1
|
Peng Y, Liu Y, Li J, Zhang K, Jin X, Zheng S, Wang Y, Lü Z, Liu L, Gong L, Liu B. New perspectives on the genetic structure of dotted gizzard shad ( Konosirus punctatus) based on RAD-seq. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:50-67. [PMID: 38433959 PMCID: PMC10901767 DOI: 10.1007/s42995-024-00216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/19/2024] [Indexed: 03/05/2024]
Abstract
To maintain, develop and rationally utilize marine organisms, understanding their genetic structure and habitat adaptation pattern is necessary. Konosirus punctatus, which is a commercial fish species inhabiting the Indo-west Pacific Ocean, has shown an obvious annual global capture and aquaculture production decline due to climate changes and human activities. In the present study, restriction-site associated DNA sequencing (RAD-seq) was used to describe its genome-wide single nucleotide polymorphisms panel (SNPs). Among 146 individuals collected at nine locations scattered in China, Korea and Japan, a set of 632,090 SNPs were identified. Population genetic analysis showed that K. punctatus individuals were divided into two significant genetic clusters. Meanwhile, potential genetic differentiation between northern and southern population of K. punctatus was found. Treemix results indicated that gene flow existed among sampling locations of K. punctatus, especially from southern Japan to others. Moreover, candidate genes associated with habitat adaptations of K. punctatus were identified, which are involved in diverse physiological processes of K. punctatus including growth and development (e.g., KIDINS220, PAN3), substance metabolism (e.g., PGM5) and immune response (e.g., VAV3, CCT7, HSPA12B). Our findings may aid in understanding the possible mechanisms for the population genetic structure and local adaptation of K. punctatus, which is beneficial to establish the management and conservation units of K. punctatus, guiding the rational use of resources, with reference significance for a profound understanding of the adaptative mechanisms of other marine organisms to the environment. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00216-2.
Collapse
Affiliation(s)
- Ying Peng
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Yifan Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Jiasheng Li
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Kun Zhang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Xun Jin
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Sixu Zheng
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Yunpeng Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Zhenming Lü
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Liqin Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Li Gong
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| | - Bingjian Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, 316022 China
- National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022 China
| |
Collapse
|
2
|
Cai S, Cai J, Jiang WG, Ye L. Kidins220 and tumour development: Insights into a complexity of cross-talk among signalling pathways (Review). Int J Mol Med 2017; 40:965-971. [PMID: 28849114 PMCID: PMC5593494 DOI: 10.3892/ijmm.2017.3093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022] Open
Abstract
The mechanistic complexes of kinase D-interacting substrate of 220 kDa/ankyrin repeat-rich membrane spanning (Kidins220/ARMS) bind and integrate a variety of cellular cues to mediate neuronal activities such as neuronal differentiation, survival, and cytoskeleton remodelling by interacting with a variety of binding partners. Accumulated evidence has also indicated its role in the regulation of vascular development. Mice with Kidins220 knockdown phenotypically present with cardiovascular abnormalities. Kidins220 also contributes to immunomodulation in combination with B cells and T cells. Moreover, emerging evidence has revealed that this protein regulates many crucial cellular processes and thus has been implicated in an increasing number of malignancies. Here, we review recent advances in our understanding of Kidins220 and its role in cancer development. Further investigation is warranted to shed light on the role played by Kidins220 in the dynamic arrangement of the cytoskeleton and epithelial–mesenchymal transition, and its implication in tumourigenesis and cancer progression.
Collapse
Affiliation(s)
- Shuo Cai
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Jun Cai
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| |
Collapse
|
3
|
Scholz-Starke J, Cesca F. Stepping Out of the Shade: Control of Neuronal Activity by the Scaffold Protein Kidins220/ARMS. Front Cell Neurosci 2016; 10:68. [PMID: 27013979 PMCID: PMC4789535 DOI: 10.3389/fncel.2016.00068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/01/2016] [Indexed: 12/31/2022] Open
Abstract
The correct functioning of the nervous system depends on the exquisitely fine control of neuronal excitability and synaptic plasticity, which relies on an intricate network of protein-protein interactions and signaling that shapes neuronal homeostasis during development and in adulthood. In this complex scenario, Kinase D interacting substrate of 220 kDa/ankyrin repeat-rich membrane spanning (Kidins220/ARMS) acts as a multi-functional scaffold protein with preferential expression in the nervous system. Engaged in a plethora of interactions with membrane receptors, cytosolic signaling components and cytoskeletal proteins, Kidins220/ARMS is implicated in numerous cellular functions including neuronal survival, neurite outgrowth and maturation and neuronal activity, often in the context of neurotrophin (NT) signaling pathways. Recent studies have highlighted a number of cell- and context-specific roles for this protein in the control of synaptic transmission and neuronal excitability, which are at present far from being completely understood. In addition, some evidence has began to emerge, linking alterations of Kidins220 expression to the onset of various neurodegenerative diseases and neuropsychiatric disorders. In this review, we present a concise summary of our fragmentary knowledge of Kidins220/ARMS biological functions, focusing on the mechanism(s) by which it controls various aspects of neuronal activity. We have tried, where possible, to discuss the available evidence in the wider context of NT-mediated regulation, and to outline emerging roles of Kidins220/ARMS in human pathologies.
Collapse
Affiliation(s)
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia Genova, Italy
| |
Collapse
|
4
|
López-Benito S, Lillo C, Hernández-Hernández Á, Chao MV, Arévalo JC. ARMS/Kidins220 and synembryn-B levels regulate NGF-mediated secretion. J Cell Sci 2016; 129:1866-77. [PMID: 26966186 DOI: 10.1242/jcs.184168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 03/05/2016] [Indexed: 01/22/2023] Open
Abstract
Proper development of the nervous system requires a temporally and spatially orchestrated set of events including differentiation, synapse formation and neurotransmission. Nerve growth factor (NGF) acting through the TrkA neurotrophin receptor (also known as NTRK1) regulates many of these events. However, the molecular mechanisms responsible for NGF-regulated secretion are not completely understood. Here, we describe a new signaling pathway involving TrkA, ARMS (also known as Kidins220), synembryn-B and Rac1 in NGF-mediated secretion in PC12 cells. Whereas overexpression of ARMS blocked NGF-mediated secretion, without affecting basal secretion, a decrease in ARMS resulted in potentiation. Similar effects were observed with synembryn-B, a protein that interacts directly with ARMS. Downstream of ARMS and synembryn-B are Gαq and Trio proteins, which modulate the activity of Rac1 in response to NGF. Expression of dominant-negative Rac1 rescued the secretion defects of cells overexpressing ARMS or synembryn-B. Thus, this neurotrophin pathway represents a new mechanism responsible for NGF-regulated secretion.
Collapse
Affiliation(s)
- Saray López-Benito
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), University of Salamanca, Salamanca 37007, Spain Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - Concepción Lillo
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), University of Salamanca, Salamanca 37007, Spain Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - Ángel Hernández-Hernández
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca 37007, Spain
| | - Moses V Chao
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, Physiology and Neuroscience, Psychiatry, and Neural Sciences, New York University School of Medicine, New York, NY 10016, USA
| | - Juan C Arévalo
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), University of Salamanca, Salamanca 37007, Spain Institute of Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| |
Collapse
|
5
|
Cesca F, Satapathy A, Ferrea E, Nieus T, Benfenati F, Scholz-Starke J. Functional Interaction between the Scaffold Protein Kidins220/ARMS and Neuronal Voltage-Gated Na+ Channels. J Biol Chem 2015; 290:18045-18055. [PMID: 26037926 DOI: 10.1074/jbc.m115.654699] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 12/19/2022] Open
Abstract
Kidins220 (kinase D-interacting substrate of 220 kDa)/ankyrin repeat-rich membrane spanning (ARMS) acts as a signaling platform at the plasma membrane and is implicated in a multitude of neuronal functions, including the control of neuronal activity. Here, we used the Kidins220(-/-) mouse model to study the effects of Kidins220 ablation on neuronal excitability. Multielectrode array recordings showed reduced evoked spiking activity in Kidins220(-/-) hippocampal networks, which was compatible with the increased excitability of GABAergic neurons determined by current-clamp recordings. Spike waveform analysis further indicated an increased sodium conductance in this neuronal subpopulation. Kidins220 association with brain voltage-gated sodium channels was shown by co-immunoprecipitation experiments and Na(+) current recordings in transfected HEK293 cells, which revealed dramatic alterations of kinetics and voltage dependence. Finally, an in silico interneuronal model incorporating the Kidins220-induced Na(+) current alterations reproduced the firing phenotype observed in Kidins220(-/-) neurons. These results identify Kidins220 as a novel modulator of Nav channel activity, broadening our understanding of the molecular mechanisms regulating network excitability.
Collapse
Affiliation(s)
- Fabrizia Cesca
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, 16163 Genova, Italy.
| | - Annyesha Satapathy
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Enrico Ferrea
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Sensorimotor Group, German Primate Center, 37077 Göttingen, Germany
| | - Thierry Nieus
- Neuro Technology Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Joachim Scholz-Starke
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Institute of Biophysics, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| |
Collapse
|
6
|
Jung H, Shin JH, Park YS, Chang MS. Ankyrin repeat-rich membrane spanning (ARMS)/Kidins220 scaffold protein regulates neuroblastoma cell proliferation through p21. Mol Cells 2014; 37:881-7. [PMID: 25410904 PMCID: PMC4275705 DOI: 10.14348/molcells.2014.0182] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 12/13/2022] Open
Abstract
Cell proliferation is tightly controlled by the cell-cycle regulatory proteins, primarily by cyclins and cyclin-dependent kinases (CDKs) in the G1 phase. The ankyrin repeat-rich membrane spanning (ARMS) scaffold protein, also known as kinase D-interacting substrate of 220 kDa (Kidins 220), has been previously identified as a prominent downstream target of neurotrophin and ephrin receptors. Many studies have reported that ARMS/Kidins220 acts as a major signaling platform in organizing the signaling complex to regulate various cellular responses in the nervous and vascular systems. However, the role of ARMS/Kidins220 in cell proliferation and cell-cycle progression has never been investigated. Here we report that knockdown of ARMS/Kidins220 inhibits mouse neuroblastoma cell proliferation by inducing slowdown of cell cycle in the G1 phase. This effect is mediated by the upregulation of a CDK inhibitor p21, which causes the decrease in cyclin D1 and CDK4 protein levels and subsequent reduction of pRb hyperphosphorylation. Our results suggest a new role of ARMS/Kidins220 as a signaling platform to regulate tumor cell proliferation in response to the extracellular stimuli.
Collapse
Affiliation(s)
- Heekyung Jung
- Department of Oral Anatomy, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749,
Korea
| | - Joo-Hyun Shin
- Department of Oral Anatomy, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749,
Korea
| | - Young-Seok Park
- Department of Oral Anatomy, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749,
Korea
| | - Mi-Sook Chang
- Department of Oral Anatomy, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749,
Korea
| |
Collapse
|
7
|
Ninan I. Synaptic regulation of affective behaviors; role of BDNF. Neuropharmacology 2013; 76 Pt C:684-95. [PMID: 23747574 DOI: 10.1016/j.neuropharm.2013.04.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 03/31/2013] [Accepted: 04/02/2013] [Indexed: 12/23/2022]
Abstract
Brain derived neurotrophic factor (BDNF), a neurotrophin essential for nervous system development and synaptic plasticity, has been found to have a significant influence on affective behaviors. The notion that an impairment in BDNF signaling might be involved in affective disorders is originated primarily from the opposing effects of antidepressants and stress on BDNF signaling. Antidepressants enhance BDNF signaling and synaptic plasticity. On the other hand, negative environmental factors such as severe stress suppress BDNF signaling, impair synaptic activity and increase susceptibility to affective disorders. Postmortem studies provided strong support for decreased BDNF signaling in depressive disorders. Remarkably, studies in humans with a single nucleotide polymorphism in the BDNF gene, the BDNF Val66Met which affects regulated release of BDNF, showed profound deficits in hippocampal and prefrontal cortical (PFC) plasticity and cognitive behaviors. BDNF regulates synaptic mechanisms responsible for various cognitive processes including attenuation of aversive memories, a key process in the regulation of affective behaviors. The unique role of BDNF in cognitive and affective behaviors suggests that cognitive deficits due to altered BDNF signaling might underlie affective disorders. Understanding how BDNF modulates synapses in neural circuits relevant to affective behaviors, particularly the medial prefrontal cortical (mPFC)-hippocampus-amygdala pathway, and its interaction with development, sex, and environmental risk factors might shed light on potential therapeutic targets for affective disorders. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Ipe Ninan
- Department of Psychiatry, NYU School of Medicine, SKI 5-3, 540 1st Ave, NY 10016, United States.
| |
Collapse
|
8
|
Ankyrin repeat-rich membrane spanning protein (kidins220) is required for neurotrophin and ephrin receptor-dependent dendrite development. J Neurosci 2012; 32:8263-9. [PMID: 22699907 DOI: 10.1523/jneurosci.1264-12.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dendrites are the primary sites on neurons for receiving and integrating inputs from their presynaptic partners. Defects in dendrite development perturb the formation of neural circuitry and impair information processing in the brain. Extracellular cues are important for shaping the dendritic morphogenesis, but the underlying molecular mechanisms are not well understood. In this study, we examined the role of ARMS (ankyrin repeat-rich membrane spanning protein), also known as Kidins220 (kinase D-interacting substrate of 220 kDa), previously identified as a downstream target of neurotrophin and ephrin receptors, in dendrite development. We report here that knockdown of ARMS/Kidins220 by in utero electroporation impairs dendritic branching in mouse cerebral cortex, and silencing of ARMS/Kidins220 in primary rat hippocampal neurons results in a significant decrease in the length, number, and complexity of the dendritic arbors. Overexpression of cell surface receptor tyrosine kinases, including TrkB and EphB2, in ARMS/Kidins220-deficient neurons can partially rescue the defective dendritic phenotype. More importantly, we show that PI3K (phosphoinositide-3-kinase)- and Akt-mediated signaling pathway is crucial for ARMS/Kidins220-dependent dendrite development. Furthermore, loss of ARMS/Kidins220 significantly reduced the clustering of EphB2 receptor signaling complex in neurons. Our results collectively suggest that ARMS/Kidins220 is a key player in organizing the signaling complex to transduce the extracellular stimuli to cellular responses during dendrite development.
Collapse
|
9
|
Neubrand VE, Cesca F, Benfenati F, Schiavo G. Kidins220/ARMS as a functional mediator of multiple receptor signalling pathways. J Cell Sci 2012; 125:1845-54. [PMID: 22562556 DOI: 10.1242/jcs.102764] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
An increasing body of evidence suggests that several membrane receptors--in addition to activating distinct signalling cascades--also engage in substantial crosstalk with each other, thereby adjusting their signalling outcome as a function of specific input information. However, little is known about the molecular mechanisms that control their coordination and integration of downstream signalling. A protein that is likely to have a role in this process is kinase-D-interacting substrate of 220 kDa [Kidins220, also known as ankyrin repeat-rich membrane spanning (ARMS), hereafter referred to as Kidins220/ARMS]. Kidins220/ARMS is a conserved membrane protein that is preferentially expressed in the nervous system and interacts with the microtubule and actin cytoskeleton. It interacts with neurotrophin, ephrin, vascular endothelial growth factor (VEGF) and glutamate receptors, and is a common downstream target of several trophic stimuli. Kidins220/ARMS is required for neuronal differentiation and survival, and its expression levels modulate synaptic plasticity. Kidins220/ARMS knockout mice show developmental defects mainly in the nervous and cardiovascular systems, suggesting a crucial role for this protein in modulating the cross talk between different signalling pathways. In this Commentary, we summarise existing knowledge regarding the physiological functions of Kidins220/ARMS, and highlight some interesting directions for future studies on the role of this protein in health and disease.
Collapse
Affiliation(s)
- Veronika E Neubrand
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Armilla, Granada, Spain
| | | | | | | |
Collapse
|
10
|
Scholz-Starke J, Cesca F, Schiavo G, Benfenati F, Baldelli P. Kidins220/ARMS is a novel modulator of short-term synaptic plasticity in hippocampal GABAergic neurons. PLoS One 2012; 7:e35785. [PMID: 22563401 PMCID: PMC3338529 DOI: 10.1371/journal.pone.0035785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/21/2012] [Indexed: 01/09/2023] Open
Abstract
Kidins220 (Kinase D interacting substrate of 220 kDa)/ARMS (Ankyrin Repeat-rich Membrane Spanning) is a scaffold protein highly expressed in the nervous system. Previous work on neurons with altered Kidins220/ARMS expression suggested that this protein plays multiple roles in synaptic function. In this study, we analyzed the effects of Kidins220/ARMS ablation on basal synaptic transmission and on a variety of short-term plasticity paradigms in both excitatory and inhibitory synapses using a recently described Kidins220 full knockout mouse. Hippocampal neuronal cultures prepared from embryonic Kidins220−/− (KO) and wild type (WT) littermates were used for whole-cell patch-clamp recordings of spontaneous and evoked synaptic activity. Whereas glutamatergic AMPA receptor-mediated responses were not significantly affected in KO neurons, specific differences were detected in evoked GABAergic transmission. The recovery from synaptic depression of inhibitory post-synaptic currents in WT cells showed biphasic kinetics, both in response to paired-pulse and long-lasting train stimulation, while in KO cells the respective slow components were strongly reduced. We demonstrate that the slow recovery from synaptic depression in WT cells is caused by a transient reduction of the vesicle release probability, which is absent in KO neurons. These results suggest that Kidins220/ARMS is not essential for basal synaptic transmission and various forms of short-term plasticity, but instead plays a novel role in the mechanisms regulating the recovery of synaptic strength in GABAergic synapses.
Collapse
Affiliation(s)
- Joachim Scholz-Starke
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.
| | | | | | | | | |
Collapse
|
11
|
Wu SH, Arévalo JC, Neubrand VE, Zhang H, Arancio O, Chao MV. The ankyrin repeat-rich membrane spanning (ARMS)/Kidins220 scaffold protein is regulated by activity-dependent calpain proteolysis and modulates synaptic plasticity. J Biol Chem 2010; 285:40472-8. [PMID: 20943655 DOI: 10.1074/jbc.m110.171371] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The expression of forms of synaptic plasticity, such as the phenomenon of long-term potentiation, requires the activity-dependent regulation of synaptic proteins and synapse composition. Here we show that ARMS (ankyrin repeat-rich membrane spanning protein)/Kidins220, a transmembrane scaffold molecule and BDNF TrkB substrate, is significantly reduced in hippocampal neurons after potassium chloride depolarization. The activity-dependent proteolysis of ARMS/Kidins220 was found to occur through calpain, a calcium-activated protease. Moreover, hippocampal long-term potentiation in ARMS/Kidins220(+/-) mice was enhanced, and inhibition of calpain in these mice reversed these effects. These results provide an explanation for a role for the ARMS/Kidins220 protein in synaptic plasticity events and suggest that the levels of ARMS/Kidins220 can be regulated by neuronal activity and calpain action to influence synaptic function.
Collapse
Affiliation(s)
- Synphen H Wu
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, and Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | | | | | |
Collapse
|