1
|
Sato R, Shimizu F, Kuwahara M, Mizukami Y, Watanabe K, Maeda T, Sano Y, Takeshita Y, Koga M, Kusunoki S, Kanda T. Autocrine TNF-α Increases Penetration of Myelin-Associated Glycoprotein Antibodies Across the Blood-Nerve Barrier in Anti-MAG Neuropathy. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/3/e200086. [PMID: 36810162 PMCID: PMC9944621 DOI: 10.1212/nxi.0000000000200086] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/28/2022] [Indexed: 02/23/2023]
Abstract
BACKGROUND AND OBJECTIVES Deposition of myelin-associated glycoprotein (MAG) immunoglobulin M (IgM) antibodies in the sural nerve is a key feature in anti-MAG neuropathy. Whether the blood-nerve barrier (BNB) is disrupted in anti-MAG neuropathy remains elusive.We aimed to evaluate the effect of sera from anti-MAG neuropathy at the molecular level using our in vitro human BNB model and observe the change of BNB endothelial cells in the sural nerve of anti-MAG neuropathy. METHODS Diluted sera from patients with anti-MAG neuropathy (n = 16), monoclonal gammopathies of undetermined significance (MGUS) neuropathy (n = 7), amyotrophic lateral sclerosis (ALS, n = 10), and healthy controls (HCs, n = 10) incubated with human BNB endothelial cells to identify the key molecule of BNB activation using RNA-seq and a high-content imaging system, and exposed with a BNB coculture model to evaluate small molecule/IgG/IgM/anti-MAG antibody permeability. RESULTS RNA-seq and the high-content imaging system showed the significant upregulation of tumor necrosis factor (TNF-α) and nuclear factor-kappa B (NF-κB) in BNB endothelial cells after exposure to sera from patients with anti-MAG neuropathy, whereas the serum TNF-α concentration was not changed among the MAG/MGUS/ALS/HC groups. Sera from patients with anti-MAG neuropathy did not increase 10-kDa dextran or IgG permeability but enhanced IgM and anti-MAG antibody permeability. Sural nerve biopsy specimens from patients with anti-MAG neuropathy showed higher TNF-α expression levels in BNB endothelial cells and preservation of the structural integrity of the tight junctions and the presence of more vesicles in BNB endothelial cells. Neutralization of TNF-α reduces IgM/anti-MAG antibody permeability. DISCUSSION Sera from individuals with anti-MAG neuropathy increased transcellular IgM/anti-MAG antibody permeability via autocrine TNF-α secretion and NF-κB signaling in the BNB.
Collapse
Affiliation(s)
| | - Fumitaka Shimizu
- From the Department of Neurology and Clinical Neuroscience (R.S., F.S., Y.S., Y.T., Michiaki Koga, T.K.), Yamaguchi University Graduate School of Medicine, Ube; Department of Neurology (Motoi Kuwahara, S.K.), Kindai University Faculty of Medicine, Osaka; Center for Gene Research (Y.M., K.W.), Yamaguchi University, Ube, Japan; and Japan Community Health Care Organization (S.K.).
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Clarke T, Fernandez FE, Dawson PA. Sulfation Pathways During Neurodevelopment. Front Mol Biosci 2022; 9:866196. [PMID: 35495624 PMCID: PMC9047184 DOI: 10.3389/fmolb.2022.866196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Sulfate is an important nutrient that modulates a diverse range of molecular and cellular functions in mammalian physiology. Over the past 2 decades, animal studies have linked numerous sulfate maintenance genes with neurological phenotypes, including seizures, impaired neurodevelopment, and behavioral abnormalities. Despite sulfation pathways being highly conserved between humans and animals, less than one third of all known sulfate maintenance genes are clinically reportable. In this review, we curated the temporal and spatial expression of 91 sulfate maintenance genes in human fetal brain from 4 to 17 weeks post conception using the online Human Developmental Biology Resource Expression. In addition, we performed a systematic search of PubMed and Embase, identifying those sulfate maintenance genes linked to atypical neurological phenotypes in humans and animals. Those findings, together with a search of the Online Mendelian Inheritance in Man database, identified a total of 18 candidate neurological dysfunction genes that are not yet considered in clinical settings. Collectively, this article provides an overview of sulfate biology genes to inform future investigations of perturbed sulfate homeostasis associated with neurological conditions.
Collapse
Affiliation(s)
- Taylor Clarke
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Banyo, QLD, Australia
| | - Francesca E. Fernandez
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Banyo, QLD, Australia
| | - Paul A. Dawson
- Mater Research Institute, University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Paul A. Dawson,
| |
Collapse
|
3
|
Myhrstad MCW, de Mello VD, Dahlman I, Kolehmainen M, Paananen J, Rundblad A, Carlberg C, Olstad OK, Pihlajamäki J, Holven KB, Hermansen K, Dragsted LO, Gunnarsdottir I, Cloetens L, Storm MU, Åkesson B, Rosqvist F, Hukkanen J, Herzig KH, Risérus U, Thorsdottir I, Poutanen KS, Savolainen MJ, Schwab U, Arner P, Uusitupa M, Ulven SM. Healthy Nordic Diet Modulates the Expression of Genes Related to Mitochondrial Function and Immune Response in Peripheral Blood Mononuclear Cells from Subjects with Metabolic Syndrome-A SYSDIET Sub-Study. Mol Nutr Food Res 2019; 63:e1801405. [PMID: 30964598 DOI: 10.1002/mnfr.201801405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/20/2019] [Indexed: 01/24/2023]
Abstract
SCOPE To explore the effect of a healthy Nordic diet on the global transcriptome profile in peripheral blood mononuclear cells (PBMCs) of subjects with metabolic syndrome. METHODS AND RESULTS Subjects with metabolic syndrome undergo a 18/24 week randomized intervention study comparing an isocaloric healthy Nordic diet with an average habitual Nordic diet served as control (SYSDIET study). Altogether, 68 participants are included. PBMCs are obtained before and after intervention and total RNA is subjected to global transcriptome analysis. 1302 probe sets are differentially expressed between the diet groups (p-value < 0.05). Twenty-five of these are significantly regulated (FDR q-value < 0.25) and are mainly involved in mitochondrial function, cell growth, and cell adhesion. The list of 1302 regulated probe sets is subjected to functional analyses. Pathways and processes involved in the mitochondrial electron transport chain, immune response, and cell cycle are downregulated in the healthy Nordic diet group. In addition, gene transcripts with common motifs for 42 transcription factors, including NFR1, NFR2, and NF-κB, are downregulated in the healthy Nordic diet group. CONCLUSION These results suggest that benefits of a healthy diet may be mediated by improved mitochondrial function and reduced inflammation.
Collapse
Affiliation(s)
- Mari C W Myhrstad
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, 0130, Oslo, Norway
| | - Vanessa D de Mello
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland
| | - Ingrid Dahlman
- Department of Medicine (H7), Karolinska Institute, 141 86, Stockholm, Sweden
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland
| | - Jussi Paananen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland
| | - Amanda Rundblad
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, 0316, Oslo, Norway
| | - Carsten Carlberg
- Institute of Biomedicine, University of Eastern Finland, 70211, Kuopio, Finland
| | | | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland.,Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70029, Kuopio, Finland
| | - Kirsten B Holven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, 0316, Oslo, Norway.,Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0424, Oslo, Norway
| | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Lars O Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Ingibjörg Gunnarsdottir
- Unit for Nutrition Research, University of Iceland and Landspitali - The National University Hospital of Iceland, 101, Reykjavík, Iceland
| | - Lieselotte Cloetens
- Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, 221 00, Lund, Sweden
| | - Matilda Ulmius Storm
- Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, 221 00, Lund, Sweden
| | - Björn Åkesson
- Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, 221 00, Lund, Sweden.,Department of Clinical Nutrition, Skåne University Hospital, 221 00, Lund, Sweden
| | - Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, 751 22, Uppsala, Sweden
| | - Janne Hukkanen
- Department of Internal Medicine and Biocenter Oulu, University of Oulu, and Medical Research Center, Oulu University Hospital, 90014, Oulu, Finland
| | - Karl-Heinz Herzig
- Institute of Biomedicine and Biocenter of Oulu, University of Oulu, Medical Research Center (MRC) and University Hospital, 90014, Oulu, Finland.,Department of Gastroenterology and Metabolism, Poznań University of Medical Sciences, 10 61-701, Poznań, Poland
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, 751 22, Uppsala, Sweden
| | - Inga Thorsdottir
- Unit for Nutrition Research, University of Iceland and Landspitali - The National University Hospital of Iceland, 101, Reykjavík, Iceland
| | - Kaisa S Poutanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland.,VTT Technical Research Centre of Finland, 02044 VTT, Espoo, Finland
| | - Markku J Savolainen
- Department of Internal Medicine and Biocenter Oulu, University of Oulu, and Medical Research Center, Oulu University Hospital, 90014, Oulu, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland.,Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70029, Kuopio, Finland
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institute, 141 86, Stockholm, Sweden
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland
| | - Stine M Ulven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, 0316, Oslo, Norway
| |
Collapse
|
4
|
Sasaki N, Toyoda M. Glycoconjugates and related molecules in human vascular endothelial cells. Int J Vasc Med 2013; 2013:963596. [PMID: 24171112 PMCID: PMC3793293 DOI: 10.1155/2013/963596] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022] Open
Abstract
Vascular endothelial cells (ECs) form the inner lining of blood vessels. They are critically involved in many physiological functions, including control of vasomotor tone, blood cell trafficking, hemostatic balance, permeability, proliferation, survival, and immunity. It is considered that impairment of EC functions leads to the development of vascular diseases. The carbohydrate antigens carried by glycoconjugates (e.g., glycoproteins, glycosphingolipids, and proteoglycans) mainly present on the cell surface serve not only as marker molecules but also as functional molecules. Recent studies have revealed that the carbohydrate composition of the EC surface is critical for these cells to perform their physiological functions. In this paper, we consider the expression and functional roles of endogenous glycoconjugates and related molecules (galectins and glycan-degrading enzymes) in human ECs.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
5
|
Dasgupta S, Wang G, Yu RK. Sulfoglucuronosyl paragloboside promotes endothelial cell apoptosis in inflammation: elucidation of a novel glycosphingolipid-signaling pathway. J Neurochem 2011; 119:749-59. [PMID: 21916893 DOI: 10.1111/j.1471-4159.2011.07483.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sulfoglucuronosyl paragloboside (SGPG), a minor glycosphingolipid of endothelial cells, is a ligand for L-selectin and has been implicated in neuro-inflammatory diseases, such as Guillian-Barré syndrome. Inflammatory cytokines, such as TNFα and IL-1β, up-regulate SGPG expression by stimulating gene expression for glucuronosyltransferases, both P and S forms (GlcATp and GlcATs), and the human natural killer antigen (HNK-1) sulfotransferase (HNK-1 ST). Transfection of a human cerebromicrovascular endothelial cell (SV-HCEC) line with HNK-1 ST siRNA down-regulated SGPG expression, inhibited cytokine-stimulated T-cell adhesion, and offered protection against apoptosis. However, the precise mechanisms of SGPG elevation in endothelial cell apoptosis and the maintenance of blood-brain or blood-nerve barrier integrity in inflammation have not been elucidated. Blocking SGPG expression inhibited cytokine-mediated stimulation of NF-κB activity but stimulated MAP kinase activity. Furthermore, elevation of SGPG by over-expression of GlcATp and GlcATs triggered endothelial cell apoptosis, with GlcATs being more potent than GlcATp. Although SGPG-mediated endothelial cell apoptosis was preceded by inhibiting the intracellular NF-κB activity, interfering with Akt and ERK activation and stimulating caspase 3 in SV-HCECs, HNK-1ST siRNA transfection also interfered with IκB phosphorylation but stimulated ERK activation. Our data indicate that SGPG is a critical regulatory molecule for maintaining endothelial cell survival and blood-brain or blood-nerve barrier function.
Collapse
Affiliation(s)
- Somsankar Dasgupta
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
6
|
Suzuki Y, Yanagisawa M, Ariga T, Yu RK. Histone acetylation-mediated glycosyltransferase gene regulation in mouse brain during development. J Neurochem 2011; 116:874-80. [PMID: 21214566 DOI: 10.1111/j.1471-4159.2010.07042.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids abundant in the central nervous tissues. The quantity and expression pattern of gangliosides in brain change drastically during early development and are mainly regulated through stage-specific expression of glycosyltransferase (ganglioside synthase) genes. It is still unclear, however, how the transcriptional activation of glycosyltransferase genes is regulated during development. In this study, we investigated the epigenetic regulation of two key glycosyltransferases, N-acetylgalactosaminyltransferase I (GA2/GM2/GD2/GT2-synthase) and sialyltransferase II (GD3-synthase), in embryonic, postnatal, and adult mouse brains. Combined bisulfite restriction analysis assay showed that DNA methylation in the 5' regions of these glycosyltransferase genes was not associated with their expression patterns. On the other hand, chromatin immunoprecipitation assay of both glycosyltransferase genes showed that their histone H3 acetylation was highly correlated to their mRNA expression levels during development. In fact, we confirmed that the expression patterns of gangliosides and glycosyltransferases in neuroepithelial cells were changed after treatment with a histone deacetylase inhibitor, sodium butyrate. Our studies provide the first evidence that efficient histone acetylation of the glycosyltransferase genes in mouse brain contributes to the developmental alteration of ganglioside expression.
Collapse
Affiliation(s)
- Yusuke Suzuki
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|
8
|
Suzuki Y, Yanagisawa M, Yagi H, Nakatani Y, Yu RK. Involvement of beta1-integrin up-regulation in basic fibroblast growth factor- and epidermal growth factor-induced proliferation of mouse neuroepithelial cells. J Biol Chem 2010; 285:18443-51. [PMID: 20371608 DOI: 10.1074/jbc.m110.114645] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In neural stem cells, basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) promote cell proliferation and self-renewal. In the bFGF- and EGF-responsive neural stem cells, beta1-integrin also plays important roles in crucial cellular processes, including proliferation, migration, and apoptosis. The cross-talk of the signaling pathways mediated by these growth factors and beta1-integrin, however, has not been fully elucidated. Here we report a novel molecular mechanism through which bFGF or EGF promotes the proliferation of mouse neuroepithelial cells (NECs). In the NECs, total beta1-integrin expression levels and proliferation were dose-dependently increased by bFGF but not by EGF. EGF rather than bFGF strongly induced the increase of beta1-integrin localization on the NEC surface. bFGF- and EGF-induced beta1-integrin up-regulation and proliferation were inhibited after treatment with a mitogen-activated protein kinase kinase inhibitor, U0126, which indicates the dependence on the mitogen-activated protein kinase pathway. Involvement of beta1-integrin in bFGF- and EGF-induced proliferation was confirmed by the finding that NEC proliferation and adhesion to fibronectin-coated dishes were inhibited by knockdown of beta1-integrin using small interfering RNA. On the other hand, apoptosis was induced in NECs treated with RGD peptide, a small beta1-integrin inhibitor peptide with the Arg-Gly-Asp motif, but it was independent of beta1-integrin expression levels. Those results suggest that regulation of beta1-integrin expression/localization is involved in cellular processes, such as proliferation, induced by bFGF and EGF in NECs. The mechanism underlying the proliferation through beta1-integrin would not be expected to be completely identical, however, for bFGF and EGF.
Collapse
Affiliation(s)
- Yusuke Suzuki
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|