Abstract
The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMP-activation, we examined the effects of MMP-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMP-inhibitor prevented visual plasticity. Additionally, treatment with MMP-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that an optimal level of MMP-activity is crucial for adult visual plasticity to occur.
DOI:http://dx.doi.org/10.7554/eLife.11290.001
When part of the brain becomes damaged as a result of injury or disease – for example, a stroke – other brain regions can sometimes take over from the damaged part. This is one example of a phenomenon called brain plasticity. The strengthening and weakening of connections between neurons that underlies learning and memory is another, less extreme, example of plasticity. While the brain is most plastic during childhood, it remains malleable to some degree throughout life.
The brain’s visual system in particular shows robust and predictable plasticity, and so is often used by neuroscientists to study mechanisms behind plasticity. In young rodents, taping one eye shut for a few days causes inputs from that eye to visual areas of the brain to become weaker. Inputs from the open eye meanwhile become stronger, leading to improved vision in the open eye. Such plasticity also occurs in adult rodents, but the eye must be closed for longer to produce an effect.
In young animals, this plasticity depends, in part, on enzymes called matrix metalloproteinases (MMPs). These help to regulate a network of proteins called the extracellular matrix, which provides structural support for cells. Pielecka-Fortuna et al. now provide the first evidence that MMP enzymes also contribute to visual plasticity in adult animals. Blocking the activity of MMPs prevented reorganisation of visual areas of the brains of adult mice in response to eye closure, and prevented vision improvements in the open eye.
However, blocking MMP in adult mice whose brains had been damaged by a stroke had the opposite effect. Whereas stroke normally prevents visual system plasticity in response to eye closure, treatment with a single dose of MMP blocker rescued this plasticity. Strikingly, these benefits were lost if the mice were given two doses of MMP blocker, rather than one.
These experiments show that MMP levels must be within a narrow range to support plasticity. In the healthy adult brain, blocking MMPs impairs plasticity. After stroke, MMP levels are increased and reducing them rescues plasticity. The next challenge is to identify the specific MMP enzymes responsible, and to determine whether these changes can be exploited to improve recovery from stroke.
DOI:http://dx.doi.org/10.7554/eLife.11290.002
Collapse