1
|
Zheng J, Wu M, Pang Y, Liu Q, Liu Y, Jin X, Tang J, Bao L, Niu Y, Zheng Y, Zhang R. Interior decorative volatile organic compounds exposure induces sleep disorders through aberrant branched chain amino acid transaminase 2 mediated glutamatergic signaling resulting from a neuroinflammatory cascade. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173254. [PMID: 38761924 DOI: 10.1016/j.scitotenv.2024.173254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/16/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Air pollution has been recognized as a contributing factor to sleep disorders (SD), which have been correlated with an elevated susceptibility to a variety of human diseases. Nevertheless, research has not definitively established a connection between SD and interior decorative volatile organic compounds (ID-VOCs), a significant indoor air pollutant. In this study, we employed a mouse model exposed to ID-VOCs to explore the impacts of ID-VOCs exposure on sleep patterns and the potential underlying mechanism. Of the 23 key compositions of ID-VOCs identified, aromatic hydrocarbons were found to be the most prevalent. Exposure to ID-VOCs in mice resulted in SD, characterized by prolonged wake fullness and decreased sleep during the light period. ID-VOCs exposure triggered neuroinflammatory responses in the suprachiasmatic nucleus (SCN), with microglia activation leading to the overproduction of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), and complement component 1q (C1q), ultimately inducing A1 astrocytes. Consequently, the upregulation of branched chain amino acid transaminase 2 (BCAT2) in A1 astrocytes resulted in elevated extracellular glutamate and disruption of the wake-sleep transition mechanism, which might be the toxicological mechanism of SD caused by ID-VOCs.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China
| | - Mengqi Wu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Qingping Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yan Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; School of Public Health, Inner Mongolia Medical University, Hohhot 010000, Inner Mongolia, PR China
| | - Xiaoting Jin
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Jinglong Tang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Lei Bao
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, Shandong, PR China.
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China.
| |
Collapse
|
2
|
Westi EW, Andersen JV, Aldana BI. Using stable isotope tracing to unravel the metabolic components of neurodegeneration: Focus on neuron-glia metabolic interactions. Neurobiol Dis 2023; 182:106145. [PMID: 37150307 DOI: 10.1016/j.nbd.2023.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/17/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023] Open
Abstract
Disrupted brain metabolism is a critical component of several neurodegenerative diseases. Energy metabolism of both neurons and astrocytes is closely connected to neurotransmitter recycling via the glutamate/GABA-glutamine cycle. Neurons and astrocytes hereby work in close metabolic collaboration which is essential to sustain neurotransmission. Elucidating the mechanistic involvement of altered brain metabolism in disease progression has been aided by the advance of techniques to monitor cellular metabolism, in particular by mapping metabolism of substrates containing stable isotopes, a technique known as isotope tracing. Here we review key aspects of isotope tracing including advantages, drawbacks and applications to different cerebral preparations. In addition, we narrate how isotope tracing has facilitated the discovery of central metabolic features in neurodegeneration with a focus on the metabolic cooperation between neurons and astrocytes.
Collapse
Affiliation(s)
- Emil W Westi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
3
|
Liu R, Zhang L, You H. Insulin Resistance and Impaired Branched-Chain Amino Acid Metabolism in Alzheimer's Disease. J Alzheimers Dis 2023:JAD221147. [PMID: 37125547 DOI: 10.3233/jad-221147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) is complicated and involves multiple contributing factors. Mounting evidence supports the concept that AD is an age-related metabolic neurodegenerative disease mediated in part by brain insulin resistance, and sharing similar metabolic dysfunctions and brain pathological characteristics that occur in type 2 diabetes mellitus (T2DM) and other insulin resistance disorders. Brain insulin signal pathway is a major regulator of branched-chain amino acid (BCAA) metabolism. In the past several years, impaired BCAA metabolism has been described in several insulin resistant states such as obesity, T2DM and cardiovascular disease. Disrupted BCAA metabolism leading to elevation in circulating BCAAs and related metabolites is an early metabolic phenotype of insulin resistance and correlated with future onset of T2DM. Brain is a major site for BCAA metabolism. BCAAs play pivotal roles in normal brain function, especially in signal transduction, nitrogen homeostasis, and neurotransmitter cycling. Evidence from animal models and patients support the involvement of BCAA dysmetabolism in neurodegenerative diseases including Huntington's disease, Parkinson's disease, and maple syrup urine disease. More recently, growing studies have revealed altered BCAA metabolism in AD, but the relationship between them is poorly understood. This review is focused on the recent findings regarding BCAA metabolism and its role in AD. Moreover, we will explore how impaired BCAA metabolism influences brain function and participates in the pathogenesis of AD.
Collapse
Affiliation(s)
- Rui Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Lei Zhang
- Department of Chinese Medicine, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Hao You
- Department of Public Health and Preventive Medicine, School of Medicine, Jianghan University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Nong X, Zhang C, Wang J, Ding P, Ji G, Wu T. The mechanism of branched-chain amino acid transferases in different diseases: Research progress and future prospects. Front Oncol 2022; 12:988290. [PMID: 36119495 PMCID: PMC9478667 DOI: 10.3389/fonc.2022.988290] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/12/2022] [Indexed: 12/16/2022] Open
Abstract
It is well known that the enzyme catalyzes the first step of branched-chain amino acid (BCAA) catabolism is branched-chain amino transferase (BCAT), which is involved in the synthesis and degradation of leucine, isoleucine and valine. There are two main subtypes of human branched chain amino transferase (hBCAT), including cytoplasmic BCAT (BCAT1) and mitochondrial BCAT (BCAT2). In recent years, the role of BCAT in tumors has attracted the attention of scientists, and there have been continuous research reports that BCAT plays a role in the tumor, Alzheimer’s disease, myeloid leukaemia and other diseases. It plays a significant role in the growth and development of diseases, and new discoveries about this gene in some diseases are made every year. BCAT usually promotes cancer proliferation and invasion by activating the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin pathway and activating Wnt/β-catenin signal transduction. This article reviews the role and mechanism of BCAT in different diseases, as well as the recent biomedical research progress. This review aims to make a comprehensive summary of the role and mechanism of BCAT in different diseases and to provide new research ideas for the treatment, prognosis and prevention of certain diseases.
Collapse
Affiliation(s)
- Xiazhen Nong
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Caiyun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guang Ji, ; ; Tao Wu, ;
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guang Ji, ; ; Tao Wu, ;
| |
Collapse
|
5
|
Blessy Pricilla R, Bhuvanesh N, Vidhya B, Murugan S, Nandhakumar R. Exploration of GO-CuO nanocomposite for its antibacterial properties and potential application as a chemosensor in the sensing of L-Leucine. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.1956958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- R. Blessy Pricilla
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Declared as Deemed-to-be University), Karunya Nagar, Coimbatore, India
| | - N. Bhuvanesh
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Declared as Deemed-to-be University), Karunya Nagar, Coimbatore, India
| | - B. Vidhya
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Declared as Deemed-to-be University), Karunya Nagar, Coimbatore, India
| | - S. Murugan
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Declared as Deemed-to-be University), Karunya Nagar, Coimbatore, India
| | - R. Nandhakumar
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Declared as Deemed-to-be University), Karunya Nagar, Coimbatore, India
| |
Collapse
|
6
|
Shida Y, Endo H, Owada S, Inagaki Y, Sumiyoshi H, Kamiya A, Eto T, Tatemichi M. Branched-chain amino acids govern the high learning ability phenotype in Tokai high avoider (THA) rats. Sci Rep 2021; 11:23104. [PMID: 34845278 PMCID: PMC8630195 DOI: 10.1038/s41598-021-02591-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022] Open
Abstract
To fully understand the mechanisms governing learning and memory, animal models with minor interindividual variability and higher cognitive function are required. THA rats established by crossing those with high learning capacity exhibit excellent learning and memory abilities, but the factors underlying their phenotype are completely unknown. In the current study, we compare the hippocampi of parental strain Wistar rats to those of THA rats via metabolomic analysis in order to identify molecules specific to the THA rat hippocampus. Higher branched-chain amino acid (BCAA) levels and enhanced activation of BCAA metabolism-associated enzymes were observed in THA rats, suggesting that acetyl-CoA and acetylcholine are synthesized through BCAA catabolism. THA rats maintained high blood BCAA levels via uptake of BCAAs in the small intestine and suppression of BCAA catabolism in the liver. Feeding THA rats with a BCAA-reduced diet decreased acetylcholine levels and learning ability, thus, maintaining high BCAA levels while their proper metabolism in the hippocampus is the mechanisms underlying the high learning ability in THA rats. Identifying appropriate BCAA nutritional supplements and activation methods may thus hold potential for the prevention and amelioration of higher brain dysfunction, including learning disabilities and dementia.
Collapse
Affiliation(s)
- Yukari Shida
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hitoshi Endo
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Satoshi Owada
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Department of Innovative Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hideaki Sumiyoshi
- Center for Matrix Biology and Medicine, Department of Innovative Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Tomoo Eto
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Masayuki Tatemichi
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
7
|
Salcedo C, Andersen JV, Vinten KT, Pinborg LH, Waagepetersen HS, Freude KK, Aldana BI. Functional Metabolic Mapping Reveals Highly Active Branched-Chain Amino Acid Metabolism in Human Astrocytes, Which Is Impaired in iPSC-Derived Astrocytes in Alzheimer's Disease. Front Aging Neurosci 2021; 13:736580. [PMID: 34603012 PMCID: PMC8484639 DOI: 10.3389/fnagi.2021.736580] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/04/2021] [Indexed: 01/04/2023] Open
Abstract
The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are important nitrogen donors for synthesis of glutamate, the main excitatory neurotransmitter in the brain. The glutamate carbon skeleton originates from the tricarboxylic acid (TCA) cycle intermediate α-ketoglutarate, while the amino group is derived from nitrogen donors such as the BCAAs. Disturbances in neurotransmitter homeostasis, mainly of glutamate, are strongly implicated in the pathophysiology of Alzheimer's disease (AD). The divergent BCAA metabolism in different cell types of the human brain is poorly understood, and so is the involvement of astrocytic and neuronal BCAA metabolism in AD. The goal of this study is to provide the first functional characterization of BCAA metabolism in human brain tissue and to investigate BCAA metabolism in AD pathophysiology using astrocytes and neurons derived from human-induced pluripotent stem cells (hiPSCs). Mapping of BCAA metabolism was performed using mass spectrometry and enriched [15N] and [13C] isotopes of leucine, isoleucine, and valine in acutely isolated slices of surgically resected cerebral cortical tissue from human brain and in hiPSC-derived brain cells carrying mutations in either amyloid precursor protein (APP) or presenilin-1 (PSEN-1). We revealed that both human astrocytes of acutely isolated cerebral cortical slices and hiPSC-derived astrocytes were capable of oxidatively metabolizing the carbon skeleton of BCAAs, particularly to support glutamine synthesis. Interestingly, hiPSC-derived astrocytes with APP and PSEN-1 mutations exhibited decreased amino acid synthesis of glutamate, glutamine, and aspartate derived from leucine metabolism. These results clearly demonstrate that there is an active BCAA metabolism in human astrocytes, and that leucine metabolism is selectively impaired in astrocytes derived from the hiPSC models of AD. This impairment in astrocytic BCAA metabolism may contribute to neurotransmitter and energetic imbalances in the AD brain.
Collapse
Affiliation(s)
- Claudia Salcedo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Tore Vinten
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars H Pinborg
- Epilepsy Clinic and Neurobiology Research Unit, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine K Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Abstract
Significance: Unique to the branched-chain aminotransferase (BCAT) proteins is their redox-active CXXC motif. Subjected to post-translational modification by reactive oxygen species and reactive nitrogen species, these proteins have the potential to adopt numerous cellular roles, which may be fundamental to their role in oncogenesis and neurodegenerative diseases. An understanding of the interplay of the redox regulation of BCAT with important cell signaling mechanisms will identify new targets for future therapeutics. Recent Advances: The BCAT proteins have been assigned novel thiol oxidoreductase activity that can accelerate the refolding of proteins, in particular when S-glutathionylated, supporting a chaperone role for BCAT in protein folding. Other metabolic proteins were also shown to have peroxide-mediated redox associations with BCAT, indicating that the cellular function of BCAT is more diverse. Critical Issues: While the role of branched-chain amino acid metabolism and its metabolites has dominated aspects of cancer research, less is known about the role of BCAT. The importance of the CXXC motif in regulating the BCAT activity under hypoxic conditions, a characteristic of tumors, has not been addressed. Understanding how these proteins operate under various cellular redox conditions will become important, in particular with respect to their moonlighting roles. Future Directions: Advances in the quantification of thiols, their measurement, and the manipulation of metabolons that rely on redox-based interactions should accelerate the investigation of the cellular role of moonlighting proteins such as BCAT. Given the importance of cross talk between signaling pathways, research should focus more on these "housekeeping" proteins paying attention to their wider application. Antioxid. Redox Signal. 34, 1048-1067.
Collapse
Affiliation(s)
- Myra Elizabeth Conway
- Department of Applied Science, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
9
|
Bobeff EJ, Szczesna D, Bieńkowski M, Janczar K, Chmielewska-Kassassir M, Wiśniewski K, Papierz W, Wozniak LA, Jaskólski DJ. Plasma amino acids indicate glioblastoma with ATRX loss. Amino Acids 2021; 53:119-132. [PMID: 33398522 DOI: 10.1007/s00726-020-02931-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/12/2020] [Indexed: 12/18/2022]
Abstract
Glioblastoma (GB) is the most common primary brain tumour in adults. The lack of molecular biomarker, non-specific symptoms and fast growth rate often result in a significant delay in diagnosis. Despite multimodal treatment, the prognosis remains poor. Here, we verified the hypothesis that amino acids (AA) regulating the critical metabolic pathways necessary for maintenance, growth, reproduction, and immunity of an organism, may constitute a favourable target in GB biomarker research. We measured the plasma amino acids levels in 18 GB patients and 15 controls and performed the quantitative and qualitative metabolomic analysis of free AA applying high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). We present both the raw data and the results of our statistical analysis. The majority of AA were lowered in the study group in comparison to the control group. Five of these (arginine, glutamic acid, glutamine, glycine, and histidine) differed significantly (all p < 10-5 and AUC > 0.9). Plasma levels of leucine and phenylalanine decreased in the case of GB with lost alpha-thalassemia/mental retardation X-linked (ATRX) expression on immunohistochemistry (p = 0.003 and 0.045, respectively). We demonstrated for the first time that certain plasma-free AA levels of GB patients were significantly different from those in healthy volunteers. Target profiling of plasma-free AA, identified utilizing LC-QTOF-MS, may present prognostic value by indicating GB patients with lost ATRX expression. The on-going quest for glioma biomarkers still aims to determine the detailed metabolic profile and evaluate its impact on therapy and prognosis.
Collapse
Affiliation(s)
- Ernest Jan Bobeff
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153, Lodz, Poland.
| | - Dorota Szczesna
- Department of Structural Biology, Medical University of Lodz, Lodz, Poland
| | - Michał Bieńkowski
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Karolina Janczar
- Department of Pathomorphology, Medical University of Lodz, Lodz, Poland
| | | | - Karol Wiśniewski
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153, Lodz, Poland
| | - Wielisław Papierz
- Faculty of Health Sciences, The Mazovian State University in Plock, Plock, Poland
| | | | - Dariusz Jan Jaskólski
- Department of Neurosurgery and Neuro-Oncology, Medical University of Lodz, Barlicki University Hospital, Kopcinskiego St. 22, 90-153, Lodz, Poland
| |
Collapse
|
10
|
Rumping L, Vringer E, Houwen RHJ, van Hasselt PM, Jans JJM, Verhoeven‐Duif NM. Inborn errors of enzymes in glutamate metabolism. J Inherit Metab Dis 2020; 43:200-215. [PMID: 31603991 PMCID: PMC7078983 DOI: 10.1002/jimd.12180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/01/2019] [Accepted: 10/04/2019] [Indexed: 12/29/2022]
Abstract
Glutamate is involved in a variety of metabolic pathways. We reviewed the literature on genetic defects of enzymes that directly metabolise glutamate, leading to inborn errors of glutamate metabolism. Seventeen genetic defects of glutamate metabolising enzymes have been reported, of which three were only recently identified. These 17 defects affect the inter-conversion of glutamine and glutamate, amino acid metabolism, ammonia detoxification, and glutathione metabolism. We provide an overview of the clinical and biochemical phenotypes of these rare defects in an effort to ease their recognition. By categorising these by biochemical pathway, we aim to create insight into the contributing role of deviant glutamate and glutamine levels to the pathophysiology. For those disorders involving the inter-conversion of glutamine and glutamate, these deviant levels are postulated to play a pivotal pathophysiologic role. For the other IEM however-with the exception of urea cycle defects-abnormal glutamate and glutamine concentrations were rarely reported. To create insight into the clinical consequences of disturbed glutamate metabolism-rather than individual glutamate and glutamine levels-the prevalence of phenotypic abnormalities within the 17 IEM was compared to their prevalence within all Mendelian disorders and subsequently all disorders with metabolic abnormalities notated in the Human Phenotype Ontology (HPO) database. For this, a hierarchical database of all phenotypic abnormalities of the 17 defects in glutamate metabolism based on HPO was created. A neurologic phenotypic spectrum of developmental delay, ataxia, seizures, and hypotonia are common in the inborn errors of enzymes in glutamate metabolism. Additionally, ophthalmologic and skin abnormalities are often present, suggesting that disturbed glutamate homeostasis affects tissues of ectodermal origin: brain, eye, and skin. Reporting glutamate and glutamine concentrations in patients with inborn errors of glutamate metabolism would provide additional insight into the pathophysiology.
Collapse
Affiliation(s)
- Lynne Rumping
- Department of GeneticsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
- Center for Molecular MedicineUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
- Department of PediatricsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Esmee Vringer
- Department of GeneticsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Roderick H. J. Houwen
- Department of PediatricsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Peter M. van Hasselt
- Department of PediatricsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Judith J. M. Jans
- Department of GeneticsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
- Center for Molecular MedicineUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| | - Nanda M. Verhoeven‐Duif
- Department of GeneticsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
- Center for Molecular MedicineUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
11
|
Conway ME. Alzheimer's disease: targeting the glutamatergic system. Biogerontology 2020; 21:257-274. [PMID: 32048098 PMCID: PMC7196085 DOI: 10.1007/s10522-020-09860-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/29/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disease that causes a progressive decline in memory, language and problem solving. For decades mechanism-based therapies have primarily focused on amyloid β (Aβ) processing and pathways that govern neurofibrillary tangle generation. With the potential exception to Aducanumab, a monotherapy to target Aβ, clinical trials in these areas have been challenging and have failed to demonstrate efficacy. Currently, the prescribed therapies for AD are those that target the cholinesterase and glutamatergic systems that can moderately reduce cognitive decline, dependent on the individual. In the brain, over 40% of neuronal synapses are glutamatergic, where the glutamate level is tightly regulated through metabolite exchange in neuronal, astrocytic and endothelial cells. In AD brain, Aβ can interrupt effective glutamate uptake by astrocytes, which evokes a cascade of events that leads to neuronal swelling, destruction of membrane integrity and ultimately cell death. Much work has focussed on the post-synaptic response with little insight into how glutamate is regulated more broadly in the brain and the influence of anaplerotic pathways that finely tune these mechanisms. The role of blood branched chain amino acids (BCAA) in regulating neurotransmitter profiles under disease conditions also warrant discussion. Here, we review the importance of the branched chain aminotransferase proteins in regulating brain glutamate and the potential consequence of dysregulated metabolism in the context of BCAA or glutamate accumulation. We explore how the reported benefits of BCAA supplementation or restriction in improving cognitive function in other neurological diseases may have potential application in AD. Given that memantine, the glutamate receptor agonist, shows clinical relevance it is now timely to research related pathways, an understanding of which could identify novel approaches to treatment of AD.
Collapse
Affiliation(s)
- Myra E Conway
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK. .,Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
12
|
McBrayer SK, Mayers JR, DiNatale GJ, Shi DD, Khanal J, Chakraborty AA, Sarosiek KA, Briggs KJ, Robbins AK, Sewastianik T, Shareef SJ, Olenchock BA, Parker SJ, Tateishi K, Spinelli JB, Islam M, Haigis MC, Looper RE, Ligon KL, Bernstein BE, Carrasco RD, Cahill DP, Asara JM, Metallo CM, Yennawar NH, Vander Heiden MG, Kaelin WG. Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell 2018; 175:101-116.e25. [PMID: 30220459 DOI: 10.1016/j.cell.2018.08.038] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 06/22/2018] [Accepted: 08/17/2018] [Indexed: 12/31/2022]
Abstract
IDH1 mutations are common in low-grade gliomas and secondary glioblastomas and cause overproduction of (R)-2HG. (R)-2HG modulates the activity of many enzymes, including some that are linked to transformation and some that are probably bystanders. Although prior work on (R)-2HG targets focused on 2OG-dependent dioxygenases, we found that (R)-2HG potently inhibits the 2OG-dependent transaminases BCAT1 and BCAT2, likely as a bystander effect, thereby decreasing glutamate levels and increasing dependence on glutaminase for the biosynthesis of glutamate and one of its products, glutathione. Inhibiting glutaminase specifically sensitized IDH mutant glioma cells to oxidative stress in vitro and to radiation in vitro and in vivo. These findings highlight the complementary roles for BCATs and glutaminase in glutamate biosynthesis, explain the sensitivity of IDH mutant cells to glutaminase inhibitors, and suggest a strategy for maximizing the effectiveness of such inhibitors against IDH mutant gliomas.
Collapse
Affiliation(s)
- Samuel K McBrayer
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Jared R Mayers
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gabriel J DiNatale
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Diana D Shi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Januka Khanal
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Abhishek A Chakraborty
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kimberly J Briggs
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Alissa K Robbins
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Tomasz Sewastianik
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Sarah J Shareef
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Benjamin A Olenchock
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Seth J Parker
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kensuke Tateishi
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Jessica B Spinelli
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mirazul Islam
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan E Looper
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Keith L Ligon
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Children's Hospital Boston, Boston, MA 02115, USA
| | - Bradley E Bernstein
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ruben D Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John M Asara
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neela H Yennawar
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew G Vander Heiden
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
13
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
14
|
Biswas J, Gupta S, Verma DK, Gupta P, Singh A, Tiwari S, Goswami P, Sharma S, Singh S. Involvement of glucose related energy crisis and endoplasmic reticulum stress: Insinuation of streptozotocin induced Alzheimer's like pathology. Cell Signal 2018; 42:211-226. [DOI: 10.1016/j.cellsig.2017.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/05/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022]
|
15
|
Distribution of the branched-chain α-ketoacid dehydrogenase complex E1α subunit and glutamate dehydrogenase in the human brain and their role in neuro-metabolism. Neurochem Int 2018; 112:49-58. [DOI: 10.1016/j.neuint.2017.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 11/17/2022]
|
16
|
Subramanian K, Rauniyar N, Lavalleé-Adam M, Yates JR, Balch WE. Quantitative Analysis of the Proteome Response to the Histone Deacetylase Inhibitor (HDACi) Vorinostat in Niemann-Pick Type C1 disease. Mol Cell Proteomics 2017; 16:1938-1957. [PMID: 28860124 DOI: 10.1074/mcp.m116.064949] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 07/12/2017] [Indexed: 12/22/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is an inherited, progressive neurodegenerative disorder principally caused by mutations in the NPC1 gene. NPC disease is characterized by the accumulation of unesterified cholesterol in the late endosomes (LE) and lysosomes (Ly) (LE/Ly). Vorinostat, a histone deacetylase inhibitor (HDACi), restores cholesterol homeostasis in fibroblasts derived from NPC patients; however, the exact mechanism by which Vorinostat restores cholesterol level is not known yet. In this study, we performed comparative proteomic profiling of the response of NPC1I1061T fibroblasts to Vorinostat. After stringent statistical criteria to filter identified proteins, we observed 202 proteins that are differentially expressed in Vorinostat-treated fibroblasts. These proteins are members of diverse cellular pathways including the endomembrane dependent protein folding-stability-degradation-trafficking axis, energy metabolism, and lipid metabolism. Our study shows that treatment of NPC1I1061T fibroblasts with Vorinostat not only enhances pathways promoting the folding, stabilization and trafficking of NPC1 (I1061T) mutant to the LE/Ly, but alters the expression of lysosomal proteins, specifically the lysosomal acid lipase (LIPA) involved in the LIPA->NPC2->NPC1 based flow of cholesterol from the LE/Ly lumen to the LE/Ly membrane. We posit that the Vorinostat may modulate numerous pathways that operate in an integrated fashion through epigenetic and post-translational modifications reflecting acetylation/deacetylation balance to help manage the defective NPC1 fold, the function of the LE/Ly system and/or additional cholesterol metabolism/distribution pathways, that could globally contribute to improved mitigation of NPC1 disease in the clinic based on as yet uncharacterized principles of cellular metabolism dictating cholesterol homeostasis.
Collapse
Affiliation(s)
- Kanagaraj Subramanian
- From the ‡Department of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, California 92037
| | - Navin Rauniyar
- §Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Mathieu Lavalleé-Adam
- §Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - John R Yates
- §Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - William E Balch
- From the ‡Department of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, 10550, North Torrey Pines Road, La Jolla, California 92037;
| |
Collapse
|
17
|
Elango R, Rasmussen B, Madden K. Safety and Tolerability of Leucine Supplementation in Elderly Men. J Nutr 2016; 146:2630S-2634S. [PMID: 27934655 DOI: 10.3945/jn.116.234930] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/26/2016] [Accepted: 07/19/2016] [Indexed: 01/06/2023] Open
Abstract
Leucine, a branched-chain amino acid, has been shown to stimulate muscle protein synthesis and has been suggested to play a role in the prevention of age-related muscle atrophy (sarcopenia). Although leucine supplementation may be beneficial, the efficacious dose of leucine is unknown. Before conducting studies with increased doses of leucine, the Tolerable Upper Intake Level (UL) for leucine needs to be determined. The objective of this review is to describe 2 current studies to determine the UL for leucine in young and elderly men. Initially, in young men we tested the conceptual model of determining the maximum oxidative capacity of an amino acid to be an ideal marker for identifying the UL. Leucine oxidation, measured with the use of l-[1-13C]leucine, increased with increasing leucine intakes and reached a plateau at higher intakes. Two-phase linear regression analysis identified a breakpoint of 550 mg ⋅ kg-1 ⋅ d-1 (95% CI: 454, 646 mg ⋅ kg-1 ⋅ d-1), with a simultaneous increase in blood ammonia concentrations above normal values (35 μmol/L). Recently, a similar study was conducted in elderly men (∼72 y old). A breakpoint in leucine oxidation was observed at 431 mg ⋅ kg-1 ⋅ d-1 (95% CI: 351, 511 mg ⋅ kg-1 ⋅ d-1), with blood ammonia concentrations above normal (35 μmol/L) at leucine intakes >550 mg ⋅ kg-1 ⋅ d-1 Taking the data together, the UL for leucine intake in healthy elderly men could be set at a value similar to young men, at 500 mg ⋅ kg-1 ⋅ d-1, or ∼35 g/d for an individual weighing 70 kg; or, as a cautious estimate, the leucine UL could also be considered as 351 mg ⋅ kg-1 ⋅ d-1 (the lower 95% CI), which would be ∼24.5 g/d for an elderly individual weighing 70 kg. These studies to determine the UL for leucine in humans are acute diet studies, and future studies with additional biomarkers and long-term supplementation of leucine will be necessary.
Collapse
Affiliation(s)
- Rajavel Elango
- Department of Pediatrics and .,School of Population and Public Health, University of British Columbia, Vancouver, Canada.,Research Institute, BC Children's Hospital, Vancouver, Canada; and
| | | | - Kenneth Madden
- Department of Medicine, Division of Geriatric Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, Canada
| |
Collapse
|
18
|
Central Role of Glutamate Metabolism in the Maintenance of Nitrogen Homeostasis in Normal and Hyperammonemic Brain. Biomolecules 2016; 6:biom6020016. [PMID: 27023624 PMCID: PMC4919911 DOI: 10.3390/biom6020016] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022] Open
Abstract
Glutamate is present in the brain at an average concentration—typically 10–12 mM—far in excess of those of other amino acids. In glutamate-containing vesicles in the brain, the concentration of glutamate may even exceed 100 mM. Yet because glutamate is a major excitatory neurotransmitter, the concentration of this amino acid in the cerebral extracellular fluid must be kept low—typically µM. The remarkable gradient of glutamate in the different cerebral compartments: vesicles > cytosol/mitochondria > extracellular fluid attests to the extraordinary effectiveness of glutamate transporters and the strict control of enzymes of glutamate catabolism and synthesis in well-defined cellular and subcellular compartments in the brain. A major route for glutamate and ammonia removal is via the glutamine synthetase (glutamate ammonia ligase) reaction. Glutamate is also removed by conversion to the inhibitory neurotransmitter γ-aminobutyrate (GABA) via the action of glutamate decarboxylase. On the other hand, cerebral glutamate levels are maintained by the action of glutaminase and by various α-ketoglutarate-linked aminotransferases (especially aspartate aminotransferase and the mitochondrial and cytosolic forms of the branched-chain aminotransferases). Although the glutamate dehydrogenase reaction is freely reversible, owing to rapid removal of ammonia as glutamine amide, the direction of the glutamate dehydrogenase reaction in the brain in vivo is mainly toward glutamate catabolism rather than toward the net synthesis of glutamate, even under hyperammonemia conditions. During hyperammonemia, there is a large increase in cerebral glutamine content, but only small changes in the levels of glutamate and α-ketoglutarate. Thus, the channeling of glutamate toward glutamine during hyperammonemia results in the net synthesis of 5-carbon units. This increase in 5-carbon units is accomplished in part by the ammonia-induced stimulation of the anaplerotic enzyme pyruvate carboxylase. Here, we suggest that glutamate may constitute a buffer or bulwark against changes in cerebral amine and ammonia nitrogen. Although the glutamate transporters are briefly discussed, the major emphasis of the present review is on the enzymology contributing to the maintenance of glutamate levels under normal and hyperammonemic conditions. Emphasis will also be placed on the central role of glutamate in the glutamine-glutamate and glutamine-GABA neurotransmitter cycles between neurons and astrocytes. Finally, we provide a brief and selective discussion of neuropathology associated with altered cerebral glutamate levels.
Collapse
|
19
|
Ashby EL, Kierzkowska M, Hull J, Kehoe PG, Hutson SM, Conway ME. Altered Expression of Human Mitochondrial Branched Chain Aminotransferase in Dementia with Lewy Bodies and Vascular Dementia. Neurochem Res 2016; 42:306-319. [PMID: 26980008 PMCID: PMC5283609 DOI: 10.1007/s11064-016-1855-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 11/22/2022]
Abstract
Cytosolic and mitochondrial human branched chain aminotransferase (hBCATc and hBCATm, respectively) play an integral role in brain glutamate metabolism. Regional increased levels of hBCATc in the CA1 and CA4 region of Alzheimer’s disease (AD) brain together with increased levels of hBCATm in frontal and temporal cortex of AD brains, suggest a role for these proteins in glutamate excitotoxicity. Glutamate toxicity is a key pathogenic feature of several neurological disorders including epilepsy associated dementia, AD, vascular dementia (VaD) and dementia with Lewy bodies (DLB). To further understand if these increases are specific to AD, the expression profiles of hBCATc and hBCATm were examined in other forms of dementia including DLB and VaD. Similar to AD, levels of hBCATm were significantly increased in the frontal and temporal cortex of VaD cases and in frontal cortex of DLB cases compared to controls, however there were no observed differences in hBCATc between groups in these areas. Moreover, multiple forms of hBCATm were observed that were particular to the disease state relative to matched controls. Real-time PCR revealed similar expression of hBCATm mRNA in frontal and temporal cortex for all cohort comparisons, whereas hBCATc mRNA expression was significantly increased in VaD cases compared to controls. Collectively our results suggest that hBCATm protein expression is significantly increased in the brains of DLB and VaD cases, similar to those reported in AD brain. These findings indicate a more global response to altered glutamate metabolism and suggest common metabolic responses that might reflect shared neurodegenerative mechanisms across several forms of dementia.
Collapse
Affiliation(s)
- Emma L Ashby
- Department of Applied Science, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Marta Kierzkowska
- Department of Applied Science, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Jonathon Hull
- Department of Applied Science, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Patrick G Kehoe
- Dementia Research Group, Faculty of Medicine and Dentistry, University of Bristol, Bristol, BS16 1LE, UK
| | - Susan M Hutson
- Human Nutrition, Foods, and Exercise, Virginia Tech, 1981 Kraft Drive, 1008 ILSB, Blacksburg, VA, 24060, USA
| | - Myra E Conway
- Department of Applied Science, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
20
|
Abstract
Transient multienzyme and/or multiprotein complexes (metabolons) direct substrates toward specific pathways and can significantly influence the metabolism of glutamate and glutamine in the brain. Glutamate is the primary excitatory neurotransmitter in brain. This neurotransmitter has essential roles in normal brain function including learning and memory. Metabolism of glutamate involves the coordinated activity of astrocytes and neurons and high affinity transporter proteins that are selectively distributed on these cells. This chapter describes known and possible metabolons that affect the metabolism of glutamate and related compounds in the brain, as well as some factors that can modulate the association and dissociation of such complexes, including protein modifications by acylation reactions (e.g., acetylation, palmitoylation, succinylation, SUMOylation, etc.) of specific residues. Development of strategies to modulate transient multienzyme and/or enzyme-protein interactions may represent a novel and promising therapeutic approach for treatment of diseases involving dysregulation of glutamate metabolism.
Collapse
|