1
|
Rodríguez-Núñez I, Pontes RB, Romero F, Campos RR. Effects of physical exercise on baroreflex sensitivity and renal sympathetic nerve activity in chronic nicotine-treated rats. Can J Physiol Pharmacol 2021; 99:786-794. [PMID: 33290163 DOI: 10.1139/cjpp-2020-0381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic nicotine exposure may increase cardiovascular risk by impairing the cardiac autonomic function. Besides, physical exercise (PE) has shown to improve cardiovascular health. Thus, we aimed to investigate the effects of PE on baroreflex sensitivity (BRS), heart rate variability (HRV), and sympathetic nerve activity (SNA) in chronically nicotine-exposed rats. Male Wistar rats were assigned to four independent groups: Control (treated with saline solution), Control+Ex (treated with saline and submitted to treadmill training), Nicotine (treated with Nicotine), and Nicotine+Ex (treated with nicotine and submitted to treadmill training). Nicotine (1 mg·kg-1) was administered daily for 28 consecutive days. PE consisted of running exercise (60%-70% of maximal aerobic capacity) for 45 min, 5 days per week, for 4 weeks. At the end of the protocol, cardiac BRS, HRV, renal SNA (rSNA), and renal BRS were assessed. Nicotine treatment decreased absolute values of HRV indexes, increased low frequency/high frequency ratio of HRV, reduced the bradycardic and sympatho-inhibitory baroreceptor reflex responses, and reduced the rSNA. PE effectively restored time-domain HRV indexes, the bradycardic and sympatho-inhibitory reflex responses, and the rSNA in chronic nicotine-treated rats. PE was effective in preventing the deterioration of time-domain parameters of HRV, arterial baroreceptor dysfunction, and the rSNA after nicotine treatment.
Collapse
Affiliation(s)
- Iván Rodríguez-Núñez
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
- Departamento de Kinesiología, Facultad de Medicina, Universidad de Concepción, Chile
| | - Roberto B Pontes
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Fernando Romero
- Programa de Doctorado en Ciencias Médicas, Departamento de Cirugía, Facultad de Medicina, Universidad de La Frontera, Temuco. Chile
| | - Ruy R Campos
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| |
Collapse
|
2
|
Expression and Function of Transient Receptor Potential Ankyrin 1 Ion Channels in the Caudal Nucleus of the Solitary Tract. Int J Mol Sci 2019; 20:ijms20092065. [PMID: 31027359 PMCID: PMC6539857 DOI: 10.3390/ijms20092065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 11/24/2022] Open
Abstract
The nucleus of the solitary tract (NTS) receives visceral information via the solitary tract (ST) that comprises the sensory components of the cranial nerves VII, IX and X. The Transient Receptor Potential Ankyrin 1 (TRPA1) ion channels are non-selective cation channels that are expressed primarily in pain-related sensory neurons and nerve fibers. Thus, TRPA1 expressed in the primary sensory afferents may modulate the function of second order NTS neurons. This hypothesis was tested and confirmed in the present study using acute brainstem slices and caudal NTS neurons by RT-PCR, immunostaining and patch-clamp electrophysiology. The expression of TRPA1 was detected in presynaptic locations, but not the somata of caudal NTS neurons that did not express TRPA1 mRNA or proteins. Moreover, caudal NTS neurons did not show somatodendritic responsiveness to TRPA1 agonists, while TRPA1 immunostaining was detected only in the afferent fibers. Electrophysiological recordings detected activation of presynaptic TRPA1 in glutamatergic terminals synapsing on caudal NTS neurons evidenced by the enhanced glutamatergic synaptic neurotransmission in the presence of TRPA1 agonists. The requirement of TRPA1 for modulation of spontaneous synaptic activity was confirmed using TRPA1 knockout mice where TRPA1 agonists failed to alter synaptic efficacy. Thus, this study provides the first evidence of the TRPA1-dependent modulation of the primary afferent inputs to the caudal NTS. These results suggest that the second order caudal NTS neurons act as a TRPA1-dependent interface for visceral noxious-innocuous integration at the level of the caudal brainstem.
Collapse
|
3
|
Page SJ, Zhu M, Appleyard SM. Effects of acute and chronic nicotine on catecholamine neurons of the nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol 2018; 316:R38-R49. [PMID: 30354182 DOI: 10.1152/ajpregu.00344.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nicotine is an addictive drug that has broad effects throughout the brain. One site of action is the nucleus of the solitary tract (NTS), where nicotine initiates a stress response and modulates cardiovascular and gastric function through nicotinic acetylcholine receptors (nAChRs). Catecholamine (CA) neurons in the NTS influence stress and gastric and cardiovascular reflexes, making them potential mediators of nicotine's effects; however nicotine's effect on these neurons is unknown. Here, we determined nicotine's actions on NTS-CA neurons by use of patch-clamp techniques in brain slices from transgenic mice expressing enhanced green fluorescent protein driven by the tyrosine hydroxylase promoter (TH-EGFP). Picospritzing nicotine both induced a direct inward current and increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in NTS-CA neurons, effects blocked by nonselective nAChR antagonists TMPH and MLA. The increase in sEPSC frequency was mimicked by nAChRα7 agonist AR-R17779 and blocked by nAChRα7 antagonist MG624. AR-R17779 also increased the firing of TH-EGFP neurons, an effect dependent on glutamate inputs, as it was blocked by the glutamate antagonist NBQX. In contrast, the nicotine-induced current was mimicked by nAChRα4β2 agonist RJR2403 and blocked by nAChRα4β2 antagonist DHβE. RJR2403 also increased the firing rate of TH-EGFP neurons independently of glutamate. Finally, both somatodendritic and sEPSC nicotine responses from NTS-CA neurons were larger in nicotine-dependent mice that had under gone spontaneous nicotine withdrawal. These results demonstrate that 1) nicotine activates NTS-CA neurons both directly, by inducing a direct current, and indirectly, by increasing glutamate inputs, and 2) NTS-CA nicotine responsiveness is altered during nicotine withdrawal.
Collapse
Affiliation(s)
- Stephen J Page
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Mingyan Zhu
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Suzanne M Appleyard
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| |
Collapse
|
4
|
Kawatani M, Yamada Y, Kawatani M. Glucagon-like peptide-1 (GLP-1) action in the mouse area postrema neurons. Peptides 2018; 107:68-74. [PMID: 30081042 DOI: 10.1016/j.peptides.2018.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/24/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a peptide hormone and member of the incretin family. GLP-1 related drugs, such as liraglutide, are widely used to treat diabetic patients and work by stimulating pancreatic β cells to increase glucose-dependent insulin secretion. However, extrapancreatic effects, such as appetite suppression or emesis, are observed in response to GLP-1 receptor agonists. In this study we used the in vitro patch-clamp method in acute brainstem preparations of mice and demonstrated that GLP-1 acts directly on area postrema neurons. It is known that activation of the area postrema is related to the induction of homeostatic autonomic nervous systems, including nausea. Approximately,half of the neurons tested in the area postrema were excited by GLP-1 in the presence of tetrodotoxin, and is thought to be through adenylate cyclase-cAMP pathways. Excitation was not frequently observed in nucleus tractus solitaries neurons or in area postrema neurons from GLP-1 receptor knock-out mice. These results indicate that GLP-1 receptor agonists excite area postrema neurons and potentially leading to the expression of extra-pancreatic effects. This is the first study to show that GLP-1 directly activates area postrema neurons.
Collapse
Affiliation(s)
- Masahiro Kawatani
- Department of Neurophysiology, Akita University, School of Medicine, Akita, Japan.
| | - Yuichiro Yamada
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University, School of Medicine, Akita, Japan
| | - Masahito Kawatani
- Department of Neurophysiology, Akita University, School of Medicine, Akita, Japan
| |
Collapse
|
5
|
Nicotine excites corticotropin-releasing hormone mRNA-expressing neuron in the hypothalamic paraventricular nucleus in vitro in rats. Neuroreport 2018; 27:580-6. [PMID: 27022819 DOI: 10.1097/wnr.0000000000000573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nicotine is known to modulate the activity of the hypothalamic-pituitary-adrenal axis by stimulating corticotropin-releasing hormone (CRH) release from the hypothalamic paraventricular nucleus (PVN). However, the mechanism by which nicotine affects the hypothalamic-pituitary-adrenal axis by modulating PVN CRH neuronal activity is currently unclear. Here, we examined the effects of nicotine on PVN CRH-mRNA-expressing neurons in vitro in rats by whole-cell patch-clamp recordings, biocytin staining, and single-cell reverse transcription-multiplex PCR techniques. Of the 146 PVN putative parvocellular neurons, 17.1% (25/146) coexpressed GAPDH mRNA and CRH mRNA. Under current-clamp recording conditions, application of nicotine (1 μM) induced excitation in 92% (23/25) PVN CRH-mRNA-expressing neurons, which showed a significant increase in the spike firing rate accompanied by a depolarization of the membrane potential. Nicotine induced an increase in the spike firing rate of PVN CRH-mRNA-expressing neurons in a concentration-dependent manner. The half-effective concentration (EC50) of nicotine for increasing the spike firing rate of PVN CRH-mRNA-expressing neurons was 1.6 μM. Extracellular application of ionotropic glutamate receptor antagonist kynurenic acid (1 mM) abolished the nicotine-induced excitation of PVN CRH-mRNA-expressing neurons. Moreover, application of nicotine induced a significant increase in the spontaneous excitatory postsynaptic currents frequency, but without significantly altering the spontaneous excitatory postsynaptic currents amplitude of the CRH-mRNA-expressing neurons. Biocytin staining confirmed that the nicotine-sensitive CRH-mRNA-expressing neurons were located in the PVN parvocellular division. These results indicated that extracellular administration of nicotine indirectly excited PVN CRH-mRNA-expressing neurons, suggesting that nicotine modulated PVN CRH secretion by enhancement of both the presynaptic action potential drive and quantal glutamate release.
Collapse
|
6
|
Furuya WI, Colombari E, Ferguson AV, Colombari DSA. Effects of acetylcholine and cholinergic antagonists on the activity of nucleus of the solitary tract neurons. Brain Res 2017; 1659:136-141. [PMID: 28131721 DOI: 10.1016/j.brainres.2017.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/11/2017] [Accepted: 01/21/2017] [Indexed: 02/08/2023]
Abstract
Previously we have demonstrated that microinjection of acetylcholine (ACh) into the intermediate nucleus of the solitary tract (iNTS) induced sympatho-inhibition combined with a decrease in the phrenic nerve activity (PNA), whereas in the commissural NTS (cNTS), ACh did not change sympathetic nerve activity (SNA), but increased the PNA. In view of these demonstrated distinctive effects of ACh in different subnuclei of the NTS the current studies were undertaken to examine, using patch clamp techniques, the specific effects of ACh on the excitability of individual neurons in the NTS, as well as the neuropharmacology of these actions. Coronal slices of the brainstem containing either cNTS or iNTS subnuclei were used, and whole cell patch clamp recordings obtained from individual neurons in these two subnuclei. In cNTS, 58% of recorded neurons (n=12) demonstrated rapid reversible depolarizations in response to ACh (10mM), effects which were inhibited by the nicotinic antagonist mecamylamine (10μM), but unaffected by the muscarinic antagonist atropine (10μM). Similarly, bath application of ACh depolarized 76% of iNTS neurons (n=17), although in this case both atropine and mecamylamine reduced the ACh-induced depolarization. These data demonstrate that ACh depolarizes cNTS neurons through actions on nicotinic receptors, while depolarizing effects in iNTS are apparently mediated by both receptors.
Collapse
Affiliation(s)
- Werner I Furuya
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University, Araraquara, SP, Brazil.
| |
Collapse
|
7
|
Zhang KM, Zhao GY, Zhang BB, Xu Q, Chu CP, Jin H, Qiu DL. Nicotine enhances GABAergic inhibition of oxytocin mRNA-expressing neuron in the hypothalamic paraventricular nucleus in vitro in rats. Neurosci Lett 2016; 638:5-11. [PMID: 27923665 DOI: 10.1016/j.neulet.2016.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 11/22/2016] [Accepted: 12/02/2016] [Indexed: 01/31/2023]
Abstract
We recently found that extracellular administration of nicotine indirectly excited hypothalamic paraventricular nucleus (PVN) corticotropin-releasing hormone (CRH) mRNA-expressing neurons. In this study, we studied the effect of nicotine on PVN oxytocin (OT) mRNA-expressing neuron in vitro in rats, by whole-cell patch-clamp recording technique, immunohistochemistry methods and single-cell reverse-transcription multiplex polymerase chain reaction (SC-RT-mPCR) methods Our results showed that 79.3% (73/92) of the 92 PVN putative magnocellular neurons co-expressed GAPDH mRNA and OT mRNA. Under current-clamp recording conditions, local micro application of nicotine (1-300μM) induced a decrease in spontaneous firing rate accompanied with a hyperpolarization of membrane potential in 76.7% (56/73) of PVN OT mRNA-expressing magnocellular neurons. The nicotine induced inhibition in spontaneous activity of PVN OT mRNA-expressing magnocellular neurons was dose-dependent. The half-inhibitory concentration (IC50) is 2.9μM. The nicotine induced hyperpolarization of PVN OT mRNA-expressing magnocellular neurons was sensitive to GABAA receptor antagonist, SR95531 (10μM) and tetrodotoxin (TTX, 1μM). In addition, local micro application of nicotine induced a significant increase in frequency of spontaneous inhibitory postsynaptic potentials (sIPSPs), but without changes in the sEPSPs amplitude of the OT-mRNA expressing neurons. Biocytin staining confirmed that the nicotine-sensitive OT-mRNA expressing neurons were the PVN magnocellular neurons. These results demonstrated that nicotine enhances the GABAergic inhibition, resulting in a decrease in spontaneous firing rate of the PVN OT-mRNA expressing neurons. These findings suggested that nicotine modulated PVN OT secretion via enhancement of both presynaptic action potential drive and quantal GABA release.
Collapse
Affiliation(s)
- Ke-Min Zhang
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, China
| | - Guo-Yan Zhao
- Department of physiology, Jilin Medical College, Jilin City, Jinlin Province, China
| | - Bin-Bin Zhang
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, China
| | - Qi Xu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Chun-Ping Chu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China
| | - Hua Jin
- Department of Nephrology, Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, China.
| | - De-Lai Qiu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji City, Jilin Province, 133002, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji City, Jilin Province, China.
| |
Collapse
|
8
|
Xu H, Boychuk JA, Boychuk CR, Uteshev VV, Smith BN. Nicotine enhances inhibition of mouse vagal motor neurons by modulating excitability of premotor GABAergic neurons in the nucleus tractus solitarii. J Neurophysiol 2014; 113:1165-74. [PMID: 25429117 DOI: 10.1152/jn.00614.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The caudal nucleus of the solitary tract (NTS) serves as the site of the first synapse for visceral sensory inputs to the central nervous system. The NTS sends functional projections to multiple brain nuclei, with gastric-related projections primarily targeting the dorsal motor nucleus of the vagus (DMV). Previous studies have demonstrated that the majority of caudal NTS neurons that project to the DMV respond robustly to nicotine and express nicotinic acetylcholine receptors (nAChRs). However, the cytochemical identity and relationship with specific viscera of DMV-projecting, nicotine-responsive caudal NTS neurons have not been determined. The present study used transgenic mice that express enhanced green fluorescent protein (EGFP) under a GAD67 promoter in a subset of GABAergic neurons, in vivo retrograde pseudorabies viral labeling to identify gastric-related vagal complex neurons, and patch-clamp electrophysiology in acute brain stem slices to test the hypothesis that gastric-related and GABAergic inhibitory synaptic input to the DMV from the caudal NTS is under a robust modulatory control by nAChRs. Our results suggest that activation of nAChRs in the caudal NTS, but not DMV, potentiates GABAergic, but not glutamatergic, input to the DMV. Gastric-related caudal NTS and DMV neurons are directly involved in this nicotine-sensitive circuitry. Understanding the central patterns of nicotinic modulation of visceral sensory-motor circuitry may help develop therapeutic interventions to restore autonomic homeostasis in patients with autonomic impairments.
Collapse
Affiliation(s)
- Hong Xu
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky; and
| | - Jeffery A Boychuk
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky; and
| | - Carie R Boychuk
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky; and
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas
| | - Bret N Smith
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky; and
| |
Collapse
|