1
|
Jaldeep L, Lipi B, Prakash P. Neurotrophomodulatory effect of TNF-α through NF-κB in rat cortical astrocytes. Cytotechnology 2025; 77:37. [PMID: 39776978 PMCID: PMC11700960 DOI: 10.1007/s10616-024-00698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Tumor necrosis factor alpha (TNF-α) is a well-known pro-inflammatory cytokine originally recognized for its ability to induce apoptosis and cell death. However, recent research has revealed that TNF-α also plays a crucial role as a mediator of cell survival, influencing a wide range of cellular functions. The signaling of TNF-α is mediated through two distinct receptors, TNFR1 and TNFR2, which trigger various intracellular pathways, including NF-κB, JNK, and caspase signaling cascades. Both TNFR1 and TNFR2 are expressed in astrocytes, which are specialized glial cells essential for maintaining the structural and functional integrity of the central nervous system (CNS). Astrocytes support neuronal function by regulating brain homeostasis, maintaining synaptic function, and supplying metabolic substrates. In addition, astrocytes are known to secrete a variety of growth factors and neurotrophins, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and NT-4/5. These neurotrophins play a critical role in supporting neuronal survival, synaptic plasticity, and myelination within the brain. The present study focuses on the role of TNF-α in modulating neurotrophin expression and secretion in rat cortical astrocytes. We demonstrate that TNF-α induces the upregulation of neurotrophins, particularly NGF and BDNF, in cultured astrocytes. This effect is accompanied by an increase in the expression of their respective receptors (TrkA & TrkB), further suggesting a functional modulation of neurotrophic signaling pathways. Notably, we show that the modulation of neurotrophin expression by TNF-α is mediated via the NF-κB signaling pathway. Additionally, we observed that TNF-α also regulates the secretion levels of NGF and BDNF into the culture media of astrocytes in a dose-dependent manner, indicating that TNF-α can modulate both the production and release of these growth factors. Taken together, our findings highlight a previously underexplored neuroprotective role of TNF-α in astrocytes. Specifically, we propose that TNF-α, through the upregulation of neurotrophins, may contribute to maintaining neuronal health and supporting neuroprotection under disease conditions.
Collapse
Affiliation(s)
- Langhnoja Jaldeep
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India
| | - Buch Lipi
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India
| | - Pillai Prakash
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India
| |
Collapse
|
2
|
Tarasiuk O, Invernizzi C, Alberti P. In vitro neurotoxicity testing: lessons from chemotherapy-induced peripheral neurotoxicity. Expert Opin Drug Metab Toxicol 2024; 20:1037-1052. [PMID: 39246127 DOI: 10.1080/17425255.2024.2401584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION Chemotherapy induced peripheral neurotoxicity (CIPN) is a long-lasting, or even permanent, late toxicity caused by largely used anticancer drugs. CIPN affects a growing population of cancer survivors and diminishes their quality of life since there is no curative/preventive treatment. Among several reasons for this unmet clinical need, there is an incomplete knowledge on mechanisms leading to CIPN. Therefore, bench side research is still greatly needed: in vitro studies are pivotal to both evaluate neurotoxicity mechanisms and potential neuroprotection strategies. AREAS COVERED Advantages and disadvantages of in vitro approaches are addressed with respect to their applicability to the CIPN field. Different cell cultures and techniques to assess neurotoxicity/neuroprotection are described. PubMed search-string: (chemotherapy-induced) AND (((neuropathy) OR neurotoxicity) OR neuropathic pain) AND (in vitro) AND (((((model) OR SH-SY5Y) OR PC12) OR iPSC) OR DRG neurons); (chemotherapy-induced) AND (((neuropathy) OR neurotoxicity) OR neuropathic pain) AND (model) AND (((neurite elongation) OR cell viability) OR morphology). No articles published before 1990 were selected. EXPERT OPINION CIPN is an ideal experimental setting to test axonal damage and, in general, peripheral nervous system mechanisms of disease and neuroprotection. Therefore, starting from robust preclinical data in this field, potentially, relevant biological rationale can be transferred to other human spontaneous diseases of the peripheral nervous system.
Collapse
Affiliation(s)
- Olga Tarasiuk
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Chiara Invernizzi
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- Neuroscience, School of Medicine and Surgery, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
3
|
Ge Y, Hu D, Xi Y, Wang H, Xia T, Chen J, Pu X, Xiao H. An animal model induced by bilateral cavernous nerve crushing mimics post-radical prostatectomy erectile dysfunction in old rats. Life Sci 2023; 325:121767. [PMID: 37172816 DOI: 10.1016/j.lfs.2023.121767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
AIM Over the years, the cavernous nerve (CN) crushing injury rat model has been frequently used for studying post-radical prostatectomy erectile dysfunction (pRP-ED). However, models based on young and healthy rats reportedly exhibit spontaneous recovery of erectile function. Our investigation purpose was to evaluate bilateral CN crushing (BCNC) effects on erectile function besides penile corpus cavernosum pathology in young and old rats and verify whether the BCNC modeling in old rats is more suitable to mimic pRP-ED. MATERIALS AND METHODS Thirty young and old male Sprague-Dawley (SD) rats had been divided into three groups in a random manner: sham-operated group (Sham), CN-injured 2-week group (BCNC-2W), and CN-injured 8-week group (BCNC-8W). At 2 and 8 weeks postoperatively, mean arterial pressure (MAP) along with intracavernosal pressure (ICP) had been determined, respectively. Then, the penis was harvested for histopathological studies. KEY FINDING We found that young rats exhibited erectile function spontaneous recovery 8 weeks following BCNC, while old ones failed to recover erectile function. After BCNC, the abundance of nNOS-positive nerve and smooth muscle were reduced, whereas apoptotic levels and collagen I content increased. These pathological modifications gradually resumed over time in young rats, unlike in old rats. SIGNIFICANCE Our findings demonstrate that 18-month-old rats do not spontaneously regain erectile function at 8 weeks after BCNC. Therefore, CN-injury ED modeling in 18-month-old rats may be more suitable for studying pRP-ED.
Collapse
Affiliation(s)
- Yunlong Ge
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Daoyuan Hu
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuhang Xi
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hua Wang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tian Xia
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jialiang Chen
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaoyong Pu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Hengjun Xiao
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Ti Y, Yang M, Chen X, Zhang M, Xia J, Lv X, Xiao D, Wang J, Lu M. Comparison of the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells and adipose-derived stem cells on erectile dysfunction in a rat model of bilateral cavernous nerve injury. Front Bioeng Biotechnol 2022; 10:1019063. [PMID: 36277409 PMCID: PMC9585154 DOI: 10.3389/fbioe.2022.1019063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Cavernous nerve injury (CNI) is the leading cause of erectile dysfunction (ED) after radical prostatectomy and pelvic fracture. Transplantation of human adipose-derived stem cells (ASCs) has been widely used to restore erectile function in CNI-ED rats and patients. Umbilical cord blood-derived MSCs (CBMSCs) are similarly low immunogenic but much primitive compared to ASCs and more promising in large-scale commercial applications due to the extensive establishment of cord blood banks. However, whether CBMSCs and ASCs have differential therapeutic efficacy on CNI-ED and the underlying mechanisms are still not clear. Materials and methods: A bilateral cavernous nerve injury (BCNI) rat model was established by crushing the bilateral cavernous nerves. After crushing, ASCs and CBMSCs were intracavernously injected immediately. Erectile function, Masson staining, and immunofluorescence analyses of penile tissues were assessed at 4 and 12 weeks. PKH-26-labeled ASCs or CBMSCs were intracavernously injected to determine the presence and differentiation of ASCs or CBMSCs in the penis 3 days after injection. In vitro experiments including intracellular ROS detection, mitochondrial membrane potential assay, EdU cell proliferation staining, cell apoptosis assay, and protein chip assay were conducted to explore the underlying mechanism of CBMSC treatment compared with ASC treatment. Results: CBMSC injection significantly restored erectile function, rescued the loss of cavernous corporal smooth muscles, and increased the ratio of smooth muscle to collagen. PKH-26-labeled CBMSCs or ASCs did not colocalize with endothelial cells or smooth muscle cells in the corpus cavernosum. Moreover, the conditioned medium (CM) of CBMSCs could significantly inhibit the oxidative stress and elevate the mitochondria membrane potential and proliferation of Schwann cells. Better therapeutic effects were observed in the CBMSC group than the ASC group both in vivo and in vitro. In addition, the content of neurotrophic factors and matrix metalloproteinases in CBMSC-CM, especially NT4, VEGF, MMP1, and MMP3 was significantly higher than that of ASC-CM. Conclusion: Intracavernous injection of CBMSCs exhibited a better erectile function restoration than that of ASCs in CNI-ED rats owing to richer secretory factors, which can promote nerve regeneration and reduce extracellular matrix deposition. CBMSC transplantation would be a promising therapeutic strategy for CNI-ED regeneration in the future.
Collapse
Affiliation(s)
- Yunrong Ti
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Mengbo Yang
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xinda Chen
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ming Zhang
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jingjing Xia
- Greater Bay Area Institute of Precision Medicine, School of Life Sciences, Fudan University, Guangzhou, China
| | - Xiangguo Lv
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dongdong Xiao
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Dongdong Xiao, ; Jiucun Wang, ; Mujun Lu,
| | - Jiucun Wang
- Greater Bay Area Institute of Precision Medicine, School of Life Sciences, Fudan University, Guangzhou, China
- Human Phenome Institute, Fudan University, Shanghai, China
- *Correspondence: Dongdong Xiao, ; Jiucun Wang, ; Mujun Lu,
| | - Mujun Lu
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Dongdong Xiao, ; Jiucun Wang, ; Mujun Lu,
| |
Collapse
|
5
|
Villegas G, Tar MT, Davies KP. Erectile dysfunction resulting from pelvic surgery is associated with changes in cavernosal gene expression indicative of cavernous nerve injury. Andrologia 2021; 54:e14247. [PMID: 34514620 DOI: 10.1111/and.14247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022] Open
Abstract
Pelvic surgery, even without direct cavernous nerve injury, carries a high risk of post-operative erectile dysfunction. The present studies were aimed at identifying molecular mechanisms by which pelvic surgery results in erectile dysfunction. As a model of pelvic surgery, male Sprague-Dawley rats underwent pelvic laparotomy, avoiding direct cavernous nerve injury. A second group of animals, serving as a model of direct cavernous nerve injury, underwent bilateral transection of the cavernous nerve. Cavernosometry demonstrated, that even in the absence of direct nerve injury, the pelvic surgery model exhibited significant erectile dysfunction 3 days post-operatively. Gene expression profiling also demonstrated that even in this animal model of nerve-sparing pelvic surgery, the profile of differentially expressed genes in cavernosal tissue was indicative of cavernous nerve injury. In addition, although 6 hr after surgery there were significant changes in circulating cytokine/chemokine levels, an inflammatory response in the major pelvic ganglion, cavernous nerve and cavernosal tissue was only observed 3 days post-surgery. Our results validate a rat model of pelvic surgery exhibiting erectile dysfunction and suggest systemic release of cytokines/chemokines following surgical trauma might mediate a pathological inflammatory response in tissues distal to the site of surgical trauma, indirectly resulting in cavernous nerve injury and erectile dysfunction.
Collapse
Affiliation(s)
- Guillermo Villegas
- Department of Urology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Moses Tarndie Tar
- Department of Urology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kelvin Paul Davies
- Department of Urology, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
6
|
Matsui H, Sopko NA, Campbell JD, Liu X, Reinhardt A, Weyne E, Castiglione F, Albersen M, Hannan JL, Bivalacqua TJ. Increased Level of Tumor Necrosis Factor-Alpha (TNF-α) Leads to Downregulation of Nitrergic Neurons Following Bilateral Cavernous Nerve Injury and Modulates Penile Smooth Tone. J Sex Med 2021; 18:1181-1190. [PMID: 37057424 DOI: 10.1016/j.jsxm.2021.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Erectile dysfunction (ED) after injury to peripheral cavernous nerve (CN) is partly a result of inflammation in pelvic ganglia, suggesting that ED may be prevented by inhibiting neuroinflammation. AIM The aim of this study is to examine temporal changes of TNF-α, after bilateral CN injury (BCNI), to evaluate effect of exogenous TNF-α on neurite outgrowth from major pelvic ganglion (MPG), and to investigate effect of TNF-α signal inhibition to evaluate effects of TNF-α on penile tone with TNF-α receptor knockout mice (TNFRKO). METHODS Seventy Sprague-Dawley rats were randomized to undergo BCNI or sham surgery. Sham rats' MPGs were harvested after 48 hours, whereas BCNI groups' MPGs were at 6, 12, 24, 48 hours, 7, or 14 days after surgery. qPCR was used to evaluate gene expression of markers for neuroinflammation in MPGs. Western blot was performed to evaluate TNF-α protein amount in MPGs. MPGs were harvested from healthy rats and cultured in Matrigel with TNF-α. Neurite outgrowth from MPGs was measured after 3 days, and TH and nNOS immunofluorescence was assessed. Wild type (WT) and TNFRKO mice were used to examine effect of TNF-α inhibition on smooth muscle function after BCNI. MPGs were harvested 48 hours after sham or BCNI surgery to evaluate gene expression of nNOS and TH. OUTCOMES Gene expression of TNF-α signaling pathway, Schwann cell and macrophage markers, protein expression of TNF-α in MPGs, and penile smooth muscle function to electrical field stimulation (EFS) were evaluated. RESULTS BCNI increased gene and protein expression of TNF-α in MPGs. Exogenous TNF-α inhibited MPG neurite outgrowth. MPGs cultured with TNF-α had decreased gene expression of nNOS (P < .05). MPGs cultured with TNF-α had shorter nNOS+ neurites than TH+ neurites (P < .01). Gene expression of nNOS was enhanced in TNFRKO mice compared to WT mice (P < .01). WT mice showed enhanced smooth muscle contraction of penises of WT mice was enhanced to EFS, compared to TNFKO (P < .01). Penile smooth-muscle relaxation to EFS was greater in TNFKO mice compared to WT (P < .01). CLINICAL TRANSLATION TNF-α inhibition may prevent ED after prostatectomy. STRENGTH/LIMITATIONS TNF-α inhibition might prevent loss of nitrergic nerve apoptosis after BCNI and preserve corporal smooth muscle function but further investigation is required to evaluate protein expression of nNOS in MPGs of TNFKO mice. CONCLUSIONS TNF-α inhibited neurite outgrowth from MPGs by downregulating gene expression of nNOS and TNFRKO mice showed enhanced gene expression of nNOS and enhanced penile smooth-muscle relaxation. Matsui H, Sopko NA, Campbell JD, et al. Increased Level of Tumor Necrosis Factor-Alpha (TNF-α) Leads to Downregulation of Nitrergic Neurons Following Bilateral Cavernous Nerve Injury and Modulates Penile Smooth Tone. J Sex Med 2021;18:1181-1190.
Collapse
Affiliation(s)
- Hotaka Matsui
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Urology, The University of Tokyo, Tokyo, Japan; Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Nikolai A Sopko
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jeffrey D Campbell
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xiaopu Liu
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Emmanuel Weyne
- Laboratory for Experimental Urology, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Fabio Castiglione
- Division of Surgery and Interventional Science, University College London, London, UK; Division of Oncology / Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Maarten Albersen
- Laboratory for Experimental Urology, Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Johanna L Hannan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Trinity J Bivalacqua
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Li H, Zhang Z, Fang D, Tang Y, Peng J. Local continuous glial cell derived neurotrophic factor release using osmotic pump promotes parasympathetic nerve rehabilitation in an animal model of cavernous nerve injury induced erectile dysfunction. Transl Androl Urol 2021; 10:258-271. [PMID: 33532315 PMCID: PMC7844500 DOI: 10.21037/tau-20-1110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Nerve injury-related erectile dysfunction (ED) is one of the types that respond poorly to conventional ED treatments. Our previous experiments have demonstrated the paracrine of various neurotrophic factors (NTFs) by stem cells or other treatment modalities as a potential mechanism in the recovery of nerve injury-related ED. Glial cell derived neurotrophic factor (GDNF) is one of the essential NTFs for the regeneration of nerve fibers, especially for parasympathetic nerves. The aim of this study is to explore if local continuous GDNF administration is beneficial for the functional and histological recovery of nerve injury induced ED. Methods Eight-week-old male Sprague-Dawley rats were used for this study. Rats were randomly grouped into 5: Sham surgery (Sham), bilateral cavernous nerve injury (BCNI) and placebo treatment, BCNI and 0.1 µg/100 µL GDNF treatment (BCNI+GDNF 0.1), BCNI and 1 µg/100 µL GDNF treatment (BCNI+GDNF 1), BCNI and 10 µg/100 µL GDNF treatment (BCNI+GDNF 10). GDNF was administered using an osmotic pump technique which would deliver GDNF locally and continuously for 28 days without the need for external connections or frequent handling of animals. Recovery of sexual function, nerve fibers regeneration, and expression of neurotrophic receptors were examined and compared among groups after the treatment. Results Local continuous GDNF release treatment increased the average number of intromissions in the sexual behavior test and intracavernous pressure (ICP) in the erectile function test in a dose dependent manner. Osmotic pump implantation induced increased local GDNF concentration and mild inflammatory response. Gene expression of GDNF receptors in major pelvic ganglion (MPG) and nerve regeneration along the urethra were partially promoted by GDNF. These changes were associated with increased nerve fibers especially the parasympathetic nerve fibers in dorsal nerve of penis (DNP) in GDNF treated groups. Conclusions In conclusion, our project illustrated the promising effects of local continuous GDNF administration for the functional and histological recovery of nerve injury-induced ED.
Collapse
Affiliation(s)
- Huixi Li
- Andrology Center, Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Zhichao Zhang
- Andrology Center, Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Dong Fang
- Andrology Center, Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Yuan Tang
- Andrology Center, Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Jing Peng
- Andrology Center, Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
8
|
Ex Vivo Radiation Leads to Opposing Neurite Growth in Whole Ganglia vs Dissociated Cultured Pelvic Neurons. J Sex Med 2020; 17:1423-1433. [DOI: 10.1016/j.jsxm.2020.04.385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 11/19/2022]
|
9
|
Neuroprotective effect of Hongjing I granules on erectile dysfunction in a rat model of bilateral cavernous nerve injury. Biomed Pharmacother 2020; 130:110405. [PMID: 32679461 DOI: 10.1016/j.biopha.2020.110405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022] Open
Abstract
Neurogenic erectile dysfunction (NED) is an inevitable postoperative disease of cavernous nerve injury which will lead to various pathophysiological changes in the corpus cavernosum and dorsal penile nerve caused by radical prostatectomy (RP). Although serval years of clinical application of HJIG I granules (HJIG), an innovative formulation, has demonstrated its reliable clinical efficacy against NED, the mechanism of HJIG remains unclear. This study aimed to assess the neuroprotective effect of HJIG, to repair damaged nerves in a rat model of bilateral cavernous nerve injury (BCNI) in vivo and their effects on neurites of major pelvic ganglia (MPG) regeneration and Schwann cells (SCs) proliferation in vitro. Rats were divided into five groups randomly: normal control (NC), BCNI-induced ED model (M), M + low-dose HJIG (HL), M + medium-dose HJIG (HM), and M + high-dose HJIG (HH). All groups were treated with normal saline or the relevant drug for 28 consecutive days after a standard NED animal model. Our data revealed that administration of HJIG improved NED that was detected by intracavernous pressure (ICP) in a dose-dependent manner. The haematoxylin-eosin (HE) and Immunofluorescence (IF) staining demonstrated that HJIG ameliorate the shape of penis and induced the protein synthesis of GAP43, NF200, S100, and nNOS. NF200 and S100 level were also detected by western blotting. Moreover, HJIG (0.78 mg/mL) markedly increased SCs viability and promoted neurites regeneration of MPG. These findings provide new insights into the NED therapy by HJIG.
Collapse
|
10
|
Penile Length and Its Preservation in Men After Radical Prostatectomy. CURRENT SEXUAL HEALTH REPORTS 2019. [DOI: 10.1007/s11930-019-00226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Controlling the dose-dependent, synergistic and temporal effects of NGF and GDNF by encapsulation in PLGA microparticles for use in nerve guidance conduits for the repair of large peripheral nerve defects. J Control Release 2019; 304:51-64. [DOI: 10.1016/j.jconrel.2019.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022]
|
12
|
Powers SA, Odom MR, Pak ES, Moomaw MA, Ashcraft KA, Koontz BF, Hannan JL. Prostate-Confined Radiation Decreased Pelvic Ganglia Neuronal Survival and Outgrowth. J Sex Med 2019; 16:27-41. [DOI: 10.1016/j.jsxm.2018.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/10/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
|
13
|
Jung AR, Park YH, Jeon SH, Kim GE, Kim MY, Son JY, Ha US, Hong SH, Kim SW, Park KD, Lee JY. Therapeutic Effect of Controlled Release of Dual Growth Factor Using Heparin-Pluronic Hydrogel/Gelatin-Poly (Ethylene Glycol)-Tyramine Hydrogel System in a Rat Model of Cavernous Nerve Injury. Tissue Eng Part A 2018; 24:1705-1714. [DOI: 10.1089/ten.tea.2017.0469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Ae Ryang Jung
- Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Hyun Park
- Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Hwan Jeon
- Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ga Eun Kim
- Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mee Young Kim
- Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joo Young Son
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - U-Syn Ha
- Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hoo Hong
- Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sae Woong Kim
- Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Ji Youl Lee
- Department of Urology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
14
|
17β-estradiol modulates NGF and BDNF expression through ERβ mediated ERK signaling in cortical astrocytes. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0099-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Weyne E, Hannan JL, Gevaert T, Soebadi MA, Matsui H, Castiglione F, van Renterghem K, De Ridder D, Van der Aa F, Bivalacqua TJ, Albersen M. Galanin Administration Partially Restores Erectile Function After Cavernous Nerve Injury and Mediates Endogenous Nitrergic Nerve Outgrowth In Vitro. J Sex Med 2018; 15:480-491. [PMID: 29550465 DOI: 10.1016/j.jsxm.2018.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Previously, we found that the neuropeptide galanin was strongly upregulated soon after bilateral cavernous nerve injury (BCNI) and that galanin and its receptors were expressed in nitrergic erectile innervation. Galanin has been observed to exert neuroregenerative effects in dorsal root ganglion neurons, but evidence for these effects in the major pelvic ganglion (MPG) after BCNI is lacking. AIM To evaluate the neurotropic effects of galanin receptor agonists and antagonists in vitro in nitrergic neurons and MPG and in vivo in rats after BCNI. METHODS Male Sprague-Dawley rats underwent BCNI and sham surgery. Organ culture and single-cell neuron culture of the MPG were performed. Osmotic pump treatment with the galanin agonist in vivo and measurement of erectile response to electrostimulation after BCNI, immunohistochemical localization of galanin and receptors in the human neurovascular bundle, and myographic analysis of rat corpus cavernosum smooth muscle relaxation to galanin receptor agonists were investigated. OUTCOMES Neurite outgrowth in vitro and erectile response to electrostimulation after BCNI in vivo, immunohistochemical localization of galanin and receptors, and penile muscle relaxation in vitro. RESULTS Galanin showed neurotrophic action in vitro and inhibition of endogenous galanin significantly impaired neurite outgrowth in nitrergic but not in sympathetic MPG neurons. In vivo administration of a selective galanin receptor-2 agonist, M1145, resulted in partial recovery of erectile function (EF) after BCNI. Galanin did not act as a direct vasodilator on corpus cavernosum muscle strips. CLINICAL TRANSLATION Endogenous neurotrophins such as galanin could be used as a strategy to improve EF for patients after BCNI from radical prostatectomy. STRENGTHS AND LIMITATIONS We evaluated the effect of galanin on nerve regeneration and EF recovery in vivo and in vitro. Limitations include the lack of washout period for the in vivo experiment and absence of differences in the expression of neuronal markers between treatment groups. CONCLUSIONS We identified galanin as a potential endogenous mechanism for nerve regeneration after BCNI, which could play a physiologic role in EF recovery after radical prostatectomy. In vivo treatment with exogenous galanin was beneficial in enhancing EF recovery after BCNI, but further research is necessary to understand the underlying mechanisms. Weyne E, Hannan JL, Gevaert T, et al. Galanin Administration Partially Restores Erectile Function After Cavernous Nerve Injury and Mediates Endogenous Nitrergic Nerve Outgrowth In Vitro. J Sex Med 2018;15:480-491.
Collapse
Affiliation(s)
- Emmanuel Weyne
- Department of Urology, KU Leuven and University Hospitals, Leuven, Belgium
| | - Johanna L Hannan
- Brady Urological Institute, Johns Hopkins, Baltimore, MD, USA; Department of Pathology, KU Leuven and University Hospitals, Leuven, Belgium
| | - Thomas Gevaert
- Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Mohammad Ayodhia Soebadi
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Urology, Airlangga University School of Medicine, Dr Soetomo General Hospital, Surabaya, Indonesia
| | - Hotaka Matsui
- Brady Urological Institute, Johns Hopkins, Baltimore, MD, USA; Department of Urology, University of Tokyo, Tokyo, Japan
| | - Fabio Castiglione
- Department of Urology, KU Leuven and University Hospitals, Leuven, Belgium; University College of London, London, UK
| | | | - Dirk De Ridder
- Department of Urology, KU Leuven and University Hospitals, Leuven, Belgium
| | - Frank Van der Aa
- Department of Urology, KU Leuven and University Hospitals, Leuven, Belgium
| | | | - Maarten Albersen
- Department of Urology, KU Leuven and University Hospitals, Leuven, Belgium.
| |
Collapse
|
16
|
Ding XG, Li SW, Zheng XM, Wang XH, Luo Y. Cavernous nerve reconstruction with autologous vein graft and platelet-derived growth factors. Asian J Androl 2018; 19:298-302. [PMID: 26952958 PMCID: PMC5427784 DOI: 10.4103/1008-682x.175780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, we investigated the feasibility of using autologous vein graft and platelet-derived growth factors to bridge transected cavernous nerve in a rat model. A short defect in the bilateral cavernous nerve was created and repaired with vein graft from the right jugular vein or vein graft plus platelet-derived growth factors. The 32 rats were divided into four groups, namely Group 1 - no repair as a negative control, Group 2 - vein graft alone, Group 3 - vein graft plus platelet-derived growth factors, and Group 4 - sham operation as a positive control. We evaluated nerve regeneration and functional recovery using retrograde tracing study with FluoroGold, Toluidine blue staining of cavernous nerve, and the intracavernous pressure at 3 months. Three months after surgery, rich FluoroGold-positive cells were observed in the sham and vein graft plus platelet-derived growth factors group, but very few were found in the no repair group. The number of myelinated axons of regenerated cavernous nerve and intracavernous pressure were increased obviously in the two vein graft groups, especially in the vein graft plus platelet-derived growth factors group. These findings confirm the feasibility of using autologous vein as guides for cavernous nerve regeneration, and the regeneration can be further enhanced when the vein is filled with platelet-derived growth factors.
Collapse
Affiliation(s)
- Xie-Gang Ding
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Shi-Wen Li
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Xin-Min Zheng
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Xing-Huan Wang
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yi Luo
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| |
Collapse
|
17
|
Expression of Glial Cell Line-Derived Neurotrophic Factor (GDNF) and the GDNF Family Receptor Alpha Subunit 1 in the Paravaginal Ganglia of Nulliparous and Primiparous Rabbits. Int Neurourol J 2018; 22:S23-33. [PMID: 29385786 PMCID: PMC5798635 DOI: 10.5213/inj.1834974.487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To evaluate the expression of glial cell line-derived neurotrophic factor (GDNF) and its receptor, GDNF family receptor alpha subunit 1 (GFRα-1) in the pelvic (middle third) vagina and, particularly, in the paravaginal ganglia of nulliparous and primiparous rabbits. METHODS Chinchilla-breed female rabbits were used. Primiparas were killed on postpartum day 3 and nulliparas upon reaching a similar age. The vaginal tracts were processed for histological analyses or frozen for Western blot assays. We measured the ganglionic area, the Abercrombie-corrected number of paravaginal neurons, the cross-sectional area of the neuronal somata, and the number of satellite glial cells (SGCs) per neuron. The relative expression of both GDNF and GFRα-1 were assessed by Western blotting, and the immunostaining was semiquantitated. Unpaired two-tailed Student t -test or Wilcoxon test was used to identify statistically significant differences (P≤0.05) between the groups. RESULTS Our findings demonstrated that the ganglionic area, neuronal soma size, Abercrombie-corrected number of neurons, and number of SGCs per neuron were similar in nulliparas and primiparas. The relative expression of both GDNF and GFRα-1 was similar. Immunostaining for both GDNF and GFRα-1 was observed in several vaginal layers, and no differences were detected regarding GDNF and GFRα-1 immunostaining between the 2 groups. In the paravaginal ganglia, the expression of GDNF was increased in neurons, while that of GFRα-1 was augmented in the SGCs of primiparous rabbits. CONCLUSIONS The present findings suggest an ongoing regenerative process related to the recovery of neuronal soma size in the paravaginal ganglia, in which GDNF and GFRα-1 could be involved in cross-talk between neurons and SGCs.
Collapse
|
18
|
Karakus S, Musicki B, La Favor JD, Burnett AL. cAMP-dependent post-translational modification of neuronal nitric oxide synthase neuroprotects penile erection in rats. BJU Int 2017; 120:861-872. [PMID: 28782252 DOI: 10.1111/bju.13981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To evaluate neuronal nitric oxide (NO) synthase (nNOS) phosphorylation, nNOS uncoupling, and oxidative stress in the penis and major pelvic ganglia (MPG), before and after the administration of the cAMP-dependent protein kinase A (PKA) agonist colforsin in a rat model of bilateral cavernous nerve injury (BCNI),which mimics nerve injury after prostatectomy. MATERIALS AND METHODS Adult male Sprague-Dawley rats were divided into BCNI and sham-operated groups. Each group included two subgroups: vehicle and colforsin (0.1 mg/kg/day i.p.). After 3 days, erectile function (intracavernosal pressure) was measured and penis and MPG were collected for molecular analyses of phospho (P)-nNOS (Ser-1412 and Ser-847), total nNOS, nNOS uncoupling, binding of protein inhibitor of nNOS (PIN) to nNOS, gp91phox subunit of NADPH oxidase, active caspase 3, PKA catalytic subunit α (PKA-Cα; by Western blot) and oxidative stress (hydrogen peroxide [H2 O2 ] and superoxide by Western blot and microdialysis method). RESULTS Erectile function was decreased 3 days after BCNI and normalized by colforsin. nNOS phosphorylation on both positive (Ser-1412) and negative (Ser-847) regulatory sites, and nNOS uncoupling, were increased after BCNI in the penis and MPG, and normalized by colforsin. H2 O2 and total reactive oxygen species production were increased in the penis after BCNI and normalized by colforsin. Protein expression of gp91phox was increased in the MPG after BCNI and was normalized by colforsin treatment. Binding of PIN to nNOS was increased in the penis after BCNI and was normalized by colforsin treatment. Protein expression of active Caspase 3 was increased in the MPG after BCNI and was normalized by colforsin treatment. Protein expression of PKA-Cα was decreased in the penis after BCNI and normalized by colforsin. CONCLUSION Collectively, BCNI impairs nNOS function in the penis and MPG by mechanisms involving its phosphorylation and uncoupling in association with increased oxidative stress, resulting in erectile dysfunction. PKA activation by colforsin reverses these molecular changes and preserves penile erection in the face of BCNI.
Collapse
Affiliation(s)
- Serkan Karakus
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin D La Favor
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
M1 Macrophages Are Predominantly Recruited to the Major Pelvic Ganglion of the Rat Following Cavernous Nerve Injury. J Sex Med 2017; 14:187-195. [PMID: 28161077 DOI: 10.1016/j.jsxm.2016.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/14/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Neurogenic erectile dysfunction is a common sequela of radical prostatectomy. The etiology involves injury to the autonomic cavernous nerves, which arise from the major pelvic ganglion (MPG), and subsequent neuroinflammation, which leads to recruitment of macrophages to the injury site. Currently, two macrophage phenotypes are known: neurotoxic M1 macrophages and neuroprotective M2 macrophages. AIM To examine whether bilateral cavernous nerve injury (BCNI) in a rat model of erectile dysfunction would increase recruitment of neurotoxic M1 macrophages to the MPG. METHODS Male Sprague-Dawley rats underwent BCNI and the MPG was harvested at various time points after injury. The corpora cavernosa was used to evaluate tissue myographic responses to electrical field stimulation ex vivo. Quantitative real-time polymerase chain reaction was used to examine the gene expression of global macrophage markers, M1 macrophage markers, M2 macrophage markers, and cytokines and chemokines in the MPG. Mathematical calculation of the M1/M2 index was used to quantify macrophage changes temporally. Western blot of MPG tissues was used to evaluate the protein amount of M1 and M2 macrophage markers quantitatively. Immunohistochemistry staining of MPGs for CD68, CD86, and CD206 was used to characterize M1 and M2 macrophage infiltration. MAIN OUTCOME MEASURES Corpora cavernosa responsiveness ex vivo; gene (quantitative real-time polymerase chain reaction) and protein (western blot) expressions of M1 and M2 markers, cytokines, and chemokines; and immunohistochemical localization of M1 and M2 macrophages. RESULTS BCNI impaired the corporal parasympathetic-mediated relaxation response to electrical field stimulation and enhanced the contraction response to electrical field stimulation. Gene expression of proinflammatory (Il1b, Il16, Tnfa, Tgfb, Ccl2, Ccr2) and anti-inflammatory (Il10) cytokines was upregulated in the MPG 48 hours after injury. M1 markers (CD86, inducible nitric oxide synthase, interleukin-1β) and M2 markers (CD206, arginase-1, interleukin-10) were increased after BCNI in the MPG, with the M1/M2 index above 1.0 indicating that more M1 than M2 macrophages were recruited to the MPG. Protein expression of the M1 macrophage marker (inducible nitric oxide synthase) was increased in MPGs after BCNI. However, the protein amount of M2 macrophage markers (arginase-1) remained unchanged. Immunohistochemical characterization demonstrated predominant increases in M1 (CD68+CD86+) macrophages in the MPG after BCNI. CONCLUSION These results suggest that an increase in M1 macrophage infiltration of the MPG after BCNI is associated with impaired neurogenically mediated erectile tissue physiology ex vivo and thus has significant implications for cavernous nerve axonal repair. Future studies are needed to demonstrate that inhibition of M1 macrophage recruitment prevents erectile dysfunction after CNI.
Collapse
|
20
|
Callewaert G, Da Cunha MMCM, Sindhwani N, Sampaolesi M, Albersen M, Deprest J. Cell-based secondary prevention of childbirth-induced pelvic floor trauma. Nat Rev Urol 2017; 14:373-385. [PMID: 28374792 DOI: 10.1038/nrurol.2017.42] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With advancing population age, pelvic-floor dysfunction (PFD) will affect an increasing number of women. Many of these women wish to maintain active lifestyles, indicating an urgent need for effective strategies to treat or, preferably, prevent the occurrence of PFD. Childbirth and pregnancy have both long been recognized as crucial contributing factors in the pathophysiology of PFD. Vaginal delivery of a child is a serious traumatic event, causing anatomical and functional changes in the pelvic floor. Similar changes to those experienced during childbirth can be found in symptomatic women, often many years after delivery. Thus, women with such PFD symptoms might have incompletely recovered from the trauma caused by vaginal delivery. This hypothesis creates the possibility that preventive measures can be initiated around the time of delivery. Secondary prevention has been shown to be beneficial in patients with many other chronic conditions. The current general consensus is that clinicians should aim to minimize the extent of damage during delivery, and aim to optimize healing processes after delivery, therefore preventing later dysfunction. A substantial amount of research investigating the potential of stem-cell injections as a therapeutic strategy for achieving this purpose is currently ongoing. Data from small animal models have demonstrated positive effects of mesenchymal stem-cell injections on the healing process following simulated vaginal birth injury.
Collapse
Affiliation(s)
- Geertje Callewaert
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, University of Leuven, Herestraat 49, Leuven 3000, Belgium.,Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | | | - Nikhil Sindhwani
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, University of Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Maurilio Sampaolesi
- Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Maarten Albersen
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, University of Leuven, Herestraat 49, Leuven 3000, Belgium.,Department of Urology, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, University of Leuven, Herestraat 49, Leuven 3000, Belgium.,Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| |
Collapse
|
21
|
Ekman M, Zhu B, Swärd K, Uvelius B. Neurite outgrowth in cultured mouse pelvic ganglia - Effects of neurotrophins and bladder tissue. Auton Neurosci 2017; 205:41-49. [PMID: 28347639 DOI: 10.1016/j.autneu.2017.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 10/19/2022]
Abstract
Neurotrophic factors regulate survival and growth of neurons. The urinary bladder is innervated via both sympathetic and parasympathetic neurons located in the major pelvic ganglion. The aim of the present study was to characterize the effects of the neurotrophins nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3) on the sprouting rate of sympathetic and parasympathetic neurites from the female mouse ganglion. The pelvic ganglion was dissected out and attached to a petri dish and cultured in vitro. All three factors (BDNF, NT-3 and NGF) stimulated neurite outgrowth of both sympathetic and parasympathetic neurites although BDNF and NT-3 had a higher stimulatory effect on parasympathetic ganglion cells. The neurotrophin receptors TrkA, TrkB and TrkC were all expressed in neurons of the ganglia. Co-culture of ganglia with urinary bladder tissue, but not diaphragm tissue, increased the sprouting rate of neurites. Active forms of BDNF and NT-3 were detected in urinary bladder tissue using western blotting whereas tissue from the diaphragm expressed NGF. Neurite outgrowth from the pelvic ganglion was inhibited by a TrkB receptor antagonist. We therefore suggest that the urinary bladder releases trophic factors, including BDNF and NT-3, which regulate neurite outgrowth via activation of neuronal Trk-receptors. These findings could influence future strategies for developing pharmaceuticals to improve re-innervation due to bladder pathologies.
Collapse
Affiliation(s)
- Mari Ekman
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Department of Biology, Lund University, Lund, Sweden.
| | - Baoyi Zhu
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Guang Dong, China
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Bengt Uvelius
- Department of Urology, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Matsui H, Musicki B, Sopko NA, Liu X, Hurley PJ, Burnett AL, Bivalacqua TJ, Hannan JL. Early-stage Type 2 Diabetes Mellitus Impairs Erectile Function and Neurite Outgrowth From the Major Pelvic Ganglion and Downregulates the Gene Expression of Neurotrophic Factors. Urology 2016; 99:287.e1-287.e7. [PMID: 27639791 DOI: 10.1016/j.urology.2016.08.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/16/2016] [Accepted: 08/31/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To assess neurite sprouting and gene expression of neurotrophic factors, nerve markers, and apoptosis in the major pelvic ganglia (MPGs) of rats with type 2 diabetes mellitus (T2DM) as it relates to erectile function. MATERIALS AND METHODS Male rats were fed high-fat diet for 2 weeks followed by 2 low-dose injections of streptozotocin (20 mg/kg). In 3 groups (controls, 3-week, or 5-week T2DM), erectile function was measured by ratios of intracavernosal pressure to mean arterial pressure after cavernous nerve stimulation. MPGs were harvested, and gene expressions of neurotrophic factor 3, nerve growth factor, glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, caspase-1, -3, -9, beta tubulin type III, and neuronal nitric oxide synthase were quantified by quantitative polymerase chain reaction. Additional MPGs were harvested and cultured in Matrigel. Neurite outgrowth from the MPG was evaluated at 48 hours after culture. RESULTS Erectile function was significantly decreased in all rats with T2DM. Gene expressions of neurotrophic factor 3, nerve growth factor, glial cell line-derived neurotrophic factor, and brain-derived neurotrophic factor were slightly lower at 3 weeks and significantly lower at 5 weeks after T2DM induction. Gene expression of apoptotic markers caspase-1, -3, -9, and neuronal markers beta tubulin type III and neuronal nitric oxide synthase remained unchanged. Rats with T2DM had shorter neurite length and less neurite sprouting than did the control MPG. CONCLUSION Early-stage T2DM downregulates neurotrophic factors, induces erectile dysfunction, and impairs MPG neurite outgrowth, suggesting that erectile dysfunction may be prevented by supplementing neurotrophic factors at early-stage T2DM.
Collapse
Affiliation(s)
- Hotaka Matsui
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD
| | - Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD
| | - Nikolai A Sopko
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD
| | - Xiaopu Liu
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD
| | - Paula J Hurley
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD
| | - Trinity J Bivalacqua
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD
| | - Johanna L Hannan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC.
| |
Collapse
|
23
|
Caspase-3 dependent nitrergic neuronal apoptosis following cavernous nerve injury is mediated via RhoA and ROCK activation in major pelvic ganglion. Sci Rep 2016; 6:29416. [PMID: 27388816 PMCID: PMC4937405 DOI: 10.1038/srep29416] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/06/2016] [Indexed: 01/28/2023] Open
Abstract
Axonal injury due to prostatectomy leads to Wallerian degeneration of the cavernous nerve (CN) and erectile dysfunction (ED). Return of potency is dependent on axonal regeneration and reinnervation of the penis. Following CN injury (CNI), RhoA and Rho-associated protein kinase (ROCK) increase in penile endothelial and smooth muscle cells. Previous studies indicate that nerve regeneration is hampered by activation of RhoA/ROCK pathway. We evaluated the role of RhoA/ROCK pathway in CN regulation following CNI using a validated rat model. CNI upregulated gene and protein expression of RhoA/ROCK and caspase-3 mediated apoptosis in the major pelvic ganglion (MPG). ROCK inhibitor (ROCK-I) prevented upregulation of RhoA/ROCK pathway as well as activation of caspase-3 in the MPG. Following CNI, there was decrease in the dimer to monomer ratio of neuronal nitric oxide synthase (nNOS) protein and lowered NOS activity in the MPG, which were prevented by ROCK-I. CNI lowered intracavernous pressure and impaired non-adrenergic non-cholinergic-mediated relaxation in the penis, consistent with ED. ROCK-I maintained the intracavernous pressure and non-adrenergic non-cholinergic-mediated relaxation in the penis following CNI. These results suggest that activation of RhoA/ROCK pathway mediates caspase-3 dependent apoptosis of nitrergic neurons in the MPG following CNI and that ROCK-I can prevent post-prostatectomy ED.
Collapse
|