1
|
Prateeksha P, Naidu P, Das M, Barthels D, Das H. KLF2 Regulates Neural Differentiation of Dental Pulp-derived Stem Cells by Modulating Autophagy and Mitophagy. Stem Cell Rev Rep 2023; 19:2886-2900. [PMID: 37642902 DOI: 10.1007/s12015-023-10607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Transplantation of stem cells for treating neurodegenerative disorders is a promising future therapeutic approach. However, the molecular mechanism underlying the neuronal differentiation of dental pulp-derived stem cells (DPSC) remains inadequately explored. The current study aims to define the regulatory role of KLF2 (Kruppel-like factor 2) during the neural differentiation (ND) of DPSC. METHODS We first investigated the transcriptional and translational expression of KLF2, autophagy, and mitophagy-associated markers during the ND of DPSC by using quantitative RT-PCR and western blot methods. After that, we applied the chemical-mediated loss- and gain-of-function approaches using KLF2 inhibitor, GGPP (geranylgeranyl pyrophosphate), and KLF2 activator, GGTI-298 (geranylgeranyl transferase inhibitor-298) to delineate the role of KLF2 during ND of DPSC. The western blot, qRT-PCR, and immunocytochemistry were performed to determine the molecular changes during ND after KLF2 deficiency and KLF2 sufficiency. We also analyzed the oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) using the Seahorse XFe24 analyzer. RESULTS Our study demonstrated that the expression level of KLF2, autophagy, and mitophagy-associated markers were significantly elevated during the ND of DPSC. Next, we found that the KLF2 inhibitor, GGPP significantly reduced the ND of DPSC. Inversely, KLF2 overexpression accelerated the molecular phenomenon of DPSC's commitment towards ND, indicating the crucial role of KLF2 in neurogenesis. Moreover, we found that the KLF2 positively regulated autophagy, mitophagy, and the Wnt5a signaling pathway during neurogenesis. Seahorse XFe24 analysis revealed that the ECAR and OCR parameters were significantly increased during ND, and inhibition of KLF2 marginally reversed them towards DPSC's cellular bioenergetics. However, KLF2 overexpression shifted the cellular energy metabolism toward the quiescent stage. CONCLUSION Collectively, our findings provide the first evidence that the KLF2 critically regulates the neurogenesis of DPSC by inducing autophagy and mitophagy.
Collapse
Affiliation(s)
- Prateeksha Prateeksha
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Prathyusha Naidu
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Manjusri Das
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Derek Barthels
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Hiranmoy Das
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA.
| |
Collapse
|
2
|
Jashire Nezhad N, Safari A, Namavar MR, Nami M, Karimi-Haghighi S, Pandamooz S, Dianatpour M, Azarpira N, Khodabandeh Z, Zare S, Hooshmandi E, Bayat M, Owjfard M, Zafarmand SS, Fadakar N, Jaberi AR, Salehi MS, Borhani-Haghighi A. Short-term beneficial effects of human dental pulp stem cells and their secretome in a rat model of mild ischemic stroke. J Stroke Cerebrovasc Dis 2023; 32:107202. [PMID: 37354874 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/01/2023] [Accepted: 05/29/2023] [Indexed: 06/26/2023] Open
Abstract
Although cell therapy has been applied in regenerative medicine for decades, recent years have seen greatly increased attention being given to the use of stem cell-based derivatives such as cell-free secretome. Dental pulp stem cells (DPSCs) are widely available, easily accessible, and have high neuroprotective and angiogenic properties. In addition, DPSC-derived secretome contains a rich mixture of trophic factors. The current investigation evaluated the short-term therapeutic effects of human DPSCs and their secretome in a rat model of mild ischemic stroke. Mild ischemic stroke was induced by 30 min middle cerebral artery occlusion, and hDPSCs or their secretome was administered intra-arterially and intranasally. Neurological function, infarct size, spatial working memory, and relative expression of seven target genes in two categories of neurotrophic and angiogenic factors were assessed three days after stroke. In the short-term, all treatments reduced the severity of neurological and histological deficits caused by ischemic stroke. Moreover, transient middle cerebral artery occlusion led to the striatal and cortical over-expression of BDNF, NT-3, and angiogenin, while NGF and VEGF expression was reduced. Almost all interventions were able to modulate the expression of target genes after stroke. The obtained data revealed that single intra-arterial administration of hDPSCs or their secretome, single intranasal transplantation of hDPSCs, or repeated intranasal administration of hDPSC-derived secretome was able to ameliorate the devastating effects of a mild stroke, at least in the short-term.
Collapse
Affiliation(s)
- Nahid Jashire Nezhad
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry & Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran; Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nima Fadakar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
3
|
Zhang H, Gong X, Xu X, Wang X, Sun Y. Tooth number abnormality: from bench to bedside. Int J Oral Sci 2023; 15:5. [PMID: 36604408 PMCID: PMC9816303 DOI: 10.1038/s41368-022-00208-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 11/01/2022] [Indexed: 01/07/2023] Open
Abstract
Tooth number abnormality is one of the most common dental developmental diseases, which includes both tooth agenesis and supernumerary teeth. Tooth development is regulated by numerous developmental signals, such as the well-known Wnt, BMP, FGF, Shh and Eda pathways, which mediate the ongoing complex interactions between epithelium and mesenchyme. Abnormal expression of these crutial signalling during this process may eventually lead to the development of anomalies in tooth number; however, the underlying mechanisms remain elusive. In this review, we summarized the major process of tooth development, the latest progress of mechanism studies and newly reported clinical investigations of tooth number abnormality. In addition, potential treatment approaches for tooth number abnormality based on developmental biology are also discussed. This review not only provides a reference for the diagnosis and treatment of tooth number abnormality in clinical practice but also facilitates the translation of basic research to the clinical application.
Collapse
Affiliation(s)
- Han Zhang
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xuyan Gong
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaoqiao Xu
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaogang Wang
- grid.64939.310000 0000 9999 1211Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yao Sun
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
4
|
Al-Maswary AA, O’Reilly M, Holmes AP, Walmsley AD, Cooper PR, Scheven BA. Exploring the neurogenic differentiation of human dental pulp stem cells. PLoS One 2022; 17:e0277134. [PMID: 36331951 PMCID: PMC9635714 DOI: 10.1371/journal.pone.0277134] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Human dental pulp stem cells (hDPSCs) have increasingly gained interest as a potential therapy for nerve regeneration in medicine and dentistry, however their neurogenic potential remains a matter of debate. This study aimed to characterize hDPSC neuronal differentiation in comparison with the human SH-SY5Y neuronal stem cell differentiation model. Both hDPSCs and SH-SY5Y could be differentiated to generate typical neuronal-like cells following sequential treatment with all-trans retinoic acid (ATRA) and brain-derived neurotrophic factor (BDNF), as evidenced by significant expression of neuronal proteins βIII-tubulin (TUBB3) and neurofilament medium (NF-M). Both cell types also expressed multiple neural gene markers including growth-associated protein 43 (GAP43), enolase 2/neuron-specific enolase (ENO2/NSE), synapsin I (SYN1), nestin (NES), and peripherin (PRPH), and exhibited measurable voltage-activated Na+ and K+ currents. In hDPSCs, upregulation of acetylcholinesterase (ACHE), choline O-acetyltransferase (CHAT), sodium channel alpha subunit 9 (SCN9A), POU class 4 homeobox 1 (POU4F1/BRN3A) along with a downregulation of motor neuron and pancreas homeobox 1 (MNX1) indicated that differentiation was more guided toward a cholinergic sensory neuronal lineage. Furthermore, the Extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126 significantly impaired hDPSC neuronal differentiation and was associated with reduction of the ERK1/2 phosphorylation. In conclusion, this study demonstrates that extracellular signal-regulated kinase/Mitogen-activated protein kinase (ERK/MAPK) is necessary for sensory cholinergic neuronal differentiation of hDPSCs. hDPSC-derived cholinergic sensory neuronal-like cells represent a novel model and potential source for neuronal regeneration therapies.
Collapse
Affiliation(s)
- Arwa A. Al-Maswary
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail: , (AAA-M); (BAS)
| | - Molly O’Reilly
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew P. Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - A. Damien Walmsley
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul R. Cooper
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Ben A. Scheven
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail: , (AAA-M); (BAS)
| |
Collapse
|
5
|
Jeyaraman N, Prajwal GS, Jeyaraman M, Muthu S, Khanna M. Chondrogenic Potential of Dental-Derived Mesenchymal Stromal Cells. OSTEOLOGY 2021; 1:149-174. [DOI: 10.3390/osteology1030016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The field of tissue engineering has revolutionized the world in organ and tissue regeneration. With the robust research among regenerative medicine experts and researchers, the plausibility of regenerating cartilage has come into the limelight. For cartilage tissue engineering, orthopedic surgeons and orthobiologists use the mesenchymal stromal cells (MSCs) of various origins along with the cytokines, growth factors, and scaffolds. The least utilized MSCs are of dental origin, which are the richest sources of stromal and progenitor cells. There is a paradigm shift towards the utilization of dental source MSCs in chondrogenesis and cartilage regeneration. Dental-derived MSCs possess similar phenotypes and genotypes like other sources of MSCs along with specific markers such as dentin matrix acidic phosphoprotein (DMP) -1, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and STRO-1. Concerning chondrogenicity, there is literature with marginal use of dental-derived MSCs. Various studies provide evidence for in-vitro and in-vivo chondrogenesis by dental-derived MSCs. With such evidence, clinical trials must be taken up to support or refute the evidence for regenerating cartilage tissues by dental-derived MSCs. This article highlights the significance of dental-derived MSCs for cartilage tissue regeneration.
Collapse
|
6
|
Pan Y, Lu T, Peng L, Zeng Q, Huang X, Yao X, Wu B, Xiong F. Functional Analysis of Ectodysplasin-A Mutations in X-Linked Nonsyndromic Hypodontia and Possible Involvement of X-Chromosome Inactivation. Stem Cells Int 2021; 2021:7653013. [PMID: 34545288 PMCID: PMC8449729 DOI: 10.1155/2021/7653013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mutations of the Ectodysplasin-A (EDA) gene are generally associated with syndrome hypohidrotic ectodermal dysplasia or nonsyndromic tooth agenesis. The influence of EDA mutations on dentinogenesis and odontoblast differentiation has not been reported. The aim of this study was to identify genetic clues for the causes of familial nonsyndromic oligodontia and explore the underlying mechanisms involved, while focusing on the role of human dental pulp stem cells (hDPSCs). MATERIALS AND METHODS Candidate gene sequences were obtained by PCR amplification and Sanger sequencing. Functional analysis was conducted, and the pathogenesis associated with EDA mutations in hDPSCs was investigated to explore the impact of the identified mutation on the phenotype. Capillary electrophoresis (CE) was used to detect X-chromosome inactivation (XCI) in the blood of female carriers. RESULTS In this study, we identified an EDA mutation in a Chinese family: the missense mutation c.1013C>T (Thr338Met). Transfection of hDPSCs with a mutant EDA lentivirus decreased the expression of EDA and dentin sialophosphoprotein (DSPP) compared with transfection of control EDA lentivirus. Mechanistically, mutant EDA inhibited the activation of the NF-κB pathway. The CE results showed that symptomatic female carriers had a skewed XCI with a preferential inactivation of the X chromosome that carried the normal allele. CONCLUSIONS In summary, we demonstrated that EDA mutations result in nonsyndromic tooth agenesis in heterozygous females and that, mechanistically, EDA regulates odontogenesis through the NF-κB signalling pathway in hDPSCs. Due to the large heterogeneity of tooth agenesis, this study provided a genetic basis for individuals who exhibit similar clinical phenotypes.
Collapse
Affiliation(s)
- Yuhua Pan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ting Lu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ling Peng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qi Zeng
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiangyu Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinchen Yao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, 143 Dongzong Road, Pingshan District, Shenzhen 518118, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, China
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Arimura Y, Shindo Y, Yamanaka R, Mochizuki M, Hotta K, Nakahara T, Ito E, Yoshioka T, Oka K. Peripheral-neuron-like properties of differentiated human dental pulp stem cells (hDPSCs). PLoS One 2021; 16:e0251356. [PMID: 33956879 PMCID: PMC8101759 DOI: 10.1371/journal.pone.0251356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Elucidating the mechanisms underlying human pain sensation requires the establishment of an in vitro model of pain reception comprising human cells expressing pain-sensing receptors and function properly as neurons. Human dental pulp stem cells (hDPSCs) are mesenchymal stem cells and a promising candidate for producing human neuronal cells, however, the functional properties of differentiated hDPSCs have not yet been fully characterized. In this study, we demonstrated neuronal differentiation of hDPSCs via both their expression of neuronal marker proteins and their neuronal function examined using Ca2+ imaging. Moreover, to confirm the ability of nociception, Ca2+ responses in differentiated hDPSCs were compared to those of rat dorsal root ganglion (DRG) neurons. Those cells showed similar responses to glutamate, ATP and agonists of transient receptor potential (TRP) channels. Since TRP channels are implicated in nociception, differentiated hDPSCs provide a useful in vitro model of human peripheral neuron response to stimuli interpreted as pain.
Collapse
Affiliation(s)
- Yuki Arimura
- Faculty of Science and Technology, Department of Bioscience and Informatics, Keio University, Kanagawa, Japan
| | - Yutaka Shindo
- Faculty of Science and Technology, Department of Bioscience and Informatics, Keio University, Kanagawa, Japan
| | - Ryu Yamanaka
- Faculty of Science and Technology, Department of Bioscience and Informatics, Keio University, Kanagawa, Japan
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Mai Mochizuki
- Faculty of Science and Technology, Department of Bioscience and Informatics, Keio University, Kanagawa, Japan
- Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan
- Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Kohji Hotta
- Faculty of Science and Technology, Department of Bioscience and Informatics, Keio University, Kanagawa, Japan
| | - Taka Nakahara
- Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Etsuro Ito
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- Department of Biology, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tohru Yoshioka
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kotaro Oka
- Faculty of Science and Technology, Department of Bioscience and Informatics, Keio University, Kanagawa, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
8
|
Niapour A, Ghasemi Hamidabadi H, Niapour N, Mohammadi P, Sharifi Pasandi M, Malekzadeh V. Pharmacological Notch pathway inhibition leads to cell cycle arrest and stimulates ascl1 and neurogenin2 genes expression in dental pulp stem cells-derived neurospheres. Biotechnol Lett 2019; 41:873-887. [PMID: 31073804 DOI: 10.1007/s10529-019-02687-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/05/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Human dental pulp-derived stem cells (hDPSCs) are becoming an attractive source for cell-based neurorestorative therapies. As such, it is important to understand the molecular mechanisms that regulate the differentiation of hDPSCs toward the neuronal fate. Notch signaling plays key roles in neural stem/progenitor cells (NS/PCs) maintenance and prevention of their differentiation. The aim of this study was to address the effects of Notch signaling inhibition on neurosphere formation of hDPSCs and neuronal differentiation of hDPSCs-neurospheres. RESULTS hDPSCs were isolated from third molar teeth. The cultivated hDPSCs highly expressed CD90 and CD44 and minimally presented CD34 and CD45 surface markers. The osteo/adipogenic differentiation of hDPSCs was documented. hDPSCs were cultured in neural induction medium and N-[N-(3,5-difluorophenacetyl-L-alanyl)]-Sphenylglycine t-butyl ester (DAPT) was applied to impede Notch signaling during transformation into spheres or on the formed neurospheres. Our results showed that the size and number of neurospheres decreased and the expression profile of nestin, sox1 and pax6 genes reduced provided DAPT. Treatment of the formed neurospheres with DAPT resulted in the cleaved Notch1 reduction, G0/G1 arrest and a decline in L-lactate production. DAPT significantly reduced hes1 and hey1 genes, while ascl1 and neurogenin2 expressions augmented. The number of MAP2 positive cells improved in the DAPT-treated group. CONCLUSIONS Our findings demonstrated the Notch activity in hDPSCs-neurospheres. DAPT treatment positively regulated proneural genes expression and increased neuronal-like differentiation.
Collapse
Affiliation(s)
- Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy and Cell Biology, Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nazila Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Perham Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Marzieh Sharifi Pasandi
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Vadoud Malekzadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
9
|
The Conditioned Medium of Calcined Tooth Powder Promotes the Osteogenic and Odontogenic Differentiation of Human Dental Pulp Stem Cells via MAPK Signaling Pathways. Stem Cells Int 2019; 2019:4793518. [PMID: 31015840 PMCID: PMC6444228 DOI: 10.1155/2019/4793518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/01/2018] [Accepted: 11/05/2018] [Indexed: 01/09/2023] Open
Abstract
The calcined tooth powder (CTP), a type of allogeneic biomimetic mineralized material, has been confirmed that can promote new bone formation when obtained at high temperature. The aim of this study was to investigate effects of the conditioned medium of calcined tooth powder (CTP-CM) on the osteogenic and odontogenic differentiation of human dental pulp stem cells (hDPSCs) and the underlying mechanisms involved. First, ALP activity assay determined that 200 μg/mL was the optimal concentration of CTP-CM for the following experiments. CTP-CM had no significant effect on the proliferation of hDPSCs as indicated by CCK-8 and FCM analysis. Both the gene and protein (DSPP/DSPP, RUNX2/RUNX2, OCN/OCN, OSX/OSX, OPN/OPN, ALP/ALP, and COL-1/COL-1) expression levels increased in the CTP-CM-induced hDPSC group as compared with those in the control group at day 3 or 7, showing the positive regulation of CTP-CM on the osteo/odontogenic differentiation of hDPSCs. Mechanistically, MAPK signaling pathways were activated after the CTP-CM treatment, and the inhibitors targeting MAPK were identified which weakened the effects of CTM-CM on the committed differentiation of hDPSCs. These findings could lead to the creation of stem cell therapies for dental regeneration.
Collapse
|
10
|
Mortadi NA, Khabour OF, Alzoubi KH. Considerations and beliefs in tooth donation to research in Jordan. Clin Cosmet Investig Dent 2018; 10:263-268. [PMID: 30532599 PMCID: PMC6241857 DOI: 10.2147/ccide.s185435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background Research that involves dental pulp stem cells (DPSCs) is growing rapidly. DPSCs can be used for the treatment of craniofacial bone abnormalities and tooth repair. The procedure requires a donation of sound teeth, which might be associated with ethical and moral issues. The purpose of this study was to understand the attitudes and awareness of patients with respect to the donation of their teeth to research. Patients and methods This study involved 500 patients recruited from Dental Care and Dental Teaching Center in Irbid during May 2017-July 2017. Results A well-structured questionnaire was administered and prepared using Google forms and filled out using a tablet device. The majority of patients (62.8%) were willing to donate their teeth to research with significant association with educational level. Half of the patients considered that the donated tooth belongs to them even after extraction, whereas 19% believed that the researcher owns it after donation. Almost half (53.6%) of the participants wished to be informed about the type of scientific research that will be carried out on their teeth. The majority (66.5%) preferred to sign a consent document on tooth donation to research during the consultation visit before extraction. Finally, about 61% were worried that their tooth might be extracted for research purposes rather than medical purposes. Conclusion A good fraction of Jordanian is willing to donate their teeth to research. Educational programs are demanded to enhance the awareness and attitudes of patients on the ownership of extracted teeth, consent process, and donation of teeth.
Collapse
Affiliation(s)
- Noor Al Mortadi
- Department of Applied Dental Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan,
| | - Omar F Khabour
- Department of Applied Medical Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
11
|
Sancilio S, Gallorini M, Di Nisio C, Marsich E, Di Pietro R, Schweikl H, Cataldi A. Alginate/Hydroxyapatite-Based Nanocomposite Scaffolds for Bone Tissue Engineering Improve Dental Pulp Biomineralization and Differentiation. Stem Cells Int 2018; 2018:9643721. [PMID: 30154869 PMCID: PMC6098856 DOI: 10.1155/2018/9643721] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/14/2018] [Accepted: 06/13/2018] [Indexed: 02/08/2023] Open
Abstract
Tissue engineering is widely recognized as a promising approach for bone repair and reconstruction. Several attempts have been made to achieve materials that must be compatible, osteoconductive, and osteointegrative and have mechanical strength to provide a structural support. Composite scaffolds consisting in biodegradable natural polymers are very promising constructs. Hydroxyapatite (HAp) can support alginate as inorganic reinforcement and osteoconductive component of alginate/HAp composite scaffolds. Therefore, HAp-strengthened polymer biocomposites offer a solid system to engineer synthetic bone substitutes. In the present work, HAp was incorporated into an alginate solution and internal gelling was induced by addition of slowly acid-hydrolyzing D-gluconic acid delta-lactone for the direct release of calcium ions from HAp. It has been previously demonstrated that alginate-based composites efficiently support adhesion of cancer bone cell lines. Human dental pulp stem cells (DPSCs) identified in human dental pulp are clonogenic cells capable of differentiating in multiple lineage. Thus, this study is aimed at verifying the mineralization and differentiation potential of human DPSCs seeded onto scaffolds based on alginate and nano-hydroxyapatite. For this purpose, gene expression profile of early and late mineralization-related markers, extracellular matrix components, viability parameters, and oxidative stress occurrence were evaluated and analyzed. In summary, our data show that DPSCs express osteogenic differentiation-related markers and promote calcium deposition and biomineralization when growing onto Alg/HAp scaffolds. These findings confirm the use of Alg/HAp scaffolds as feasible composite materials in tissue engineering, being capable of promoting a specific and successful tissue regeneration as well as mineralized matrix deposition and sustaining natural bone regeneration.
Collapse
Affiliation(s)
- Silvia Sancilio
- 1Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, Italy
| | - Marialucia Gallorini
- 2Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio, Chieti-Pescara, Italy
- 3Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Chiara Di Nisio
- 1Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, Italy
| | - Eleonora Marsich
- 4Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Roberta Di Pietro
- 5Department of Medicine and Ageing Sciences, G. d'Annunzio University, Chieti, Italy
| | - Helmut Schweikl
- 3Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Amelia Cataldi
- 1Department of Pharmacy, University G. d'Annunzio, Chieti-Pescara, Italy
| |
Collapse
|