1
|
Edelmann MJ, Maegawa GHB. CNS-Targeting Therapies for Lysosomal Storage Diseases: Current Advances and Challenges. Front Mol Biosci 2020; 7:559804. [PMID: 33304924 PMCID: PMC7693645 DOI: 10.3389/fmolb.2020.559804] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
During the past decades, several therapeutic approaches have been developed and made rapidly available for many patients afflicted with lysosomal storage disorders (LSDs), inborn organelle disorders with broad clinical manifestations secondary to the progressive accumulation of undegraded macromolecules within lysosomes. These conditions are individually rare, but, collectively, their incidence ranges from 1 in 2,315 to 7,700 live-births. Most LSDs are manifested by neurological symptoms or signs, including developmental delay, seizures, acroparesthesia, motor weakness, and extrapyramidal signs. The chronic and later-onset clinical forms are at one end of the continuum spectrum and are characterized by a subtle and slow progression of neurological symptoms. Due to its inherent physiological properties, unfortunately, the blood-brain barrier (BBB) constitutes a significant obstacle for current and upcoming therapies to achieve the central nervous system (CNS) and treat neurological problems so prevalent in these conditions. To circumvent this limitation, several strategies have been developed to make the therapeutic agent achieve the CNS. This narrative will provide an overview of current therapeutic strategies under development to permeate the BBB, and address and unmet need for treatment of the progressive neurological manifestations, which are so prevalent in these inherited lysosomal disorders.
Collapse
Affiliation(s)
- Mariola J Edelmann
- Department of Microbiology and Cell Science, The University of Florida's Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Gustavo H B Maegawa
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Coutinho MF, Santos JI, S. Mendonça L, Matos L, Prata MJ, S. Jurado A, Pedroso de Lima MC, Alves S. Lysosomal Storage Disease-Associated Neuropathy: Targeting Stable Nucleic Acid Lipid Particle (SNALP)-Formulated siRNAs to the Brain as a Therapeutic Approach. Int J Mol Sci 2020; 21:ijms21165732. [PMID: 32785133 PMCID: PMC7461213 DOI: 10.3390/ijms21165732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
More than two thirds of Lysosomal Storage Diseases (LSDs) present central nervous system involvement. Nevertheless, only one of the currently approved therapies has an impact on neuropathology. Therefore, alternative approaches are under development, either addressing the underlying enzymatic defect or its downstream consequences. Also under study is the possibility to block substrate accumulation upstream, by promoting a decrease of its synthesis. This concept is known as substrate reduction therapy and may be triggered by several molecules, such as small interfering RNAs (siRNAs). siRNAs promote RNA interference, a naturally occurring sequence-specific post-transcriptional gene-silencing mechanism, and may target virtually any gene of interest, inhibiting its expression. Still, naked siRNAs have limited cellular uptake, low biological stability, and unfavorable pharmacokinetics. Thus, their translation into clinics requires proper delivery methods. One promising platform is a special class of liposomes called stable nucleic acid lipid particles (SNALPs), which are characterized by high cargo encapsulation efficiency and may be engineered to promote targeted delivery to specific receptors. Here, we review the concept of SNALPs, presenting a series of examples on their efficacy as siRNA nanodelivery systems. By doing so, we hope to unveil the therapeutic potential of these nanosystems for targeted brain delivery of siRNAs in LSDs.
Collapse
Affiliation(s)
- Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Correspondence: ; Tel.: +351-(223)-401-113
| | - Juliana Inês Santos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
| | - Liliana S. Mendonça
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (L.S.M.); (M.C.P.d.L.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liliana Matos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
| | - Maria João Prata
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal;
- i3S—Institute of Research and Innovation in Health/IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen, 208 4200-135 Porto, Portugal
| | - Amália S. Jurado
- University of Coimbra, CNC—Center for Neuroscience and Cell Biology, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Maria C. Pedroso de Lima
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (L.S.M.); (M.C.P.d.L.)
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA I.P), Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; (J.I.S.); (L.M.); (S.A.)
- Center for the Study of Animal Science, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
| |
Collapse
|
3
|
Precision Medicine for Lysosomal Disorders. Biomolecules 2020; 10:biom10081110. [PMID: 32722587 PMCID: PMC7463721 DOI: 10.3390/biom10081110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Precision medicine (PM) is an emerging approach for disease treatment and prevention that accounts for the individual variability in the genes, environment, and lifestyle of each person. Lysosomal diseases (LDs) are a group of genetic metabolic disorders that include approximately 70 monogenic conditions caused by a defect in lysosomal function. LDs may result from primary lysosomal enzyme deficiencies or impairments in membrane-associated proteins, lysosomal enzyme activators, or modifiers that affect lysosomal function. LDs are heterogeneous disorders, and the phenotype of the affected individual depends on the type of substrate and where it accumulates, which may be impacted by the type of genetic change and residual enzymatic activity. LDs are individually rare, with a combined incidence of approximately 1:4000 individuals. Specific therapies are already available for several LDs, and many more are in development. Early identification may enable disease course prediction and a specific intervention, which is very important for clinical outcome. Driven by advances in omics technology, PM aims to provide the most appropriate management for each patient based on the disease susceptibility or treatment response predictions for specific subgroups. In this review, we focused on the emerging diagnostic technologies that may help to optimize the management of each LD patient and the therapeutic options available, as well as in clinical developments that enable customized approaches to be selected for each subject, according to the principles of PM.
Collapse
|
4
|
Landi C, Luddi A, Bianchi L, Pannuzzo G, Pavone V, Piomboni P, Bini L. Proteostasis network alteration in lysosomal storage disorders: Insights from the mouse model of Krabbe disease. J Neurosci Res 2019; 98:718-733. [PMID: 31797419 DOI: 10.1002/jnr.24558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/09/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022]
Abstract
In Krabbe disease, a mutation in GALC gene causes widespread demyelination determining cell death by apoptosis, mainly in oligodendrocytes and Schwann cells. Less is known on the molecular mechanisms induced by this deficiency. Here, we report an impairment in protein synthesis and degradation and in proteasomal clearance with a potential accumulation of the misfolded proteins and induction of the endoplasmic reticulum stress in the brain of 6-day-old twitcher mice (TM) (model of Krabbe disease). In particular, an imbalance of the immunoproteasome function was highlighted, useful for shaping adaptive immune response by neurological cells. Moreover, our data show an involvement of cytoskeleton remodeling in Krabbe pathogenesis, with a lamin meshwork disaggregation in twitcher oligodendrocytes in 6-day-old TM. This study provides interesting protein targets and mechanistic insight on the early onset of Krabbe disease that may be promising options to be tested in combination with currently available therapies to rescue Krabbe phenotype.
Collapse
Affiliation(s)
- Claudia Landi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Laura Bianchi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Valentina Pavone
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Luca Bini
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
5
|
Giugliani R, Vairo F, Kubaski F, Poswar F, Riegel M, Baldo G, Saute JA. Neurological manifestations of lysosomal disorders and emerging therapies targeting the CNS. THE LANCET CHILD & ADOLESCENT HEALTH 2017; 2:56-68. [PMID: 30169196 DOI: 10.1016/s2352-4642(17)30087-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022]
Abstract
Lysosomal disorders have been an area of interest since intravenous enzyme replacement therapy was successfully introduced for the treatment of Gaucher's disease in the early 1990s. This treatment approach has also been developed for several other lysosomal disorders, including Fabry's disease, Pompe's disease, lysosomal acid lipase deficiency, and five types of mucopolysaccharidosis. Despite the benefits of enzyme replacement therapy, it has limitations-most importantly, its ineffectiveness in treating the neurological components of lysosomal disorders, as only a small proportion of recombinant enzymes can cross the blood-brain barrier. Development of strategies to improve drug delivery to the CNS is now the primary focus in lysosomal disorder research. This Review discusses the neurological manifestations and emerging therapies for the CNS component of these diseases. The therapies in development (which are now in phase 1 or phase 2 clinical trials) might be for specific lysosomal disorders (enzyme replacement therapy via intrathecal or intracerebroventricular routes or with fusion proteins, or gene therapy) or applicable to more than one lysosomal disorder (haemopoietic stem cell transplantation, pharmacological chaperones, substrate reduction therapy, or stop codon readthrough). The combination of early diagnosis with effective therapies should change the outlook for patients with lysosomal disorders with neurological involvement in the next 5-10 years.
Collapse
Affiliation(s)
- Roberto Giugliani
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | - Fabiano Poswar
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariluce Riegel
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Baldo
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jonas Alex Saute
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|