1
|
Badaut J, Blochet C, Obenaus A, Hirt L. Physiological and pathological roles of caveolins in the central nervous system. Trends Neurosci 2024; 47:651-664. [PMID: 38972795 PMCID: PMC11324375 DOI: 10.1016/j.tins.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Caveolins are a family of transmembrane proteins located in caveolae, small lipid raft invaginations of the plasma membrane. The roles of caveolin-enriched lipid rafts are diverse, and include mechano-protection, lipid homeostasis, metabolism, transport, and cell signaling. Caveolin-1 (Cav-1) and other caveolins were described in endothelial cells and later in other cell types of the central nervous system (CNS), including neurons, astrocytes, oligodendrocytes, microglia, and pericytes. This pancellular presence of caveolins demands a better understanding of their functional roles in each cell type. In this review we describe the various functions of Cav-1 in the cells of normal and pathological brains. Several emerging preclinical findings suggest that Cav-1 could represent a potential therapeutic target in brain disorders.
Collapse
Affiliation(s)
- Jérôme Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Camille Blochet
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - André Obenaus
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Lorenz Hirt
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Dudãu M, Codrici E, Tanase C, Gherghiceanu M, Enciu AM, Hinescu ME. Caveolae as Potential Hijackable Gates in Cell Communication. Front Cell Dev Biol 2020; 8:581732. [PMID: 33195223 PMCID: PMC7652756 DOI: 10.3389/fcell.2020.581732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Caveolae are membrane microdomains described in many cell types involved in endocytocis, transcytosis, cell signaling, mechanotransduction, and aging. They are found at the interface with the extracellular environment and are structured by caveolin and cavin proteins. Caveolae and caveolins mediate transduction of chemical messages via signaling pathways, as well as non-chemical messages, such as stretching or shear stress. Various pathogens or signals can hijack these gates, leading to infectious, oncogenic and even caveolin-related diseases named caveolinopathies. By contrast, preclinical and clinical research have fallen behind in their attempts to hijack caveolae and caveolins for therapeutic purposes. Caveolae involvement in human disease is not yet fully explored or understood and, of all their scaffold proteins, only caveolin-1 is being considered in clinical trials as a possible biomarker of disease. This review briefly summarizes current knowledge about caveolae cell signaling and raises the hypothesis whether these microdomains could serve as hijackable “gatekeepers” or “gateways” in cell communication. Furthermore, because cell signaling is one of the most dynamic domains in translating data from basic to clinical research, we pay special attention to translation of caveolae, caveolin, and cavin research into clinical practice.
Collapse
Affiliation(s)
- Maria Dudãu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Cristiana Tanase
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Clinical Biochemistry Department, Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail E Hinescu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
3
|
Mengozzi M, Hesketh A, Bucca G, Ghezzi P, Smith CP. Vitamins D3 and D2 have marked but different global effects on gene expression in a rat oligodendrocyte precursor cell line. Mol Med 2020; 26:32. [PMID: 32272884 PMCID: PMC7146914 DOI: 10.1186/s10020-020-00153-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Vitamin D deficiency increases the risk of developing multiple sclerosis (MS) but it is unclear whether vitamin D supplementation improves the clinical course of MS, and there is uncertainty about the dose and form of vitamin D (D2 or D3) to be used. The mechanisms underlying the effects of vitamin D in MS are not clear. Vitamin D3 increases the rate of differentiation of primary oligodendrocyte precursor cells (OPCs), suggesting that it might help remyelination in addition to modulating the immune response. Here we analyzed the transcriptome of differentiating rat CG4 OPCs treated with vitamin D2 or with vitamin D3 at 24 h and 72 h following onset of differentiation. Methods Gene expression in differentiating CG4 cells in response to vitamin D2 or D3 was quantified using Agilent DNA microarrays (n = 4 replicates), and the transcriptome data were processed and analysed using the R software environment. Differential expression between the experimental conditions was determined using LIMMA, applying the Benjamini and Hochberg multiple testing correction to p-values, and significant genes were grouped into co-expression clusters by hierarchical clustering. The functional significance of gene groups was explored by pathway enrichment analysis using the clusterProfiler package. Results Differentiation alone changed the expression of about 10% of the genes at 72 h compared to 24 h. Vitamin D2 and D3 exerted different effects on gene expression, with D3 influencing 1272 genes and D2 574 at 24 h. The expression of the vast majority of these genes was either not changed in differentiating cells not exposed to vitamin D or followed the same trajectory as the latter. D3-repressed genes were enriched for Gene Ontology (GO) categories including transcription factors and the Notch pathway, while D3-induced genes were enriched for the Ras pathway. Conclusions This study shows that vitamin D3, compared with D2, changes the expression of a larger number of genes in OLs. Identification of genes affected by D3 in OLs should help to identify mechanisms mediating its action in MS.
Collapse
Affiliation(s)
- Manuela Mengozzi
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, BN1 9PS, UK.,Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, BN2 4GJ, UK
| | - Andrew Hesketh
- Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, BN2 4GJ, UK.,School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - Giselda Bucca
- Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, BN2 4GJ, UK.,School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - Pietro Ghezzi
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, BN1 9PS, UK. .,Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, BN2 4GJ, UK.
| | - Colin P Smith
- Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, BN2 4GJ, UK.,School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| |
Collapse
|
4
|
Okada S, Raja SA, Okerblom J, Boddu A, Horikawa Y, Ray S, Okada H, Kawamura I, Murofushi Y, Murray F, Patel HH. Deletion of caveolin scaffolding domain alters cancer cell migration. Cell Cycle 2019; 18:1268-1280. [PMID: 31116089 DOI: 10.1080/15384101.2019.1618118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Caveolin-1 (Cav-1) is an integral membrane protein that plays an important role in proliferative and terminally differentiated cells. As a structural component of Caveolae, Cav-1 interacts with signaling molecules via a caveolin scaffolding domain (CSD) regulating cell signaling. Recent reports have shown that Cav-1 is a negative regulator in tumor metastasis. Therefore, we hypothesize that Cav-1 inhibits cell migration through its CSD. HeLa cells were engineered to overexpress Cav-1 (Cav-1 OE), Cav-1 without a functional CSD (∆CSD), or enhanced green fluorescent protein (EGFP) as a control. HeLa cell migration was suppressed in Cav-1 OE cells while ∆CSD showed increased migration, which corresponded to a decrease in the tight junction protein, zonula occludens (ZO-1). The migration phenotype was confirmed in multiple cancer cell lines. Phosphorylated STAT-3 was decreased in Cav-1 OE cells compared to control and ∆CSD cells; reducing STAT-3 expression alone decreased cell migration. ∆CSD blunted HeLa proliferation by increasing the number of cells in the G2/M phase of the cell cycle. Overexpressing the CSD peptide alone suppressed HeLa cell migration and inhibited pSTAT3. These findings suggest that Cav-1 CSD may be critical in controlling the dynamic phenotype of cancer cells by facilitating the interaction of specific signal transduction pathways, regulating STAT3 and participating in a G2/M checkpoint. Modulating the CSD and targeting specific proteins may offer potential new therapies in the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Sunaho Okada
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,b Department of Anesthesiology and UCSD School of Medicine , San Diego , CA , USA
| | - Sadaf A Raja
- c Department of Biosciences , COMSATS Institute of Information Technology , Islamabad , Pakistan
| | - Jonathan Okerblom
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,b Department of Anesthesiology and UCSD School of Medicine , San Diego , CA , USA
| | - Aayush Boddu
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,b Department of Anesthesiology and UCSD School of Medicine , San Diego , CA , USA
| | - Yousuke Horikawa
- d Department of Pediatrics , Sharp Rees-Stealy Medical Group , San Diego , CA , USA.,e Department of Anesthesiology , Tokushima University , Tokushima , Japan
| | | | - Hideshi Okada
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,g Department of Anesthesiology and Medicine , UCSD School of Medicine , San Diego , CA , USA.,h Department of Emergency and Disaster Medicine , Gifu University Graduate School of Medicine , Gifu , Japan
| | - Itta Kawamura
- i Department of Cardiovascular Medicine , Gifu Heart Center , Gifu , Japan
| | - Yoshiteru Murofushi
- g Department of Anesthesiology and Medicine , UCSD School of Medicine , San Diego , CA , USA
| | - Fiona Murray
- j Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences , University of Aberdeen , Aberdeen , Scotland
| | - Hemal H Patel
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,b Department of Anesthesiology and UCSD School of Medicine , San Diego , CA , USA
| |
Collapse
|
5
|
Spencer A, Yu L, Guili V, Reynaud F, Ding Y, Ma J, Jullien J, Koubi D, Gauthier E, Cluet D, Falk J, Castellani V, Yuan C, Rudkin BB. Nerve Growth Factor Signaling from Membrane Microdomains to the Nucleus: Differential Regulation by Caveolins. Int J Mol Sci 2017; 18:E693. [PMID: 28338624 PMCID: PMC5412279 DOI: 10.3390/ijms18040693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 11/16/2022] Open
Abstract
Membrane microdomains or "lipid rafts" have emerged as essential functional modules of the cell, critical for the regulation of growth factor receptor-mediated responses. Herein we describe the dichotomy between caveolin-1 and caveolin-2, structural and regulatory components of microdomains, in modulating proliferation and differentiation. Caveolin-2 potentiates while caveolin-1 inhibits nerve growth factor (NGF) signaling and subsequent cell differentiation. Caveolin-2 does not appear to impair NGF receptor trafficking but elicits prolonged and stronger activation of MAPK (mitogen-activated protein kinase), Rsk2 (ribosomal protein S6 kinase 2), and CREB (cAMP response element binding protein). In contrast, caveolin-1 does not alter initiation of the NGF signaling pathway activation; rather, it acts, at least in part, by sequestering the cognate receptors, TrkA and p75NTR, at the plasma membrane, together with the phosphorylated form of the downstream effector Rsk2, which ultimately prevents CREB phosphorylation. The non-phosphorylatable caveolin-1 serine 80 mutant (S80V), no longer inhibits TrkA trafficking or subsequent CREB phosphorylation. MC192, a monoclonal antibody towards p75NTR that does not block NGF binding, prevents exit of both NGF receptors (TrkA and p75NTR) from lipid rafts. The results presented herein underline the role of caveolin and receptor signaling complex interplay in the context of neuronal development and tumorigenesis.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- CREB-Binding Protein/metabolism
- Caveolin 1/antagonists & inhibitors
- Caveolin 1/genetics
- Caveolin 1/metabolism
- Caveolin 2/antagonists & inhibitors
- Caveolin 2/genetics
- Caveolin 2/metabolism
- Cell Differentiation/drug effects
- Cell Nucleus/metabolism
- Cells, Cultured
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Membrane Microdomains/metabolism
- Mice
- Nerve Growth Factor/pharmacology
- Nerve Tissue Proteins
- PC12 Cells
- Phosphorylation/drug effects
- Protein Binding
- Protein Transport/drug effects
- RNA Interference
- RNA, Small Interfering/metabolism
- Rats
- Receptor, Nerve Growth Factor/metabolism
- Receptor, trkA/chemistry
- Receptor, trkA/immunology
- Receptor, trkA/metabolism
- Receptors, Growth Factor
- Receptors, Nerve Growth Factor/chemistry
- Receptors, Nerve Growth Factor/immunology
- Receptors, Nerve Growth Factor/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Ambre Spencer
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
- East China Normal University, School of Life Sciences, Laboratory of Molecular and Cellular Neurophysiology, Shanghai 200062, China.
| | - Lingli Yu
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
- East China Normal University, School of Life Sciences, Laboratory of Molecular and Cellular Neurophysiology, Shanghai 200062, China.
| | - Vincent Guili
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
| | - Florie Reynaud
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, CGphiMC UMR5534, 69622 Villeurbanne Cedex, France.
| | - Yindi Ding
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
- East China Normal University, School of Life Sciences, Laboratory of Molecular and Cellular Neurophysiology, Shanghai 200062, China.
| | - Ji Ma
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- East China Normal University, School of Life Sciences, Laboratory of Molecular and Cellular Neurophysiology, Shanghai 200062, China.
| | - Jérôme Jullien
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
| | - David Koubi
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
| | - Emmanuel Gauthier
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
| | - David Cluet
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
| | - Julien Falk
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, CGphiMC UMR5534, 69622 Villeurbanne Cedex, France.
| | - Valérie Castellani
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, CGphiMC UMR5534, 69622 Villeurbanne Cedex, France.
| | - Chonggang Yuan
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- East China Normal University, School of Life Sciences, Laboratory of Molecular and Cellular Neurophysiology, Shanghai 200062, China.
| | - Brian B Rudkin
- East China Normal University, Key Laboratory of Brain Functional Genomics of the Ministry of Education of PR China, Joint Laboratory of Neuropathogenesis, ECNU, ENS Lyon, CNRS, Shanghai 200062, China.
- Univ. Lyon, Ecole normale supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Differentiation & Cell Cycle Group, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239, 69007 Lyon, France.
- Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| |
Collapse
|
6
|
Loss of prion protein leads to age-dependent behavioral abnormalities and changes in cytoskeletal protein expression. Mol Neurobiol 2014; 50:923-36. [PMID: 24604355 DOI: 10.1007/s12035-014-8655-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/29/2014] [Indexed: 12/13/2022]
Abstract
The cellular prion protein (PrPC) is a highly conserved protein whose exact physiological role remains elusive. In the present study, we investigated age-dependent behavioral abnormalities in PrPC-knockout (Prnp0/0) mice and wild-type (WT) controls. Prnp0/0 mice showed age-dependent behavioral deficits in memory performance, associative learning, basal anxiety, and nest building behavior. Using a hypothesis-free quantitative proteomic investigation, we found that loss of PrPC affected the levels of neurofilament proteins in an age-dependent manner. In order to understand the biochemical basis of these observations, we analyzed the phosphorylation status of neurofilament heavy chain (NF-H). We found a reduction in NF-H phosphorylation in both Prnp0/0 mice and in PrPC-deficient cells. The expression of Fyn and phospho-Fyn, a potential regulator for NF phosphorylation, was associated with PrPC ablation. The number of β-tubulin III-positive neurons in the hippocampus was diminished in Prnp0/0 mice relative to WT mice. These data indicate that PrPC plays an important role in cytoskeletal organization, brain function, and age-related neuroprotection. Our work represents the first direct biochemical link between these proteins and the observed behavioral phenotypes.
Collapse
|
7
|
The long coiled-coil protein NECC2 is associated to caveolae and modulates NGF/TrkA signaling in PC12 cells [corrected]. PLoS One 2013; 8:e73668. [PMID: 24040018 PMCID: PMC3765260 DOI: 10.1371/journal.pone.0073668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/22/2013] [Indexed: 02/06/2023] Open
Abstract
TrkA-mediated NGF signaling in PC12 cells has been shown to be compartimentalized in specialized microdomains of the plasma membrane, the caveolae, which are organized by scaffold proteins including the member of the caveolin family of proteins, caveolin-1. Here, we characterize the intracellular distribution as well as the biochemical and functional properties of the neuroendocrine long coiled-coil protein 2 (NECC2), a novel long coiled-coil protein selectively expressed in neuroendocrine tissues that contains a predicted caveolin-binding domain and displays structural characteristics of a scaffolding factor. NECC2 distributes in caveolae, wherein it colocalizes with the TrkA receptor, and behaves as a caveolae-associated protein in neuroendocrine PC12 cells. In addition, stimulation of PC12 cells with nerve growth factor (NGF) increased the expression and regulated the distribution of NECC2. Interestingly, knockdown as well as overexpression of NECC2 resulted in a reduction of NGF-induced phosphorylation of the TrkA downstream effector extracellular signal-regulated kinases 1 and 2 (ERK1/ERK2) but not of Akt. Altogether, our results identify NECC2 as a novel component of caveolae in PC12 cells and support the contribution of this protein in the maintenance of TrkA-mediated NGF signaling.
Collapse
|
8
|
Schmitz M, Signore SC, Zerr I, Althaus HH. Oligodendroglial process formation is differentially affected by modulating the intra- and extracellular cholesterol content. J Mol Neurosci 2012; 49:457-69. [PMID: 22740150 PMCID: PMC3566395 DOI: 10.1007/s12031-012-9833-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/04/2012] [Indexed: 12/12/2022]
Abstract
Cholesterol is an essential component of eukaryotic plasma membranes and plays an important role in membrane organization and signaling processes. It is the major lipid component of detergent resistant caveolin-1 containing rafts which previously had been reported as a platform for nerve growth factor (NGF) signaling in oligodendrocytes (OL). Surprisingly, a knockdown of caveolin-1 attenuated the process formation of OL (Schmitz et al. J Neurosci Res 88:572–588, 2010), for which a loss of cholesterol could be responsible. In the present report, we could show that a caveolin-1 knockdown resulted in an elevation of cellular cholesterol level; it may indicate an important role of caveolin-1 in cholesterol trafficking to the plasma membrane. Treatment with exogenous PEG cholesterol, which was incorporated to the plasma membrane, supported oligodendroglial process formation, in particular when OL were stimulated by NGF. In this context we have found that OL express NPC1L1 (Niemann–Pick disease type C1-Like 1) which could modulate cholesterol uptake. In contrast, depletion of membrane-bound cholesterol diminished NGF-induced process formation concomitant with a reduced activity of p42/44 mitogen-activated protein kinases.
Collapse
Affiliation(s)
- Matthias Schmitz
- Max-Planck Institute of Experimental Medicine, RU Neural Regeneration, Hermann-Rein-Straße 3, 37075, Goettingen, Germany.
| | | | | | | |
Collapse
|
9
|
Effect of cavtratin, a caveolin-1 scaffolding domain peptide, on oligodendroglial signaling cascades. Cell Mol Neurobiol 2011; 31:991-7. [PMID: 21523467 PMCID: PMC3178791 DOI: 10.1007/s10571-011-9694-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 04/11/2011] [Indexed: 12/11/2022]
Abstract
Caveolin and caveolin containing rafts are involved in the signaling of growth factors in various cell types. Previous reports of our lab indicated a co-localization of caveolin and the high affinity nerve growth factor (NGF) receptor tyrosine kinase A (TrkA). Mutual effects have been observed among which a caveolin-1 knock-down resulted in an impairment of the NGF signaling cascade rather than in an increase of activity as expected from other growth factor reports. On the other hand, an over-expression of caveolin-1 impaired the NGF stimulated activity of p42/44 mitogen activated protein kinases (MAPK). In this study, we used a caveolin-1 scaffolding domain (CSD) peptide (cavtratin) of which an inhibitory effect on growth factor receptors was reported. Our data showed that cavtratin suppresses the NGF-induced phosphorylation of TrkA as well as the activation of MAPK in porcine oligodendrocytes significantly.
Collapse
|