and suggest that metabolic dysfunction of OLs is implicated in remyelination impairment.
Collapse
Affiliation(s)
- Allison Y. Louie
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jenny Drnevich
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer L. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Meagan Woodard
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Anna V. Kukekova
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rodney W. Johnson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew J. Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Ashrafpour S, Nasr-Taherabadi MJ, Sabouri-Rad A, Hosseinzadeh S, Pourabdolhossein F. Arbutin intervention ameliorates memory impairment in a rat model of lysolecethin induced demyelination: Neuroprotective and anti-inflammatory effects. Behav Brain Res 2024; 469:115041. [PMID: 38723674 DOI: 10.1016/j.bbr.2024.115041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
Cognitive impairment (CI) and memory deficit are prevalent manifestations of multiple sclerosis (MS). This study explores the therapeutic potential of arbutin on memory deficits using a rat hippocampal demyelination model induced by lysophosphatidylcholine (LPC). Demyelination was induced by bilateral injection of 1% LPC into the CA1 area of the hippocampus, and the treated group received daily arbutin injections (50 mg/kg, i.p) for two weeks. Arbutin significantly improved memory impairment 14 days post-demyelination as assessed by Morris water maze test. Histological and immunohistochemical analyses demonstrated that arbutin reduced demyelination suppressed pro-inflammatory markers (IL-1β, TNF-α) and increased anti-inflammatory cytokine IL-10. Arbutin also diminished astrocyte activation, decreased iNOS, enhanced anti-oxidative factors (Nrf2, HO-1), and exhibited neuroprotective effects by elevating myelin markers (MBP) and brain derived neurotrophic factor (BDNF). These findings propose arbutin as a potential therapeutic candidate for multiple sclerosis-associated memory deficits, warranting further clinical exploration.
Collapse
Affiliation(s)
- Sahand Ashrafpour
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Alie Sabouri-Rad
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Soheila Hosseinzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Pourabdolhossein
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
4
|
Li J, Qi H, Chen Y, Zhu X. Epilepsy and demyelination: Towards a bidirectional relationship. Prog Neurobiol 2024; 234:102588. [PMID: 38378072 DOI: 10.1016/j.pneurobio.2024.102588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Demyelination stands out as a prominent feature in individuals with specific types of epilepsy. Concurrently, individuals with demyelinating diseases, such as multiple sclerosis (MS) are at a greater risk of developing epilepsy compared to non-MS individuals. These bidirectional connections raise the question of whether both pathological conditions share common pathogenic mechanisms. This review focuses on the reciprocal relationship between epilepsy and demyelination diseases. We commence with an overview of the neurological basis of epilepsy and demyelination diseases, followed by an exploration of how our comprehension of these two disorders has evolved in tandem. Additionally, we discuss the potential pathogenic mechanisms contributing to the interactive relationship between these two diseases. A more nuanced understanding of the interplay between epilepsy and demyelination diseases has the potential to unveiling the molecular intricacies of their pathological relationships, paving the way for innovative directions in future clinical management and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Honggang Qi
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yuzhou Chen
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
5
|
Yuan J, Tao Y, Wang M, Huang F, Wu X. Natural compounds as potential therapeutic candidates for multiple sclerosis: Emerging preclinical evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155248. [PMID: 38096716 DOI: 10.1016/j.phymed.2023.155248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Multiple sclerosis is a chronic neurodegenerative disease, with main characteristics of pathological inflammation, neural damage and axonal demyelination. Current mainstream treatments demonstrate more or less side effects, which limit their extensive use. PURPOSE Increasing studies indicate that natural compounds benefit multiple sclerosis without remarkable side effects. Given the needs to explore the potential effects of natural compounds of plant origin on multiple sclerosis and their mechanisms, we review publications involving the role of natural compounds in animal models of multiple sclerosis, excluding controlled trials. STUDY DESIGN AND METHODS Articles were conducted on PubMed and Web of Science databases using the keywords ``multiple sclerosis'' and ``natural compounds'' published from January 1, 2008, to September 1, 2023. RESULTS This review summarized the effects of natural ingredients (flavonoids, terpenoids, polyphenols, alkaloids, glycosides, and others) from three aspects: immune regulation, oxidative stress suppression, and myelin protection and regeneration in multiple sclerosis. CONCLUSION Overall, we concluded 80 studies to show the preclinical evidence that natural compounds may attenuate multiple sclerosis progression via suppressing immune attacks and/or promoting myelin protection or endogenous repair processes. It would pave the roads for the future development of effective therapeutic regiments of multiple sclerosis.
Collapse
Affiliation(s)
- Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengxue Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Kipp M. Astrocytes: Lessons Learned from the Cuprizone Model. Int J Mol Sci 2023; 24:16420. [PMID: 38003609 PMCID: PMC10671869 DOI: 10.3390/ijms242216420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
A diverse array of neurological and psychiatric disorders, including multiple sclerosis, Alzheimer's disease, and schizophrenia, exhibit distinct myelin abnormalities at both the molecular and histological levels. These aberrations are closely linked to dysfunction of oligodendrocytes and alterations in myelin structure, which may be pivotal factors contributing to the disconnection of brain regions and the resulting characteristic clinical impairments observed in these conditions. Astrocytes, which significantly outnumber neurons in the central nervous system by a five-to-one ratio, play indispensable roles in the development, maintenance, and overall well-being of neurons and oligodendrocytes. Consequently, they emerge as potential key players in the onset and progression of a myriad of neurological and psychiatric disorders. Furthermore, targeting astrocytes represents a promising avenue for therapeutic intervention in such disorders. To gain deeper insights into the functions of astrocytes in the context of myelin-related disorders, it is imperative to employ appropriate in vivo models that faithfully recapitulate specific aspects of complex human diseases in a reliable and reproducible manner. One such model is the cuprizone model, wherein metabolic dysfunction in oligodendrocytes initiates an early response involving microglia and astrocyte activation, culminating in multifocal demyelination. Remarkably, following the cessation of cuprizone intoxication, a spontaneous process of endogenous remyelination occurs. In this review article, we provide a historical overview of studies investigating the responses and putative functions of astrocytes in the cuprizone model. Following that, we list previously published works that illuminate various aspects of the biology and function of astrocytes in this multiple sclerosis model. Some of the studies are discussed in more detail in the context of astrocyte biology and pathology. Our objective is twofold: to provide an invaluable overview of this burgeoning field, and, more importantly, to inspire fellow researchers to embark on experimental investigations to elucidate the multifaceted functions of this pivotal glial cell subpopulation.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
7
|
Clawson ED, Radecki DZ, Samanta J. Immunofluorescence assay for demyelination, remyelination, and proliferation in an acute cuprizone mouse model. STAR Protoc 2023; 4:102072. [PMID: 36853716 PMCID: PMC9918794 DOI: 10.1016/j.xpro.2023.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Here, we present a protocol to assess demyelination in the corpus callosum of an acute cuprizone mouse model, which is routinely used to induce demyelination for studying myelin regeneration in the rodent brain. We describe the tracing of neural stem cells via intraperitoneal injection of tamoxifen into adult Gli1CreERT2;Ai9 mice and the induction of demyelination with cuprizone diet. We also detail EdU administration, cryosectioning of the mouse brain, EdU labeling, and immunofluorescence staining to examine proliferation and myelination. For complete details on the use and execution of this protocol, please refer to Radecki et al. (2020).1.
Collapse
Affiliation(s)
- Elizabeth D Clawson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Daniel Z Radecki
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jayshree Samanta
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
8
|
Molinari YA, Byrne AJ, Pérez MJ, Silvestroff L, Franco PG. The Effects of Cuprizone on Murine Subventricular Zone-Derived Neural Stem Cells and Progenitor Cells Grown as Neurospheres. Mol Neurobiol 2023; 60:1195-1213. [PMID: 36424468 DOI: 10.1007/s12035-022-03096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022]
Abstract
Despite the extensive use of the cuprizone (CPZ) demyelination animal model, there is little evidence regarding the effects of CPZ on a cellular level. Initial studies have suggested that oligodendrocytes (OL) are the main cell targets for CPZ toxicity. However, recent data have revealed additional effects on neural stem cells and progenitor cells (NSC/NPC), which constitute a reservoir for OL regeneration during brain remyelination. We cultured NSC/NPC as neurospheres to investigate CPZ effects on cell mechanisms which are thought to be involved in demyelination and remyelination processes in vivo. Proliferating NSC/NPC cultures exposed to CPZ showed overproduction of intracellular reactive oxygen species and increased progenitor migration at the expense of a significant inhibition of cell proliferation. Although NSC/NPC survival was not affected by CPZ in proliferative conditions, we found that CPZ-treated cultures undergoing cell differentiation were more prone to cell death than controls. The commitment and cell differentiation towards neural lineages did not seem to be affected by CPZ, as shown by the conserved proportions of OL, astrocytes, and neurons. Nevertheless, when CPZ treatment was performed after cell differentiation, we detected a significant reduction in the number and the morphological complexity of OL, astrogliosis, and neuronal damage. We conclude that, in addition to damaging mature OL, CPZ also reduces NSC/NPC proliferation and activates progenitor migration. These results shed light on CPZ direct effects on NSC proliferation and the progression of in vitro differentiation.
Collapse
Affiliation(s)
- Yamila Azul Molinari
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Buenos Aires, Argentina.,CONICET- Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Agustín Jesús Byrne
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Buenos Aires, Argentina.,CONICET- Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - María Julia Pérez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Buenos Aires, Argentina.,CONICET- Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Lucas Silvestroff
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Buenos Aires, Argentina.,CONICET- Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Paula Gabriela Franco
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica Patológica, Buenos Aires, Argentina. .,CONICET- Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina.
| |
Collapse
|
9
|
Hahn KR, Kwon HJ, Kim W, Jung HY, Hwang IK, Kim DW, Yoon YS. Cu,Zn-Superoxide Dismutase has Minimal Effects Against Cuprizone-Induced Demyelination, Microglial Activation, and Neurogenesis Defects in the C57BL/6 Mouse Hippocampus. Neurochem Res 2023; 48:2138-2147. [PMID: 36808020 DOI: 10.1007/s11064-023-03886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 11/03/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023]
Abstract
Cuprizone causes consistent demyelination and oligodendrocyte damage in the mouse brain. Cu,Zn-superoxide dismutase 1 (SOD1) has neuroprotective potential against various neurological disorders, such as transient cerebral ischemia and traumatic brain injury. In this study, we investigated whether SOD1 has neuroprotective effects against cuprizone-induced demyelination and adult hippocampal neurogenesis in C57BL/6 mice, using the PEP-1-SOD1 fusion protein to facilitate the delivery of SOD1 protein into hippocampal neurons. Eight weeks feeding of cuprizone-supplemented (0.2%) diets caused a significant decrease in myelin basic protein (MBP) expression in the stratum lacunosum-moleculare of the CA1 region, the polymorphic layer of the dentate gyrus, and the corpus callosum, while ionized calcium-binding adapter molecule 1 (Iba-1)-immunoreactive microglia showed activated and phagocytic phenotypes. In addition, cuprizone treatment reduced proliferating cells and neuroblasts as shown using Ki67 and doublecortin immunostaining. Treatment with PEP-1-SOD1 to normal mice did not show any significant changes in MBP expression and Iba-1-immunoreactive microglia. However, Ki67-positive proliferating cells and doublecortin-immunoreactive neuroblasts were significantly decreased. Simultaneous treatment with PEP-1-SOD1 and cuprizone-supplemented diets did not ameliorate the MBP reduction in these regions, but mitigated the increase of Iba-1 immunoreactivity in the corpus callosum and alleviated the reduction of MBP in corpus callosum and proliferating cells, not neuroblasts, in the dentate gyrus. In conclusion, PEP-1-SOD1 treatment only has partial effects to reduce cuprizone-induced demyelination and microglial activation in the hippocampus and corpus callosum and has minimal effects on proliferating cells in the dentate gyrus.
Collapse
Affiliation(s)
- Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea.,Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.,Department of Anatomy, College of Veterinary Medicine, and Veterinary Science Research Institute, Konkuk University, Seoul, 05030, South Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.,Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, 34134, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
10
|
Leo H, Kipp M. Remyelination in Multiple Sclerosis: Findings in the Cuprizone Model. Int J Mol Sci 2022; 23:ijms232416093. [PMID: 36555733 PMCID: PMC9783537 DOI: 10.3390/ijms232416093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Remyelination therapies, which are currently under development, have a great potential to delay, prevent or even reverse disability in multiple sclerosis patients. Several models are available to study the effectiveness of novel compounds in vivo, among which is the cuprizone model. This model is characterized by toxin-induced demyelination, followed by endogenous remyelination after cessation of the intoxication. Due to its high reproducibility and ease of use, this model enjoys high popularity among various research and industrial groups. In this review article, we will summarize recent findings using this model and discuss the potential of some of the identified compounds to promote remyelination in multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Markus Kipp
- Correspondence: ; Tel.: +49-(0)-381-494-8400
| |
Collapse
|
11
|
Zhai Y, Wang Q, Zhu Z, Hao Y, Han F, Hong J, Zheng W, Ma S, Yang L, Cheng G. High-efficiency brain-targeted intranasal delivery of BDNF mediated by engineered exosomes to promote remyelination. Biomater Sci 2022; 10:5707-5718. [PMID: 36039673 DOI: 10.1039/d2bm00518b] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regeneration of myelin sheaths is the ultimate goal of the treatment of demyelination disease, including multiple sclerosis (MS). However, current drugs for MS mainly target the immune system and can only slow down the disease development and do not promote the differentiation of oligodendrocyte precursor cells (OPCs) abundant in the myelin injury region into mature oligodendrocytes to form a new myelin sheath. Brain-derived neurotrophic factor (BDNF) plays an important role in the regulation of OPC proliferation and differentiation into mature oligodendrocytes. Exosomes, a kind of nanoscale membrane vesicle secreted by cells, can be used as potential therapeutic drug delivery vectors for central nervous system diseases. Here, brain-targeted modification and BDNF intracellular-loaded exosomes were produced through engineering HEK293T cells, which can promote the differentiation of OPCs into mature oligodendrocytes in vitro. The intranasal administration of the brain-targeted engineered exosome-mediated BDNF was a highly effective delivery route to the brain and had a significant therapeutic effect on remyelination and motor coordination ability improvement in demyelination model mice. The combination of intranasal administration with brain-targeted and BDNF-loaded designed exosomes provides a strategy for efficient drug delivery and treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Yuanxin Zhai
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei Anhui 230026, China. .,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou Jiangsu 215123, China
| | - Quanwei Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou Jiangsu 215123, China
| | - Zhanchi Zhu
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei Anhui 230026, China. .,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou Jiangsu 215123, China
| | - Ying Hao
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei Anhui 230026, China. .,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou Jiangsu 215123, China.,Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong 528200, China
| | - Fang Han
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei Anhui 230026, China. .,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou Jiangsu 215123, China
| | - Jing Hong
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei Anhui 230026, China. .,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou Jiangsu 215123, China
| | - Wenlong Zheng
- Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou Jiangsu 215123, China.
| | - Sancheng Ma
- Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou Jiangsu 215123, China.
| | - Lingyan Yang
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei Anhui 230026, China. .,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou Jiangsu 215123, China.,Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong 528200, China
| | - Guosheng Cheng
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei Anhui 230026, China. .,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou Jiangsu 215123, China.,Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong 528200, China
| |
Collapse
|
12
|
Wittekindt M, Kaddatz H, Joost S, Staffeld A, Bitar Y, Kipp M, Frintrop L. Different Methods for Evaluating Microglial Activation Using Anti-Ionized Calcium-Binding Adaptor Protein-1 Immunohistochemistry in the Cuprizone Model. Cells 2022; 11:cells11111723. [PMID: 35681418 PMCID: PMC9179561 DOI: 10.3390/cells11111723] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
Microglia play an important role in the pathology of various central nervous system disorders, including multiple sclerosis (MS). While different methods exist to evaluate the extent of microglia activation, comparative studies investigating the sensitivity of these methods are missing for most models. In this study, we systematically evaluated which of the three commonly used histological methods (id est, quantification of microglia density, densitometrically evaluated staining intensity, or cellular morphology based on the determination of a ramification index, all measured in anti-ionized calcium-binding adaptor protein-1 (IBA1) immunohistochemical stains) is the most sensitive method to detect subtle changes in the microglia activation status in the context of MS. To this end, we used the toxin-induced cuprizone model which allows the experimental induction of a highly reproducible demyelination in several central nervous system regions, paralleled by early microglia activation. In this study, we showed that after 3 weeks of cuprizone intoxication, all methods reveal a significant microglia activation in the white matter corpus callosum. In contrast, in the affected neocortical grey matter, the evaluation of anti-IBA1 cell morphologies was the most sensitive method to detect subtle changes of microglial activation. The results of this study provide a useful guide for future immunohistochemical evaluations in the cuprizone and other neurodegenerative models.
Collapse
|
13
|
Zirngibl M, Assinck P, Sizov A, Caprariello AV, Plemel JR. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol Neurodegener 2022; 17:34. [PMID: 35526004 PMCID: PMC9077942 DOI: 10.1186/s13024-022-00538-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
The dietary consumption of cuprizone – a copper chelator – has long been known to induce demyelination of specific brain structures and is widely used as model of multiple sclerosis. Despite the extensive use of cuprizone, the mechanism by which it induces demyelination are still unknown. With this review we provide an updated understanding of this model, by showcasing two distinct yet overlapping modes of action for cuprizone-induced demyelination; 1) damage originating from within the oligodendrocyte, caused by mitochondrial dysfunction or reduced myelin protein synthesis. We term this mode of action ‘intrinsic cell damage’. And 2) damage to the oligodendrocyte exerted by inflammatory molecules, brain resident cells, such as oligodendrocytes, astrocytes, and microglia or peripheral immune cells – neutrophils or T-cells. We term this mode of action ‘extrinsic cellular damage’. Lastly, we summarize recent developments in research on different forms of cell death induced by cuprizone, which could add valuable insights into the mechanisms of cuprizone toxicity. With this review we hope to provide a modern understanding of cuprizone-induced demyelination to understand the causes behind the demyelination in MS.
Collapse
Affiliation(s)
- Martin Zirngibl
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Peggy Assinck
- Wellcome Trust- MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anastasia Sizov
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Andrew V Caprariello
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, Canada
| | - Jason R Plemel
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada. .,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
14
|
Toomey LM, Papini M, Lins B, Wright AJ, Warnock A, McGonigle T, Hellewell SC, Bartlett CA, Anyaegbu C, Fitzgerald M. Cuprizone feed formulation influences the extent of demyelinating disease pathology. Sci Rep 2021; 11:22594. [PMID: 34799634 PMCID: PMC8604913 DOI: 10.1038/s41598-021-01963-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
Cuprizone is a copper-chelating agent that induces pathology similar to that within some multiple sclerosis (MS) lesions. The reliability and reproducibility of cuprizone for inducing demyelinating disease pathology depends on the animals ingesting consistent doses of cuprizone. Cuprizone-containing pelleted feed is a convenient way of delivering cuprizone, but the efficacy of these pellets at inducing demyelination has been questioned. This study compared the degree of demyelinating disease pathology between mice fed cuprizone delivered in pellets to mice fed a powdered cuprizone formulation at an early 3 week demyelinating timepoint. Within rostral corpus callosum, cuprizone pellets were more effective than cuprizone powder at increasing astrogliosis, microglial activation, DNA damage, and decreasing the density of mature oligodendrocytes. However, cuprizone powder demonstrated greater protein nitration relative to controls. Furthermore, mice fed control powder had significantly fewer mature oligodendrocytes than those fed control pellets. In caudal corpus callosum, cuprizone pellets performed better than cuprizone powder relative to controls at increasing astrogliosis, microglial activation, protein nitration, DNA damage, tissue swelling, and reducing the density of mature oligodendrocytes. Importantly, only cuprizone pellets induced detectable demyelination compared to controls. The two feeds had similar effects on oligodendrocyte precursor cell (OPC) dynamics. Taken together, these data suggest that demyelinating disease pathology is modelled more effectively with cuprizone pellets than powder at 3 weeks. Combined with the added convenience, cuprizone pellets are a suitable choice for inducing early demyelinating disease pathology.
Collapse
Affiliation(s)
- Lillian M Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia.,Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, WA, 6009, Australia
| | - Melissa Papini
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Brittney Lins
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Alexander J Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Terence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Carole A Bartlett
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia. .,Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, WA, 6009, Australia.
| |
Collapse
|
15
|
Complement-associated loss of CA2 inhibitory synapses in the demyelinated hippocampus impairs memory. Acta Neuropathol 2021; 142:643-667. [PMID: 34170374 PMCID: PMC8423657 DOI: 10.1007/s00401-021-02338-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022]
Abstract
The complement system is implicated in synapse loss in the MS hippocampus, but the functional consequences of synapse loss remain poorly understood. Here, in post-mortem MS hippocampi with demyelination we find that deposits of the complement component C1q are enriched in the CA2 subfield, are linked to loss of inhibitory synapses and are significantly higher in MS patients with cognitive impairments compared to those with preserved cognitive functions. Using the cuprizone mouse model of demyelination, we corroborated that C1q deposits are highest within the demyelinated dorsal hippocampal CA2 pyramidal layer and co-localized with inhibitory synapses engulfed by microglia/macrophages. In agreement with the loss of inhibitory perisomatic synapses, we found that Schaffer collateral feedforward inhibition but not excitation was impaired in CA2 pyramidal neurons and accompanied by intrinsic changes and a reduced spike output. Finally, consistent with excitability deficits, we show that cuprizone-treated mice exhibit impaired encoding of social memories. Together, our findings identify CA2 as a critical circuit in demyelinated intrahippocampal lesions and memory dysfunctions in MS.
Collapse
|
16
|
Greiner T, Kipp M. What Guides Peripheral Immune Cells into the Central Nervous System? Cells 2021; 10:cells10082041. [PMID: 34440810 PMCID: PMC8392645 DOI: 10.3390/cells10082041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS), an immune-mediated demyelinating disease of the central nervous system (CNS), initially presents with a relapsing-remitting disease course. During this early stage of the disease, leukocytes cross the blood–brain barrier to drive the formation of focal demyelinating plaques. Disease-modifying agents that modulate or suppress the peripheral immune system provide a therapeutic benefit during relapsing-remitting MS (RRMS). The majority of individuals with RRMS ultimately enter a secondary progressive disease stage with a progressive accumulation of neurologic deficits. The cellular and molecular basis for this transition is unclear and the role of inflammation during the secondary progressive disease stage is a subject of intense and controversial debate. In this review article, we discuss the following main hypothesis: during both disease stages, peripheral immune cells are triggered by CNS-intrinsic stimuli to invade the brain parenchyma. Furthermore, we outline the different neuroanatomical routes by which peripheral immune cells might migrate from the periphery into the CNS.
Collapse
|
17
|
Lee DW, Kwon JI, Woo CW, Heo H, Kim KW, Woo DC, Kim JK, Lee DH. In Vivo Measurement of Neurochemical Abnormalities in the Hippocampus in a Rat Model of Cuprizone-Induced Demyelination. Diagnostics (Basel) 2020; 11:diagnostics11010045. [PMID: 33396601 PMCID: PMC7823778 DOI: 10.3390/diagnostics11010045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 12/30/2022] Open
Abstract
This study quantitatively measured the changes in metabolites in the hippocampal lesions of a rat model of cuprizone-induced demyelination as detected using in vivo 7 T proton magnetic resonance spectroscopy. Nineteen Sprague Dawley rats were randomly divided into two groups and fed a normal chow diet or cuprizone (0.2%, w/w) for 7 weeks. Demyelinated hippocampal lesions were quantitatively measured using a 7 T magnetic resonance imaging scanner. All proton spectra were quantified for metabolite concentrations and relative ratios. Compared to those in the controls, the cuprizone-induced rats had significantly higher concentrations of glutamate (p = 0.001), gamma-aminobutyric acid (p = 0.019), and glutamate + glutamine (p = 0.001); however, creatine + phosphocreatine (p = 0.006) and myo-inositol (p = 0.001) concentrations were lower. In addition, we found that the glutamine and glutamate complex/total creatine (p < 0.001), glutamate/total creatine (p < 0.001), and GABA/total creatine (p = 0.002) ratios were significantly higher in cuprizone-treated rats than in control rats. Our results showed that cuprizone-induced neuronal demyelination may influence the severe abnormal metabolism in hippocampal lesions, and these responses could be caused by microglial activation, mitochondrial dysfunction, and astrocytic necrosis.
Collapse
Affiliation(s)
- Do-Wan Lee
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (K.W.K.); (J.K.K.)
- Correspondence: (D.-W.L.); (D.-H.L.)
| | - Jae-Im Kwon
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (J.-I.K.); (C.-W.W.); (D.-C.W.)
| | - Chul-Woong Woo
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (J.-I.K.); (C.-W.W.); (D.-C.W.)
| | - Hwon Heo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Kyung Won Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (K.W.K.); (J.K.K.)
| | - Dong-Cheol Woo
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (J.-I.K.); (C.-W.W.); (D.-C.W.)
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Jeong Kon Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (K.W.K.); (J.K.K.)
| | - Dong-Hoon Lee
- Department of Radiation Convergence Engineering, Yonsei University, Wonju 26493, Korea
- Correspondence: (D.-W.L.); (D.-H.L.)
| |
Collapse
|
18
|
das Neves SP, Sousa JC, Sousa N, Cerqueira JJ, Marques F. Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia 2020; 69:1341-1368. [PMID: 33247866 DOI: 10.1002/glia.23940] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that affects about 2.5 million people worldwide. In MS, the patients' immune system starts to attack the myelin sheath, leading to demyelination, neurodegeneration, and, ultimately, loss of vital neurological functions such as walking. There is currently no cure for MS and the available treatments only slow the initial phases of the disease. The later-disease mechanisms are poorly understood and do not directly correlate with the activity of immune system cells, the main target of the available treatments. Instead, evidence suggests that disease progression and disability are better correlated with the maintenance of a persistent low-grade inflammation inside the CNS, driven by local glial cells, like astrocytes and microglia. Depending on the context, astrocytes can (a) exacerbate inflammation or (b) promote immunosuppression and tissue repair. In this review, we will address the present knowledge that exists regarding the role of astrocytes in MS and experimental animal models of the disease.
Collapse
Affiliation(s)
- Sofia Pereira das Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - João José Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
19
|
DCX + neuronal progenitors contribute to new oligodendrocytes during remyelination in the hippocampus. Sci Rep 2020; 10:20095. [PMID: 33208869 PMCID: PMC7674453 DOI: 10.1038/s41598-020-77115-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
A pool of different types of neural progenitor cells resides in the adult hippocampus. Apart from doublecortin-expressing (DCX+) neuronal progenitor cells (NPCs), the hippocampal parenchyma also contains oligodendrocyte precursor cells (OPCs), which can differentiate into myelinating oligodendrocytes. It is not clear yet to what extent the functions of these different progenitor cell types overlap and how plastic these cells are in response to pathological processes. The aim of this study was to investigate whether hippocampal DCX+ NPCs can generate new oligodendrocytes under conditions in which myelin repair is required. For this, the cell fate of DCX-expressing NPCs was analyzed during cuprizone-induced demyelination and subsequent remyelination in two regions of the hippocampal dentate gyrus of DCX-CreERT2/Flox-EGFP transgenic mice. In this DCX reporter model, the number of GFP+ NPCs co-expressing Olig2 and CC1, a combination of markers typically found in mature oligodendrocytes, was significantly increased in the hippocampal DG during remyelination. In contrast, the numbers of GFP+PDGFRα+ cells, as well as their proliferation, were unaffected by de- or remyelination. During remyelination, a higher portion of newly generated BrdU-labeled cells were GFP+ NPCs and there was an increase in new oligodendrocytes derived from these proliferating cells (GFP+Olig2+BrdU+). These results suggest that DCX-expressing NPCs were able to contribute to the generation of mature oligodendrocytes during remyelination in the adult hippocampus.
Collapse
|
20
|
Omotoso GO, Arietarhire LO, Ukwubile II, Gbadamosi IT. The Protective Effect of Kolaviron on Molecular, Cellular, and Behavioral Characterization of Cerebellum in the Rat Model of Demyelinating Diseases. Basic Clin Neurosci 2020; 11:609-618. [PMID: 33643554 PMCID: PMC7878059 DOI: 10.32598/bcn.9.10.300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/10/2019] [Accepted: 11/27/2019] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION This study aimed at assessing the protective mechanisms of Kolaviron (KV) on the cerebellum in a rat model of demyelination. METHODS Twenty-eight male Wistar rats were used in the present study. They were randomly divided into 4 groups of 7 rats. Group A (control) received corn oil (0.5 mL/kg/d); group B received 0.2% Cuprizone (CPZ); group C was treated with 200 mg/kg/d of KV, and group D received 0.2% CPZ and 200 mg/kg/d KV for 6 weeks. CPZ powder was mixed with the regular diet while KV was dissolved in corn oil and administered orally. A behavioral test was conducted at the termination of the experiment. Thereafter, the animals were sacrificed and their brains were removed with the excision of the cerebellum. A part of the cerebelli underwent tissue processing with a series of 5 μm thick sections cut from paraffin blocks for histological and immunohistochemical assessment. Besides, the remaining cerebellar tissues were homogenized for the spectrophotometric assays of Oxidative Stress (OS) parameters. RESULTS The current research findings revealed minimal weight gain following CPZ treatment, but significant weight increase in KV-treated rats. CPZ treatment was associated with a reduction in the number of the line crossed, rearing frequency, rearing duration, center square entry, and center square duration; however, it increased the freezing time, i.e. significantly reversed in the KV-treated animals. Oxidative markers, such as Superoxide Dismutase (SOD) and GPx were reduced in CPZ-treated rats with elevated MDA levels. However, these data were significantly reversed by the co-administration of CPZ and KV. At the tissue level, the cerebellar cortex was characterized by poorly defined layers, cryptic granules, as well as chromatolysis and pyknotic Purkinje cells with the evidence of hypertrophic astrogliosis. CONCLUSION CPZ treatment significantly depressed locomotor and exploratory activities. Furthermore, it increased OS and cerebellar toxicity. However, KV intervention significantly enhanced behavioral functions and ameliorated CPZ-induced cerebellar degeneration. Moreover, it considerably regulated OS markers in the cerebellum of the rat model of demyelinating diseases.
Collapse
Affiliation(s)
- Gabriel Olaiya Omotoso
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Ileje Inelo Ukwubile
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Ismail Temitayo Gbadamosi
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
21
|
Cuprizone Affects Hypothermia-Induced Neuroprotection and Enhanced Neuroblast Differentiation in the Gerbil Hippocampus after Ischemia. Cells 2020; 9:cells9061438. [PMID: 32531881 PMCID: PMC7349804 DOI: 10.3390/cells9061438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
In the present study, we investigated the effects of cuprizone on cell death, glial activation, and neuronal plasticity induced by hypothermia after ischemia in gerbils. Food was supplemented with cuprizone at 0.2% ad libitum for eight weeks. At six weeks after diet feeing, gerbils received transient forebrain ischemia with or without hypothermic preconditioning. Cuprizone treatment for 8 weeks increased the number of astrocytes, microglia, and pro-inflammatory cytokine levels in the hippocampus. In addition, cuprizone treatment significantly decreased the number of proliferating cells and neuroblasts in the dentate gyrus. Brain ischemia caused cell death, disruption of myelin basic proteins, and reactive gliosis in CA1. In addition, ischemia significantly increased pro-inflammatory cytokines and the number of proliferating cells and differentiating neuroblasts in the dentate gyrus. In contrast, hypothermic conditioning attenuated these changes in CA1 and the dentate gyrus. However, cuprizone treatment decreased cell survival induced by hypothermic preconditioning after ischemia and increased the number of reactive microglia and astrocytes in CA1 as well as that of macrophages in the subcallosal zone. These changes occurred because the protective effect of hypothermia in ischemic damage was disrupted by cuprizone administration. Furthermore, cuprizone decreased ischemia-induced proliferating cells and neuroblasts in the dentate gyrus.
Collapse
|
22
|
Guglielmetti C, Boucneau T, Cao P, Van der Linden A, Larson PEZ, Chaumeil MM. Longitudinal evaluation of demyelinated lesions in a multiple sclerosis model using ultrashort echo time magnetization transfer (UTE-MT) imaging. Neuroimage 2019; 208:116415. [PMID: 31811900 DOI: 10.1016/j.neuroimage.2019.116415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/16/2019] [Accepted: 11/28/2019] [Indexed: 11/27/2022] Open
Abstract
Alterations in myelin integrity are involved in many neurological disorders and demyelinating diseases, such as multiple sclerosis (MS). Although magnetic resonance imaging (MRI) is the gold standard method to diagnose and monitor MS patients, clinically available MRI protocols show limited specificity for myelin detection, notably in cerebral grey matter areas. Ultrashort echo time (UTE) MRI has shown great promise for direct imaging of lipids and myelin sheaths, and thus holds potential to improve lesion detection. In this study, we used a sequence combining magnetization transfer (MT) with UTE ("UTE-MT", TE = 76 μs) and with short TE ("STE-MT", TE = 3000 μs) to evaluate spatial and temporal changes in brain myelin content in the cuprizone mouse model for MS on a clinical 7 T scanner. During demyelination, UTE-MT ratio (UTE-MTR) and STE-MT ratio (STE-MTR) values were significantly decreased in most white matter and grey matter regions. However, only UTE-MTR detected cortical changes. After remyelination in subcortical and cortical areas, UTE-MTR values remained lower than baseline values, indicating that UTE-MT, but not STE-MT, imaging detected long-lasting changes following a demyelinating event. Next, we evaluated the potential correlations between imaging values and underlying histopathological markers. The strongest correlation was observed between UTE-MTR and percent coverage of myelin basic protein (MBP) immunostaining (r2 = 0.71). A significant, although lower, correlation was observed between STE-MTR and MBP (r2 = 0.48), and no correlation was found between UTE-MTR or STE-MTR and gliosis immunostaining. Interestingly, correlations varied across brain substructures. Altogether, our results demonstrate that UTE-MTR values significantly correlate with myelin content as measured by histopathology, not only in white matter, but also in subcortical and cortical grey matter regions in the cuprizone mouse model for MS. Readily implemented on a clinical 7 T system, this approach thus holds great potential for detecting demyelinating/remyelinating events in both white and grey matter areas in humans. When applied to patients with neurological disorders, including MS patient populations, UTE-MT methods may improve the non-invasive longitudinal monitoring of brain lesions, not only during disease progression but also in response to next generation remyelinating therapies.
Collapse
Affiliation(s)
- Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, 2000, Antwerp, Belgium
| | - Tanguy Boucneau
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Peng Cao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Annemie Van der Linden
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, 2000, Antwerp, Belgium
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley and University of California, San Francisco, CA, USA
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley and University of California, San Francisco, CA, USA.
| |
Collapse
|
23
|
Gonsalvez DG, Yoo S, Fletcher JL, Wood RJ, Craig GA, Murray SS, Xiao J. Imaging and Quantification of Myelin Integrity After Injury With Spectral Confocal Reflectance Microscopy. Front Mol Neurosci 2019; 12:275. [PMID: 31803018 PMCID: PMC6877500 DOI: 10.3389/fnmol.2019.00275] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/29/2019] [Indexed: 01/19/2023] Open
Abstract
Developing a high-throughput approach to quantify the extent of myelin integrity in preclinical models of demyelinating diseases will enhance our capacity to identify novel therapies for myelin repair. In light of the technical limitations of electron microscopy and immunohistochemical analyses of myelination, we have utilized a novel imaging technique, spectral confocal reflectance (SCoRe) microscopy. SCoRe takes advantage of the optically reflective properties of compact myelin, allowing the integrity of compact myelin to be quantified over the course of the cuprizone-induced model of central demyelination. We applied SCoRe imaging on fixed frozen brain sections. SCoRe analysis of control mice identified an increase in corpus callosum myelination during the period of cuprizone administration and recovery, suggesting that the normal developmental processes of myelination are ongoing at this time. Importantly, analysis of mice subjected to cuprizone identified a significant reduction in compact myelin in both rostral and caudal corpus callosum compared to age-matched control mice. SCoRe microscopy also allowed the visualization and quantification of the amount of myelin debris in demyelinating lesions. Combining SCoRe imaging with immunohistochemistry, we quantified the amount of myelin debris within IBA-1+ microglia and found that 11% of myelin debris colocalized in microglia irrespective of the callosal regions, with the vast majority of debris outside of microglia. In summary, we have demonstrated that SCoRe microscopy is an effective and powerful tool to perform both quantitative and qualitative analyses of compact myelin integrity in health or after injury in vivo, demonstrating its future application in high-throughput assessments and screening of the therapeutic efficacy of myelin repair therapies in preclinical animal models of demyelinating diseases.
Collapse
Affiliation(s)
- David G Gonsalvez
- Neurotrophin and Myelin Laboratory, Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - SangWon Yoo
- Neurotrophin and Myelin Laboratory, Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jessica L Fletcher
- Neurotrophin and Myelin Laboratory, Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Rhiannon J Wood
- Neurotrophin and Myelin Laboratory, Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Georgina A Craig
- Neurotrophin and Myelin Laboratory, Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Simon S Murray
- Neurotrophin and Myelin Laboratory, Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Junhua Xiao
- Neurotrophin and Myelin Laboratory, Department of Anatomy and Neuroscience, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
24
|
Khodanovich M, Pishchelko A, Glazacheva V, Pan E, Akulov A, Svetlik M, Tyumentseva Y, Anan'ina T, Yarnykh V. Quantitative Imaging of White and Gray Matter Remyelination in the Cuprizone Demyelination Model Using the Macromolecular Proton Fraction. Cells 2019; 8:cells8101204. [PMID: 31590363 PMCID: PMC6830095 DOI: 10.3390/cells8101204] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
Macromolecular proton fraction (MPF) has been established as a quantitative clinically-targeted MRI myelin biomarker based on recent demyelination studies. This study aimed to assess the capability of MPF to quantify remyelination using the murine cuprizone-induced reversible demyelination model. MPF was measured in vivo using the fast single-point method in three animal groups (control, cuprizone-induced demyelination, and remyelination after cuprizone withdrawal) and compared to quantitative immunohistochemistry for myelin basic protein (MBP), myelinating oligodendrocytes (CNP-positive cells), and oligodendrocyte precursor cells (OPC, NG2-positive cells) in the corpus callosum, caudate putamen, hippocampus, and cortex. In the demyelination group, MPF, MBP-stained area, and oligodendrocyte count were significantly reduced, while OPC count was significantly increased as compared to both control and remyelination groups in all anatomic structures (p < 0.05). All variables were similar in the control and remyelination groups. MPF and MBP-stained area strongly correlated in each anatomic structure (Pearson’s correlation coefficients, r = 0.80–0.90, p < 0.001). MPF and MBP correlated positively with oligodendrocyte count (r = 0.70–0.84, p < 0.01 for MPF; r = 0.81–0.92, p < 0.001 for MBP) and negatively with OPC count (r = −0.69–−0.77, p < 0.01 for MPF; r = −0.72–−0.89, p < 0.01 for MBP). This study provides immunohistological validation of fast MPF mapping as a non-invasive tool for quantitative assessment of de- and remyelination in white and gray matter and indicates the feasibility of using MPF as a surrogate marker of reparative processes in demyelinating diseases.
Collapse
Affiliation(s)
- Marina Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Anna Pishchelko
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Valentina Glazacheva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Edgar Pan
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Andrey Akulov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Mikhail Svetlik
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Yana Tyumentseva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Tatyana Anan'ina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
| | - Vasily Yarnykh
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk 634050, Russia.
- Department of Radiology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
25
|
Sanabria-Castro A, Flores-Díaz M, Alape-Girón A. Biological models in multiple sclerosis. J Neurosci Res 2019; 98:491-508. [PMID: 31571267 DOI: 10.1002/jnr.24528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
Considering the etiology of multiple sclerosis (MS) is still unknown, experimental models resembling specific aspects of this immune-mediated demyelinating human disease have been developed to increase the understanding of processes related to pathogenesis, disease evolution, evaluation of therapeutic interventions, and demyelination and remyelination mechanisms. Based on the nature of the investigation, biological models may include in vitro, in vivo, and ex vivo assessments. Even though these approaches have disclosed valuable information, every disease animal model has limitations and can only replicate specific features of MS. In vitro and ex vivo models generally do not reflect what occurs in the organism, and in vivo animal models are more likely used; nevertheless, they are able to reproduce only certain stages of the disease. In vivo MS disease animal models in mammals include: experimental autoimmune encephalomyelitis, viral encephalomyelitis, and induced demyelination. This review examines and describes the most common biological disease animal models for the study of MS, their specific characteristics and limitations.
Collapse
Affiliation(s)
- Alfredo Sanabria-Castro
- Research Unit, San Juan de Dios Hospital CCSS, San José, Costa Rica.,School of Pharmacy, University of Costa Rica, San José, Costa Rica
| | | | | |
Collapse
|
26
|
Kim W, Hahn KR, Jung HY, Kwon HJ, Nam SM, Kim JW, Park JH, Yoo DY, Kim DW, Won MH, Yoon YS, Hwang IK. Melatonin ameliorates cuprizone-induced reduction of hippocampal neurogenesis, brain-derived neurotrophic factor, and phosphorylation of cyclic AMP response element-binding protein in the mouse dentate gyrus. Brain Behav 2019; 9:e01388. [PMID: 31429533 PMCID: PMC6749490 DOI: 10.1002/brb3.1388] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/01/2019] [Accepted: 07/28/2019] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION The aim of this study was to investigate the effects of cuprizone on adult hippocampal neurogenesis in naïve mice. Additionally, we also studied how melatonin affects the neuronal degeneration induced by cuprizone. METHODS Eight-week-old male C57BL/6J mice were randomly divided into three groups: (a) the control group, (b) the group treated with cuprizone only, and (c) the group treated with both cuprizone and melatonin. Cuprizone was administered with food at 0.2% ad libitum for 6 weeks. Melatonin was also administered with tap water at 6 g/L ad libitum for 6 weeks; the animals were then euthanized for immunohistochemistry with Ki67, doublecortin (DCX), glucose transporter 3 (GLUT3), and phosphorylation of cyclic adenosine monophosphate (AMP) response element binding (pCREB); double immunofluorescence of neuronal nuclei (NeuN) and myelin basic protein (MBP); and Western blot analysis of brain-derived neurotrophic factor (BDNF) expression to reveal the effects of cuprizone and melatonin on cell damage and hippocampal neurogenesis. RESULTS Administration of cuprizone significantly decreased the number of differentiating (DCX-positive) neuroblasts and proliferating (Ki67-positive) cells in the dentate gyrus. Moreover, cuprizone administration decreased glucose utilization (GLUT3-positive cells) and cell transcription (pCREB-positive cells and BDNF protein expression) in the dentate gyrus. Administration of melatonin ameliorated the cuprizone-induced reduction of differentiating neuroblasts and proliferating cells, glucose utilization, and cell transcription. CONCLUSION The results of the study suggest that cuprizone treatment disrupts hippocampal neurogenesis in the dentate gyrus by reducing BDNF levels and decreasing the phosphorylation of CREB. These effects were ameliorated by melatonin treatment.
Collapse
Affiliation(s)
- Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, College of Dentistry, Research Institute of Oral Sciences, Gangneung-Wonju National University, Gangneung, South Korea
| | - Sung Min Nam
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Korea
| | - Dae Young Yoo
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, College of Dentistry, Research Institute of Oral Sciences, Gangneung-Wonju National University, Gangneung, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
27
|
Sen MK, Mahns DA, Coorssen JR, Shortland PJ. Behavioural phenotypes in the cuprizone model of central nervous system demyelination. Neurosci Biobehav Rev 2019; 107:23-46. [PMID: 31442519 DOI: 10.1016/j.neubiorev.2019.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/01/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
The feeding of cuprizone (CPZ) to animals has been extensively used to model the processes of demyelination and remyelination, with many papers adopting a narrative linked to demyelinating conditions like multiple sclerosis (MS), the aetiology of which is unknown. However, no current animal model faithfully replicates the myriad of symptoms seen in the clinical condition of MS. CPZ ingestion causes mitochondrial and endoplasmic reticulum stress and subsequent apoptosis of oligodendrocytes leads to central nervous system demyelination and glial cell activation. Although there are a wide variety of behavioural tests available for characterizing the functional deficits in animal models of disease, including that of CPZ-induced deficits, they have focused on a narrow subset of outcomes such as motor performance, cognition, and anxiety. The literature has not been systematically reviewed in relation to these or other symptoms associated with clinical MS. This paper reviews these tests and makes recommendations as to which are the most important in order to better understand the role of this model in examining aspects of demyelinating diseases like MS.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, New South Wales, Australia
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, Ontario, Canada.
| | - Peter J Shortland
- Science and Health, Western Sydney University, New South Wales, Australia.
| |
Collapse
|
28
|
Sato-Hashimoto M, Nozu T, Toriba R, Horikoshi A, Akaike M, Kawamoto K, Hirose A, Hayashi Y, Nagai H, Shimizu W, Saiki A, Ishikawa T, Elhanbly R, Kotani T, Murata Y, Saito Y, Naruse M, Shibasaki K, Oldenborg PA, Jung S, Matozaki T, Fukazawa Y, Ohnishi H. Microglial SIRPα regulates the emergence of CD11c + microglia and demyelination damage in white matter. eLife 2019; 8:42025. [PMID: 30910011 PMCID: PMC6435324 DOI: 10.7554/elife.42025] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 03/03/2019] [Indexed: 12/11/2022] Open
Abstract
A characteristic subset of microglia expressing CD11c appears in response to brain damage. However, the functional role of CD11c+ microglia, as well as the mechanism of its induction, are poorly understood. Here we report that the genetic ablation of signal regulatory protein α (SIRPα), a membrane protein, induced the emergence of CD11c+ microglia in the brain white matter. Mice lacking CD47, a physiological ligand of SIRPα, and microglia-specific SIRPα-knockout mice exhibited the same phenotype, suggesting that an interaction between microglial SIRPα and CD47 on neighbouring cells suppressed the emergence of CD11c+ microglia. A lack of SIRPα did not cause detectable damage to the white matter, but resulted in the increased expression of genes whose expression is characteristic of the repair phase after demyelination. In addition, cuprizone-induced demyelination was alleviated by the microglia-specific ablation of SIRPα. Thus, microglial SIRPα suppresses the induction of CD11c+ microglia that have the potential to accelerate the repair of damaged white matter.
Collapse
Affiliation(s)
- Miho Sato-Hashimoto
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Tomomi Nozu
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Riho Toriba
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Ayano Horikoshi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Miho Akaike
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Kyoko Kawamoto
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Ayaka Hirose
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Yuriko Hayashi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Hiromi Nagai
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Wakana Shimizu
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Ayaka Saiki
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Tatsuya Ishikawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Research Center for Child Mental Development, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Ruwaida Elhanbly
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Research Center for Child Mental Development, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan.,Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Assiut University, Asyut, Egypt
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masae Naruse
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Koji Shibasaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Section for Histology and Cell Biology, Umeå University, Umeå, Sweden
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Research Center for Child Mental Development, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Hiroshi Ohnishi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| |
Collapse
|
29
|
Ohgomori T, Jinno S. Cuprizone-induced demyelination in the mouse hippocampus is alleviated by phytoestrogen genistein. Toxicol Appl Pharmacol 2019; 363:98-110. [DOI: 10.1016/j.taap.2018.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
|
30
|
Vega-Riquer JM, Mendez-Victoriano G, Morales-Luckie RA, Gonzalez-Perez O. Five Decades of Cuprizone, an Updated Model to Replicate Demyelinating Diseases. Curr Neuropharmacol 2019; 17:129-141. [PMID: 28714395 PMCID: PMC6343207 DOI: 10.2174/1570159x15666170717120343] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/04/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Demyelinating diseases of the central nervous system (CNS) comprise a group of neurological disorders characterized by progressive (and eventually irreversible) loss of oligodendrocytes and myelin sheaths in the white matter tracts. Some of myelin disorders include: Multiple sclerosis, Guillain-Barré syndrome, peripheral nerve polyneuropathy and others. To date, the etiology of these disorders is not well known and no effective treatments are currently available against them. Therefore, further research is needed to gain a better understand and treat these patients. To accomplish this goal, it is necessary to have appropriate animal models that closely resemble the pathophysiology and clinical signs of these diseases. Herein, we describe the model of toxic demyelination induced by cuprizone (CPZ), a copper chelator that reduces the cytochrome and monoamine oxidase activity into the brain, produces mitochondrial stress and triggers the local immune response. These biochemical and cellular responses ultimately result in selective loss of oligodendrocytes and microglia accumulation, which conveys to extensive areas of demyelination and gliosis in corpus callosum, superior cerebellar peduncles and cerebral cortex. Remarkably, some aspects of the histological pattern induced by CPZ are similar to those found in multiple sclerosis. CPZ exposure provokes behavioral changes, impairs motor skills and affects mood as that observed in several demyelinating diseases. Upon CPZ removal, the pathological and histological changes gradually revert. Therefore, some authors have postulated that the CPZ model allows to partially mimic the disease relapses observed in some demyelinating diseases. CONCLUSION for five decades, the model of CPZ-induced demyelination is a good experimental approach to study demyelinating diseases that has maintained its validity, and is a suitable pharmacological model for reproducing some key features of demyelinating diseases, including multiple sclerosis.
Collapse
Affiliation(s)
| | | | | | - Oscar Gonzalez-Perez
- Address correspondence to this author at the Facultad de Psicologia, Universidad de Colima, Colima, COL 28040, Mexico; Tel: +52 (312) 3161091; E-mail: :
| |
Collapse
|
31
|
Klein B, Mrowetz H, Barker CM, Lange S, Rivera FJ, Aigner L. Age Influences Microglial Activation After Cuprizone-Induced Demyelination. Front Aging Neurosci 2018; 10:278. [PMID: 30297998 PMCID: PMC6160739 DOI: 10.3389/fnagi.2018.00278] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/28/2018] [Indexed: 01/17/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory CNS disease, which causes demyelinated lesions and damages white and gray matter regions. Aging is a significant factor in the progression of MS, and microglia, the immune cells of the CNS tissue, play an important role in all disease stages. During aging, microglia are functionally altered. These age-related changes probably already begin early and might influence the progression of CNS pathologies. The aim of the present study was to investigate whether microglia in the middle-aged CNS already react differently to demyelination. For this purpose, several microglia markers (ionized calcium binding adaptor molecule 1 (Iba-1), P2RY12, F4/80, CD68, major histocompatibility complex II (MHCII), macrophage receptor with collagenous structure (Marco), Translocator protein 18 kD (TSPO), CD206, and CD163) were analyzed in the acute cuprizone demyelination model in young (2-month-old) and middle-aged (10-month-old) mice. In addition, microglial proliferation was quantified using double-labeling with proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine (BrdU), which was injected with the onset of remyelination. To compare age-related microglial changes during de- and remyelination in both gray and white matter, the hilus of the dorsal hippocampal dentate gyrus (DG) and the splenium of the corpus callosum (CC) were analyzed in parallel. Age-related changes in microglia of healthy controls were more pronounced in the analyzed gray matter region (higher levels of F4/80 and Marco as well as lower expression of CD68 in middle-aged mice). During de- and remyelination, a stronger increase of the microglial markers Iba-1, CD68 and TSPO was observed in the splenium of the younger groups. There was a significant reduction of P2RY12 during demyelination, however, this was age- and region-dependent. The induction of the anti-inflammatory markers CD206 and CD163 was stronger in the middle-aged group, but also differed between the two analyzed regions. De- and remyelination led to a significant increase in PCNA+ microglia only in young groups within the white matter region. The number of BrdU+ microglia was not changed during de- or remyelination. These results clearly show that microglia are already altered during middle-age and also react differently to CNS demyelination, however, this is highly region-dependent.
Collapse
Affiliation(s)
- Barbara Klein
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Heike Mrowetz
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Conor Michael Barker
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Simona Lange
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
32
|
Cui C, Wang J, Mullin AP, Caggiano AO, Parry TJ, Colburn RW, Pavlopoulos E. The antibody rHIgM22 facilitates hippocampal remyelination and ameliorates memory deficits in the cuprizone mouse model of demyelination. Brain Res 2018; 1694:73-86. [DOI: 10.1016/j.brainres.2018.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022]
|
33
|
Omotoso GO, Gbadamosi IT, Afolabi TT, Abdulwahab AB, Akinlolu AA. Ameliorative effects of Moringa on cuprizone-induced memory decline in rat model of multiple sclerosis. Anat Cell Biol 2018; 51:119-127. [PMID: 29984057 PMCID: PMC6026826 DOI: 10.5115/acb.2018.51.2.119] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/14/2018] [Accepted: 03/05/2018] [Indexed: 01/03/2023] Open
Abstract
Cuprizone is a neurotoxin with copper-chelating ability used in animal model of multiple sclerosis in which oxidative stress has been documented as one of the cascade in the pathogenesis. Moringa oleifera is a phytomedicinal plant with antioxidant and neuroprotective properties. This study aimed at evaluating the ameliorative capability of M. oleifera in cuprizone-induced behavioral and histopathological alterations in the prefrontal cortex and hippocampus of Wistar rats. Four groups of rats were treated with normal saline, cuprizone, M. oleifera and a combination of M. oleifera and cuprizone, for five weeks. The rats were subjected to Morris water maze and Y-maze to assess long and short-term memory respectively. The animals were sacrificed, and brain tissues were removed for histochemical and enzyme lysate immunosorbent assay for catalase, superoxide dismutase, and nitric oxide. Cuprizone significantly induced oxidative and nitrosative stress coupled with memory decline and cortico-hippocampal neuronal deficits; however, administration of M. oleifera significantly reversed the neuropathological deficits induced by cuprizone.
Collapse
Affiliation(s)
- Gabriel Olaiya Omotoso
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Ismail Temitayo Gbadamosi
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Theresa Titilayo Afolabi
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Ahmad Bolakale Abdulwahab
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adelaja Abdulazeez Akinlolu
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
34
|
Trépanier MO, Hildebrand KD, Nyamoya SD, Amor S, Bazinet RP, Kipp M. Phosphatidylcholine 36:1 concentration decreases along with demyelination in the cuprizone animal model and in post-mortem multiple sclerosis brain tissue. J Neurochem 2018; 145:504-515. [DOI: 10.1111/jnc.14335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/27/2018] [Accepted: 01/30/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Marc-Olivier Trépanier
- Department of Nutritional Sciences; Faculty of Medicine; University of Toronto; Toronto Ontario Canada
| | - Kayla D. Hildebrand
- Department of Nutritional Sciences; Faculty of Medicine; University of Toronto; Toronto Ontario Canada
| | - Stella D. Nyamoya
- Department of Neuroanatomy; Ludwig-Maximilians-University of Munich; Munich Germany
| | - Sandra Amor
- Department of Pathology; VU University Medical Centre; Amsterdam The Netherlands
- Blizard Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - Richard P. Bazinet
- Department of Nutritional Sciences; Faculty of Medicine; University of Toronto; Toronto Ontario Canada
| | - Markus Kipp
- Department of Neuroanatomy; Ludwig-Maximilians-University of Munich; Munich Germany
| |
Collapse
|
35
|
Omotoso GO, Olajide OJ, Gbadamosi IT, Rasheed MA, Izuogu CT. Kolaviron Protects the Prefrontal Cortex and Hippocampus against Histomorphological and Neurobehavioural Changes in Cuprizone Model of Multiple Sclerosis. Malays J Med Sci 2018; 25:50-63. [PMID: 30918455 PMCID: PMC6422579 DOI: 10.21315/mjms2018.25.2.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/06/2018] [Indexed: 12/18/2022] Open
Abstract
Background This study explored the efficacy of kolaviron-a biflavonoid complex isolated from the seeds of Garcinia kola-in protecting against cuprizone (CPZ)-induced demyelination in both the prefrontal cortex and the hippocampus of Wistar rats. Methodology Thirty rats were treated to receive 0.5 mL phosphate-buffered saline (group A, control), 0.5 mL corn oil (group B), 0.2% CPZ (group C), for 6 weeks, 0.2% CPZ for 3 weeks and then 200 mg/kg of Kv for 3 weeks (group D), or 200 mg/kg of Kv for 3 weeks followed by 0.2% CPZ for 3 weeks (group E). Rats were assessed for exploratory functions and anxiety-like behaviour before being euthanised and perfused transcardially with 4% paraformaldehyde. Prefrontal and hippocampal thin sections were stained in hematoxylin and eosin and cresyl fast violet stains. Results CPZ-induced demyelination resulted in behavioural impairment as seen by reduced exploratory activities, rearing behaviour, stretch attend posture, center square entry, and anxiogenic characteristics. Degenerative changes including pyknosis, karyorrhexis, neuronal hypertrophy, and reduced Nissl integrity were also seen. Animals treated with Kv showed significant improvement in behavioural outcomes and a comparatively normal cytoarchitectural profile. Conclusion Kv provides protective roles against CPZ-induced neurotoxicity through prevention of ribosomal protein degradation.
Collapse
Affiliation(s)
- Gabriel Olaiya Omotoso
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olayemi Joseph Olajide
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.,International Center for Genetic Engineering and Biotechnology, Padriciano 99, Trieste-Italy
| | - Ismail Temitayo Gbadamosi
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Mikail Abiodun Rasheed
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Chiazokam Tochukwu Izuogu
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
36
|
Sheykhansari S, Kozielski K, Bill J, Sitti M, Gemmati D, Zamboni P, Singh AV. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review. Cell Death Dis 2018; 9:348. [PMID: 29497049 PMCID: PMC5832817 DOI: 10.1038/s41419-018-0379-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/13/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
The effect of redox metals such as iron and copper on multiple sclerosis and amyotrophic lateral sclerosis has been intensively studied. However, the origin of these disorders remains uncertain. This review article critically describes the physiology of redox metals that produce oxidative stress, which in turn leads to cascades of immunomodulatory alteration of neurons in multiple sclerosis and amyotrophic lateral sclerosis. Iron and copper overload has been well established in motor neurons of these diseases’ lesions. On the other hand, the role of other metals like cadmium participating indirectly in the redox cascade of neurobiological mechanism is less studied. In the second part of this review, we focus on this less conspicuous correlation between cadmium as an inactive-redox metal and multiple sclerosis and amyotrophic lateral sclerosis, providing novel treatment modalities and approaches as future prospects.
Collapse
Affiliation(s)
- Sahar Sheykhansari
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Kristen Kozielski
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Metin Sitti
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Donato Gemmati
- Hemostasis & Thrombosis Center - Azienda Ospedaliera-Universitaria di Ferrara, Ferrara, Italy
| | - Paolo Zamboni
- Translational Surgery Unit, Azienda Ospedaliera Universitaria di Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy.
| | - Ajay Vikram Singh
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany.
| |
Collapse
|
37
|
Baxi EG, DeBruin J, Jin J, Strasburger HJ, Smith MD, Orthmann-Murphy JL, Schott JT, Fairchild AN, Bergles DE, Calabresi PA. Lineage tracing reveals dynamic changes in oligodendrocyte precursor cells following cuprizone-induced demyelination. Glia 2017; 65:2087-2098. [PMID: 28940645 DOI: 10.1002/glia.23229] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 08/20/2017] [Accepted: 08/23/2017] [Indexed: 11/10/2022]
Abstract
The regeneration of oligodendrocytes is a crucial step in recovery from demyelination, as surviving oligodendrocytes exhibit limited structural plasticity and rarely form additional myelin sheaths. New oligodendrocytes arise through the differentiation of platelet-derived growth factor receptor α (PDGFRα) expressing oligodendrocyte progenitor cells (OPCs) that are widely distributed throughout the CNS. Although there has been detailed investigation of the behavior of these progenitors in white matter, recent studies suggest that disease burden in multiple sclerosis (MS) is more strongly correlated with gray matter atrophy. The timing and efficiency of remyelination in gray matter is distinct from white matter, but the dynamics of OPCs that contribute to these differences have not been defined. Here, we used in vivo genetic fate tracing to determine the behavior of OPCs in gray and white matter regions in response to cuprizone-induced demyelination. Our studies indicate that the temporal dynamics of OPC differentiation varies significantly between white and gray matter. While OPCs rapidly repopulate the corpus callosum and mature into CC1 expressing mature oligodendrocytes, OPC differentiation in the cingulate cortex and hippocampus occurs much more slowly, resulting in a delay in remyelination relative to the corpus callosum. The protracted maturation of OPCs in gray matter may contribute to greater axonal pathology and disease burden in MS.
Collapse
Affiliation(s)
- Emily G Baxi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph DeBruin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jing Jin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hayley J Strasburger
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer L Orthmann-Murphy
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University Medical School, Baltimore, Maryland
| | - Jason T Schott
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Amanda N Fairchild
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University Medical School, Baltimore, Maryland
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University Medical School, Baltimore, Maryland
| |
Collapse
|
38
|
Conditional Deletion of the L-Type Calcium Channel Cav1.2 in NG2-Positive Cells Impairs Remyelination in Mice. J Neurosci 2017; 37:10038-10051. [PMID: 28899915 DOI: 10.1523/jneurosci.1787-17.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/29/2017] [Indexed: 12/15/2022] Open
Abstract
Exploring the molecular mechanisms that drive the maturation of oligodendrocyte progenitor cells (OPCs) during the remyelination process is essential to developing new therapeutic tools to intervene in demyelinating diseases such as multiple sclerosis. To determine whether L-type voltage-gated calcium channels (L-VGCCs) are required for OPC development during remyelination, we generated an inducible conditional knock-out mouse in which the L-VGCC isoform Cav1.2 was deleted in NG2-positive OPCs (Cav1.2KO). Using the cuprizone (CPZ) model of demyelination and mice of either sex, we establish that Cav1.2 deletion in OPCs leads to less efficient remyelination of the adult brain. Specifically, Cav1.2KO OPCs mature slower and produce less myelin than control oligodendrocytes during the recovery period after CPZ intoxication. This reduced remyelination was accompanied by an important decline in the number of myelinating oligodendrocytes and in the rate of OPC proliferation. Furthermore, during the remyelination phase of the CPZ model, the corpus callosum of Cav1.2KO animals presented a significant decrease in the percentage of myelinated axons and a substantial increase in the mean g-ratio of myelinated axons compared with controls. In addition, in a mouse line in which the Cav1.2KO OPCs were identified by a Cre reporter, we establish that Cav1.2KO OPCs display a reduced maturational rate through the entire remyelination process. These results suggest that Ca2+ influx mediated by L-VGCCs in oligodendroglial cells is necessary for normal remyelination and is an essential Ca2+ channel for OPC maturation during the remyelination of the adult brain.SIGNIFICANCE STATEMENT Ion channels implicated in oligodendrocyte differentiation and maturation may induce positive signals for myelin recovery. Voltage-gated Ca2+ channels (VGCCs) are important for normal myelination by acting at several critical steps during oligodendrocyte progenitor cell (OPC) development. To determine whether voltage Ca2+ entry is involved in oligodendrocyte differentiation and remyelination, we used a conditional knockout mouse for VGCCs in OPCs. Our results indicate that VGCCs can modulate oligodendrocyte maturation in the demyelinated brain and suggest that voltage-gated Ca2+ influx in OPCs is critical for remyelination. These findings could lead to novel approaches for obtaining a better understanding of the factors that control OPC maturation in order to stimulate this pool of progenitors to replace myelin in demyelinating diseases.
Collapse
|
39
|
Rüther BJ, Scheld M, Dreymueller D, Clarner T, Kress E, Brandenburg LO, Swartenbroekx T, Hoornaert C, Ponsaerts P, Fallier-Becker P, Beyer C, Rohr SO, Schmitz C, Chrzanowski U, Hochstrasser T, Nyamoya S, Kipp M. Combination of cuprizone and experimental autoimmune encephalomyelitis to study inflammatory brain lesion formation and progression. Glia 2017; 65:1900-1913. [PMID: 28836302 DOI: 10.1002/glia.23202] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022]
Abstract
Brain-intrinsic degenerative cascades are a proposed factor driving inflammatory lesion formation in multiple sclerosis (MS) patients. We recently described a model combining noninflammatory cytodegeneration (via cuprizone) with the classic active experimental autoimmune encephalomyelitis (Cup/EAE model), which exhibits inflammatory forebrain lesions. Here, we describe the histopathological characteristics and progression of these Cup/EAE lesions. We show that inflammatory lesions develop at various topographical sites in the forebrain, including white matter tracts and cortical and subcortical grey matter areas. The lesions are characterized by focal demyelination, discontinuation of the perivascular glia limitans, focal axonal damage, and neutrophil granulocyte extravasation. Transgenic mice with enhanced green fluorescent protein-expressing microglia and red fluorescent protein-expressing monocytes reveal that both myeloid cell populations contribute to forebrain inflammatory infiltrates. EAE-triggered inflammatory cerebellar lesions were augmented in mice pre-intoxicated with cuprizone. Gene expression studies suggest roles of the chemokines Cxcl10, Ccl2, and Ccl3 in inflammatory lesion formation. Finally, follow-up experiments in Cup/EAE mice with chronic disease revealed that forebrain, but not spinal cord, lesions undergo spontaneous reorganization and repair. This study underpins the significance of brain-intrinsic degenerative cascades for immune cell recruitment and, in consequence, MS lesion formation.
Collapse
Affiliation(s)
- Bernhard Josef Rüther
- Institute of Neuroanatomy and JARA-BRAIN, Faculty of Medicine, RWTH Aachen University, Aachen, 52074, Germany
| | - Miriam Scheld
- Institute of Neuroanatomy and JARA-BRAIN, Faculty of Medicine, RWTH Aachen University, Aachen, 52074, Germany
| | - Daniela Dreymueller
- Institute of Pharmacology and Toxicology, Faculty of Medicine, RWTH Aachen University, Aachen, 52074, Germany
| | - Tim Clarner
- Institute of Neuroanatomy and JARA-BRAIN, Faculty of Medicine, RWTH Aachen University, Aachen, 52074, Germany
| | - Eugenia Kress
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, 52074, Germany
| | - Lars-Ove Brandenburg
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, 52074, Germany
| | - Tine Swartenbroekx
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Chloé Hoornaert
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Peter Ponsaerts
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, 2610, Belgium
| | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen, 72076, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy and JARA-BRAIN, Faculty of Medicine, RWTH Aachen University, Aachen, 52074, Germany
| | - Sven Olaf Rohr
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, 80336, Germany
| | - Christoph Schmitz
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, 80336, Germany
| | - Uta Chrzanowski
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, 80336, Germany
| | - Tanja Hochstrasser
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, 80336, Germany
| | - Stella Nyamoya
- Institute of Neuroanatomy and JARA-BRAIN, Faculty of Medicine, RWTH Aachen University, Aachen, 52074, Germany.,Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, 80336, Germany
| | - Markus Kipp
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, 80336, Germany
| |
Collapse
|
40
|
Khodanovich MY, Sorokina IV, Glazacheva VY, Akulov AE, Nemirovich-Danchenko NM, Romashchenko AV, Tolstikova TG, Mustafina LR, Yarnykh VL. Histological validation of fast macromolecular proton fraction mapping as a quantitative myelin imaging method in the cuprizone demyelination model. Sci Rep 2017; 7:46686. [PMID: 28436460 PMCID: PMC5402392 DOI: 10.1038/srep46686] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/24/2017] [Indexed: 12/18/2022] Open
Abstract
Cuprizone-induced demyelination in mice is a frequently used model in preclinical multiple sclerosis research. A recent quantitative clinically-targeted MRI method, fast macromolecular proton fraction (MPF) mapping demonstrated a promise as a myelin biomarker in human and animal studies with a particular advantage of sensitivity to both white matter (WM) and gray matter (GM) demyelination. This study aimed to histologically validate the capability of MPF mapping to quantify myelin loss in brain tissues using the cuprizone demyelination model. Whole-brain MPF maps were obtained in vivo on an 11.7T animal MRI scanner from 7 cuprizone-treated and 7 control С57BL/6 mice using the fast single-point synthetic-reference method. Brain sections were histologically stained with Luxol Fast Blue (LFB) for myelin quantification. Significant (p < 0.05) demyelination in cuprizone-treated animals was found according to both LFB staining and MPF in all anatomical structures (corpus callosum, anterior commissure, internal capsule, thalamus, caudoputamen, and cortex). MPF strongly correlated with quantitative histology in all animals (r = 0.95, p < 0.001) as well as in treatment and control groups taken separately (r = 0.96, p = 0.002 and r = 0.93, p = 0.007, respectively). Close agreement between histological myelin staining and MPF suggests that fast MPF mapping enables robust and accurate quantitative assessment of demyelination in both WM and GM.
Collapse
Affiliation(s)
- Marina Yu Khodanovich
- Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
| | - Irina V. Sorokina
- Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Valentina Yu Glazacheva
- Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
| | - Andrey E. Akulov
- Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | | | - Alexander V. Romashchenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Tatyana G. Tolstikova
- Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | | | - Vasily L. Yarnykh
- Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
- Department of Radiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
41
|
Lapato AS, Szu JI, Hasselmann JPC, Khalaj AJ, Binder DK, Tiwari-Woodruff SK. Chronic demyelination-induced seizures. Neuroscience 2017; 346:409-422. [PMID: 28153692 DOI: 10.1016/j.neuroscience.2017.01.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) patients are three to six times more likely to develop epilepsy compared to the rest of the population. Seizures are more common in patients with early onset or progressive forms of the disease and prognosticate rapid progression to disability and death. Gray matter atrophy, hippocampal lesions, interneuron loss, and elevated juxtacortical lesion burden have been identified in MS patients with seizures; however, translational studies aimed at elucidating the pathophysiological processes underlying MS epileptogenesis are limited. Here, we report that cuprizone-mediated chronically demyelinated (9-12weeks) mice exhibit marked changes to dorsal hippocampal electroencephalography (EEG) and evidence of overt seizure activity. Immunohistochemical (IHC) analyses within the hippocampal CA1 region revealed extensive demyelination, loss of parvalbumin (PV+) interneurons, widespread gliosis, and changes in aquaporin-4 (AQP4) expression. Our results suggest that chronically demyelinated mice are a valuable model with which we may begin to understand the mechanisms underlying demyelination-induced seizures.
Collapse
Affiliation(s)
- Andrew S Lapato
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; Center for Glial-Neuronal Interactions, University of California Riverside, Riverside, CA 92521, USA
| | - Jenny I Szu
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Jonathan P C Hasselmann
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Anna J Khalaj
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA; Center for Glial-Neuronal Interactions, University of California Riverside, Riverside, CA 92521, USA
| | - Seema K Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA 92521, USA; Center for Glial-Neuronal Interactions, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
42
|
Kipp M, Nyamoya S, Hochstrasser T, Amor S. Multiple sclerosis animal models: a clinical and histopathological perspective. Brain Pathol 2017; 27:123-137. [PMID: 27792289 DOI: 10.1111/bpa.12454] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022] Open
Abstract
There is a broad consensus that multiple sclerosis (MS) represents more than an inflammatory disease: it harbors several characteristic aspects of a classical neurodegenerative disorder, that is, damage to axons, synapses and nerve cell bodies. While we are equipped with appropriate therapeutic options to prevent immune-cell driven relapses, effective therapeutic options to prevent the progressing neurodegeneration are still missing. In this review article, we will discuss to what extent pathology of the progressive disease stage can be modeled in MS animal models. While acute and relapsing-remitting forms of experimental autoimmune encephalomyelitis (EAE), which are T cell dependent, are aptly suited to model relapsing-remitting phases of MS, other EAE models, especially the secondary progressive EAE stage in Biozzi ABH mice is better representing the secondary progressive phase of MS, which is refractory to many immune therapies. Besides EAE, the cuprizone model is rapidly gaining popularity to study the formation and progression of demyelinating CNS lesions without T cell involvement. Here, we discuss these two non-popular MS models. It is our aim to point out the pathological hallmarks of MS, and discuss which pathological aspects of the disease can be best studied in the various animal models available.
Collapse
Affiliation(s)
- Markus Kipp
- Department of Neuroanatomy, Faculty of Medicine, LMU München University, München, 80336, Germany
| | - Stella Nyamoya
- Department of Neuroanatomy, Faculty of Medicine, LMU München University, München, 80336, Germany.,Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, D-52074, Germany
| | - Tanja Hochstrasser
- Department of Neuroanatomy, Faculty of Medicine, LMU München University, München, 80336, Germany
| | - Sandra Amor
- Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands.,Barts and The London School of Medicine and Dentistry, Neuroimmunology Unit, , Queen Mary University of London, Neuroscience Centre, Blizard Institute of Cell and Molecular Science, London, UK
| |
Collapse
|
43
|
Buzzard K, Chan WH, Kilpatrick T, Murray S. Multiple Sclerosis: Basic and Clinical. ADVANCES IN NEUROBIOLOGY 2017; 15:211-252. [DOI: 10.1007/978-3-319-57193-5_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Skripuletz T, Salinas Tejedor L, Prajeeth CK, Hansmann F, Chhatbar C, Kucman V, Zhang N, Raddatz BB, Detje CN, Sühs KW, Pul R, Gudi V, Kalinke U, Baumgärtner W, Stangel M. The antiviral drug ganciclovir does not inhibit microglial proliferation and activation. Sci Rep 2015; 5:14935. [PMID: 26447351 PMCID: PMC4597339 DOI: 10.1038/srep14935] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/11/2015] [Indexed: 01/15/2023] Open
Abstract
Ganciclovir is effective in the treatment of human infections with viruses of the Herpesviridae family. Beside antiviral properties, recently ganciclovir was described to inhibit microglial proliferation and disease severity of experimental autoimmune encephalomyelitis, an inflammatory model of multiple sclerosis. Microglial activation and proliferation are main characteristics of neuroinflammatory CNS diseases and inhibition of microglial functions might be beneficial in autoimmune diseases, or detrimental in infectious diseases. The objective of this study was to determine potential inhibitory effects of ganciclovir in three different murine animal models of CNS neuroinflammation in which microglia play an important role: Theiler´s murine encephalomyelitis, the cuprizone model of de- and remyelination, and the vesicular stomatitis virus encephalitis model. In addition, in vitro experiments with microglial cultures were performed to test the hypothesis that ganciclovir inhibits microglial proliferation. In all three animal models, neither microglial proliferation or recruitment nor disease activity was changed by ganciclovir. In vitro experiments confirmed that microglial proliferation was not affected by ganciclovir. In conclusion, our results show that the antiviral drug ganciclovir does not inhibit microglial activation and proliferation in the murine CNS.
Collapse
Affiliation(s)
| | - Laura Salinas Tejedor
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | | | - Florian Hansmann
- Center for Systems Neuroscience, Hannover, Germany.,Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Chintan Chhatbar
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Valeria Kucman
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Ning Zhang
- Center for Systems Neuroscience, Hannover, Germany.,Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Barbara B Raddatz
- Center for Systems Neuroscience, Hannover, Germany.,Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Claudia N Detje
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | | | - Refik Pul
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Wolfgang Baumgärtner
- Center for Systems Neuroscience, Hannover, Germany.,Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
45
|
Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 2015; 47:485-505. [PMID: 25445182 DOI: 10.1016/j.neubiorev.2014.10.004] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/18/2014] [Accepted: 10/01/2014] [Indexed: 01/30/2023]
Abstract
The cuprizone mouse model allows the investigation of the complex molecular mechanisms behind nonautoimmune-mediated demyelination and spontaneous remyelination. While it is generally accepted that oligodendrocytes are specifically vulnerable to cuprizone intoxication due to their high metabolic demands, a comprehensive overview of the etiology of cuprizone-induced pathology is still missing to date. In this review we extensively describe the physico-chemical mode of action of cuprizone and discuss the molecular and enzymatic mechanisms by which cuprizone induces metabolic stress, oligodendrocyte apoptosis, myelin degeneration and eventually axonal and neuronal pathology. In addition, we describe the dual effector function of the immune system which tightly controls demyelination by effective induction of oligodendrocyte apoptosis, but in contrast also paves the way for fast and efficient remyelination by the secretion of neurotrophic factors and the clearance of cellular and myelinic debris. Finally, we discuss the many clinical symptoms that can be observed following cuprizone treatment, and how these strengthened the cuprizone model as a useful tool to study human multiple sclerosis, schizophrenia and epilepsy.
Collapse
|
46
|
Serra-de-Oliveira N, Boilesen SN, Prado de França Carvalho C, LeSueur-Maluf L, Zollner RDL, Spadari RC, Medalha CC, Monteiro de Castro G. Behavioural changes observed in demyelination model shares similarities with white matter abnormalities in humans. Behav Brain Res 2015; 287:265-75. [DOI: 10.1016/j.bbr.2015.03.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/15/2015] [Accepted: 03/17/2015] [Indexed: 11/30/2022]
|
47
|
Anatomical Distribution of Cuprizone-Induced Lesions in C57BL6 Mice. J Mol Neurosci 2015; 57:166-75. [DOI: 10.1007/s12031-015-0595-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/02/2015] [Indexed: 12/19/2022]
|
48
|
Cantoni C, Bollman B, Licastro D, Xie M, Mikesell R, Schmidt R, Yuede CM, Galimberti D, Olivecrona G, Klein RS, Cross AH, Otero K, Piccio L. TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol 2015; 129:429-47. [PMID: 25631124 DOI: 10.1007/s00401-015-1388-1] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/10/2015] [Accepted: 01/11/2015] [Indexed: 12/17/2022]
Abstract
Microglia are phagocytic cells that survey the brain and perform neuroprotective functions in response to tissue damage, but their activating receptors are largely unknown. Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial immunoreceptor whose loss-of-function mutations in humans cause presenile dementia, while genetic variants are associated with increased risk of neurodegenerative diseases. In myeloid cells, TREM2 has been involved in the regulation of phagocytosis, cell proliferation and inflammatory responses in vitro. However, it is unknown how TREM2 contributes to microglia function in vivo. Here, we identify a critical role for TREM2 in the activation and function of microglia during cuprizone (CPZ)-induced demyelination. TREM2-deficient (TREM2(-/-)) mice had defective clearance of myelin debris and more axonal pathology, resulting in impaired clinical performances compared to wild-type (WT) mice. TREM2(-/-) microglia proliferated less in areas of demyelination and were less activated, displaying a more resting morphology and decreased expression of the activation markers MHC II and inducible nitric oxide synthase as compared to WT. Mechanistically, gene expression and ultrastructural analysis of microglia suggested a defect in myelin degradation and phagosome processing during CPZ intoxication in TREM2(-/-) microglia. These findings place TREM2 as a key regulator of microglia activation in vivo in response to tissue damage.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8111, St Louis, MO, 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Krauspe BM, Dreher W, Beyer C, Baumgartner W, Denecke B, Janssen K, Langhans CD, Clarner T, Kipp M. Short-term cuprizone feeding verifies N-acetylaspartate quantification as a marker of neurodegeneration. J Mol Neurosci 2014; 55:733-48. [PMID: 25189319 DOI: 10.1007/s12031-014-0412-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/20/2014] [Indexed: 01/27/2023]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) is a quantitative MR imaging technique often used to complement conventional MR imaging with specific metabolic information. A key metabolite is the amino acid derivative N-Acetylaspartate (NAA) which is an accepted marker to measure the extent of neurodegeneration in multiple sclerosis (MS) patients. NAA is catabolized by the enzyme aspartoacylase (ASPA) which is predominantly expressed in oligodendrocytes. Since the formation of MS lesions is paralleled by oligodendrocyte loss, NAA might accumulate in the brain, and therefore, the extent of neurodegeneration might be underestimated. In the present study, we used the well-characterized cuprizone model. There, the loss of oligodendrocytes is paralleled by a reduction in ASPA expression and activity as demonstrated by genome-wide gene expression analysis and enzymatic activity assays. Notably, brain levels of NAA were not increased as determined by gas chromatography-mass spectrometry and 1H-MRS. These important findings underpin the reliability of NAA quantification as a valid marker for the paraclinical determination of the extent of neurodegeneration, even under conditions of oligodendrocyte loss in which impaired metabolization of NAA is expected. Future studies have to reveal whether other enzymes are able to metabolize NAA or whether an excess of NAA is cleared by other mechanisms rather than enzymatic metabolism.
Collapse
Affiliation(s)
- Barbara Maria Krauspe
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Haroutunian V, Katsel P, Roussos P, Davis KL, Altshuler LL, Bartzokis G. Myelination, oligodendrocytes, and serious mental illness. Glia 2014; 62:1856-77. [DOI: 10.1002/glia.22716] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 02/06/2023]
Affiliation(s)
- V. Haroutunian
- Department of Psychiatry; The Icahn School of Medicine at Mount Sinai; New York New York
- Department of Neuroscience; The Icahn School of Medicine at Mount Sinai; New York New York
- MIRECC-JJ Peters VA Medical Center; Bronx New York
| | - P. Katsel
- Department of Psychiatry; The Icahn School of Medicine at Mount Sinai; New York New York
| | - P. Roussos
- Department of Psychiatry; The Icahn School of Medicine at Mount Sinai; New York New York
- MIRECC-JJ Peters VA Medical Center; Bronx New York
| | - K. L. Davis
- Department of Psychiatry; The Icahn School of Medicine at Mount Sinai; New York New York
- Department of Neuroscience; The Icahn School of Medicine at Mount Sinai; New York New York
| | - L. L. Altshuler
- Department of Psychiatry; Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA; Los Angeles California
- The Brain Research Institute, The David Geffen School of Medicine at UCLA; Los Angeles California
- Greater Los Angeles VA Healthcare System; West Los Angeles California
| | - G. Bartzokis
- Department of Psychiatry; Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA; Los Angeles California
- The Brain Research Institute, The David Geffen School of Medicine at UCLA; Los Angeles California
- Greater Los Angeles VA Healthcare System; West Los Angeles California
| |
Collapse
|