1
|
Rentzeperis F, Abdennadher M, Snyder K, Dembny K, Abdollahi S, Zaghloul KA, Talagala L, Theodore WH, Inati SK. Lateralization of interictal temporal lobe hypoperfusion in lesional and non-lesional temporal lobe epilepsy using arterial spin labeling MRI. Epilepsy Res 2023; 193:107163. [PMID: 37187039 PMCID: PMC10247543 DOI: 10.1016/j.eplepsyres.2023.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE Non-invasive imaging studies play a critical role in the presurgical evaluation of patients with drug-resistant temporal lobe epilepsy (TLE), particularly in helping to lateralize the seizure focus. Arterial Spin Labeling (ASL) MRI has been widely used to non-invasively study cerebral blood flow (CBF), with somewhat variable interictal alterations reported in TLE. Here, we compare temporal lobe subregional interictal perfusion and symmetry in lesional (MRI+) and non-lesional (MRI-) TLE compared to healthy volunteers (HVs). METHODS Twenty TLE patients (9 MRI+, 11 MRI-) and 14 HVs under went 3 T Pseudo-Continuous ASL MRI through an epilepsy imaging research protocol at the NIH Clinical Center. We compared normalized CBF and absolute asymmetry indices in multiple temporal lobe subregions. RESULTS Compared to HVs, both MRI+ and MRI- TLE groups demonstrated significant ipsilateral mesial and lateral temporal hypoperfusion, specifically in the hippocampal and anterior temporal neocortical subregions, with additional hypoperfusion in the ipsilateral parahippocampal gyrus in the MRI+ and contralateral hippocampus in the MRI- TLE groups. Contralateral to the seizure focus, there was significant relative hypoperfusion in multiple subregions in the MRI- compared to the MRI+ TLE groups. The MRI+ group therefore had significantly greater asymmetry across multiple temporal subregions compared to the MRI- TLE and HV groups. No significant differences in asymmetry were found between the MRI- TLE and HV groups. CONCLUSION We found a similar extent of interictal ipsilateral temporal hypoperfusion in MRI+ and MRI- TLE. However, significantly increased asymmetries were found only in the MRI+ group due to differences in perfusion contralateral to the seizure focus between the patient groups. The lack of asymmetry in the MRI- group may negatively impact the utility of interictal ASL for seizure focus lateralization in this patient population.
Collapse
Affiliation(s)
- Frederika Rentzeperis
- Office of the Clinical Director, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Myriam Abdennadher
- Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Kathryn Snyder
- Office of the Clinical Director, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Kate Dembny
- Office of the Clinical Director, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Shervin Abdollahi
- Office of the Clinical Director, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, USA
| | - Lalith Talagala
- NIH MRI Research Facility, NINDS, National Institutes of Health, USA
| | | | - Sara K Inati
- Office of the Clinical Director, NINDS, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
George AG, Farrell JS, Colangeli R, Wall AK, Gom RC, Kesler MT, Rodriguez de la Hoz C, Villa BR, Perera T, Rho JM, Kurrasch D, Teskey GC. Sudden unexpected death in epilepsy is prevented by blocking postictal hypoxia. Neuropharmacology 2023; 231:109513. [PMID: 36948357 DOI: 10.1016/j.neuropharm.2023.109513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/21/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Epilepsy is at times a fatal disease. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality in people with intractable epilepsy and is defined by exclusion; non-accidental, non-toxicologic, and non-anatomic causes of death. While SUDEP often follows a bilateral tonic-clonic seizure, the mechanisms that ultimately lead to terminal apnea and then asystole remain elusive and there is a lack of preventative treatments. Based on the observation that discrete seizures lead to local and postictal vasoconstriction, resulting in hypoperfusion, hypoxia and behavioural disturbances in the forebrain we reasoned those similar mechanisms may play a role in SUDEP when seizures invade the brainstem. Here we tested this neurovascular-based hypothesis of SUDEP in awake non-anesthetized mice by pharmacologically preventing seizure-induced vasoconstriction, with cyclooxygenase-2 or L-type calcium channel antagonists. In both acute and chronic mouse models of seizure-induced premature mortality, ibuprofen and nicardipine extended life while systemic drug levels remained high enough to be effective. We also examined the potential role of spreading depolarization in the acute model of seizure-induced premature mortality. These data provide a proof-of-principle for the neurovascular hypothesis of SUDEP rather than spreading depolarization and the use of currently available drugs to prevent it.
Collapse
Affiliation(s)
- Antis G George
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Jordan S Farrell
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada; Department of Neurosurgery, Stanford University, Palo Alto, CA, 94305, USA
| | - Roberto Colangeli
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Alexandra K Wall
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Renaud C Gom
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Mitchell T Kesler
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | | | - Bianca R Villa
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Tefani Perera
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Jong M Rho
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Neurosciences, Pediatrics and Pharmacology, University of California, San Diego and Rady Children's Hospital, San Diego, CA, USA
| | - Deborah Kurrasch
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada; Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - G Campbell Teskey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
3
|
Comparison of Qualitative and Quantitative Analyses of MR-Arterial Spin Labeling Perfusion Data for the Assessment of Pediatric Patients with Focal Epilepsies. Diagnostics (Basel) 2022; 12:diagnostics12040811. [PMID: 35453858 PMCID: PMC9032819 DOI: 10.3390/diagnostics12040811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/07/2022] Open
Abstract
The role of MR Arterial-Spin-Labeling Cerebral Blood Flow maps (ASL-CBF) in the assessment of pediatric focal epilepsy is still debated. We aim to compare the Seizure Onset Zone (SOZ) detection rate of three methods of evaluation of ASL-CBF: 1) qualitative visual (qCBF), 2) z-score voxel-based quantitative analysis of index of asymmetry (AI-CBF), and 3) z-score voxel-based cluster analysis of the quantitative difference of patient’s CBF from the normative data of an age-matched healthy population (cCBF). Interictal ASL-CBF were acquired in 65 pediatric patients with focal epilepsy: 26 with focal brain lesions and 39 with a normal MRI. All hypoperfusion areas visible in at least 3 contiguous images of qCBF analysis were identified. In the quantitative evaluations, clusters with a significant z-score AI-CBF ≤ −1.64 and areas with a z-score cCBF ≤ −1.64 were considered potentially related to the SOZ. These areas were compared with the SOZ defined by the anatomo-electro-clinical data. In patients with a positive MRI, SOZ was correctly identified in 27% of patients using qCBF, 73% using AI-CBF, and 77% using cCBF. In negative MRI patients, SOZ was identified in 18% of patients using qCBF, in 46% using AI-CBF, and in 64% using cCBF (p < 0.001). Quantitative analyses of ASL-CBF maps increase the detection rate of SOZ compared to the qualitative method, principally in negative MRI patients.
Collapse
|
4
|
Wang DJJ, Le Bihan D, Krishnamurthy R, Smith M, Ho ML. Noncontrast Pediatric Brain Perfusion: Arterial Spin Labeling and Intravoxel Incoherent Motion. Magn Reson Imaging Clin N Am 2021; 29:493-513. [PMID: 34717841 DOI: 10.1016/j.mric.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Noncontrast magnetic resonance imaging techniques for measuring brain perfusion include arterial spin labeling (ASL) and intravoxel incoherent motion (IVIM). These techniques provide noninvasive and repeatable assessment of cerebral blood flow or cerebral blood volume without the need for intravenous contrast. This article discusses the technical aspects of ASL and IVIM with a focus on normal physiologic variations, technical parameters, and artifacts. Multiple pediatric clinical applications are presented, including tumors, stroke, vasculopathy, vascular malformations, epilepsy, migraine, trauma, and inflammation.
Collapse
Affiliation(s)
- Danny J J Wang
- USC Institute for Neuroimaging and Informatics, SHN, 2025 Zonal Avenue, Health Sciences Campus, Los Angeles, CA 90033, USA
| | - Denis Le Bihan
- NeuroSpin, Centre d'études de Saclay, Bâtiment 145, Gif-sur-Yvette 91191, France
| | - Ram Krishnamurthy
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA.
| |
Collapse
|
5
|
Zhang J, Zhang H, Li Y, Yuan M, Zhang J, Luo H, Yao Z, Gan J. Arterial spin labeling for presurgical localization of refractory frontal lobe epilepsy in children. Eur J Med Res 2021; 26:88. [PMID: 34362444 PMCID: PMC8349087 DOI: 10.1186/s40001-021-00564-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023] Open
Abstract
Background Epilepsy is one of the most common chronic neurological diseases. Despite the great variety and prevalence of antiepileptic drug treatments, one-third of epilepsies remain drug resistant. The frontal lobe is extensive, and frontal lobe seizures are difficult to locate, which increases the difficulty of the preoperative localization of the epileptogenic zone. Case presentation Two previously healthy girls with refractory frontal lobe epilepsy showed significant perfusion abnormalities in the right frontal lobe using the cerebral blood perfusion (CBF) quantitative analysis system. They became seizure-free after lesionectomy of the frontal lobe by ASL combined with electroencephalography (EEG) rapid localization. The histopathological diagnosis was focal cortical dysplasia (FCD) type IIa and IIb. Conclusions The positive outcome suggests that the combined use of ASL with EEG could be a beneficial option for the presurgical evaluation of pediatric epilepsy. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-021-00564-0.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section Three, South Renmin Road, Chengdu, 610041, China.,Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Heng Zhang
- Department of neurosurgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yang Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section Three, South Renmin Road, Chengdu, 610041, China.,Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Meng Yuan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section Three, South Renmin Road, Chengdu, 610041, China.,Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Jinxiu Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section Three, South Renmin Road, Chengdu, 610041, China.,Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Huan Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section Three, South Renmin Road, Chengdu, 610041, China.,Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | | | - Jing Gan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, Section Three, South Renmin Road, Chengdu, 610041, China. .,Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|