1
|
Jing C, Kuai H, Matsumoto H, Yamaguchi T, Liao IY, Wang S. Addiction-related brain networks identification via Graph Diffusion Reconstruction Network. Brain Inform 2024; 11:1. [PMID: 38190053 PMCID: PMC10774517 DOI: 10.1186/s40708-023-00216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Functional magnetic resonance imaging (fMRI) provides insights into complex patterns of brain functional changes, making it a valuable tool for exploring addiction-related brain connectivity. However, effectively extracting addiction-related brain connectivity from fMRI data remains challenging due to the intricate and non-linear nature of brain connections. Therefore, this paper proposed the Graph Diffusion Reconstruction Network (GDRN), a novel framework designed to capture addiction-related brain connectivity from fMRI data acquired from addicted rats. The proposed GDRN incorporates a diffusion reconstruction module that effectively maintains the unity of data distribution by reconstructing the training samples, thereby enhancing the model's ability to reconstruct nicotine addiction-related brain networks. Experimental evaluations conducted on a nicotine addiction rat dataset demonstrate that the proposed GDRN effectively explores nicotine addiction-related brain connectivity. The findings suggest that the GDRN holds promise for uncovering and understanding the complex neural mechanisms underlying addiction using fMRI data.
Collapse
Affiliation(s)
- Changhong Jing
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongzhi Kuai
- Faculty of Engineering, Maebashi Institute of Technology, Maebashi, 371-0816, Japan
| | - Hiroki Matsumoto
- Faculty of Engineering, Maebashi Institute of Technology, Maebashi, 371-0816, Japan
| | | | - Iman Yi Liao
- University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Shuqiang Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
2
|
Jo C, Joo H, Lim NY, Park SJ, Choi SO. Withdrawal from 3-Fluoroethamphetamine induces hyperactivity and depression-like behaviors in male mice. J Neurosci Res 2024; 102:e25251. [PMID: 37818759 DOI: 10.1002/jnr.25251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
3-Fluoroethamphetamine (3-FEA) belongs to the amphetamine class of stimulant drugs and functions as a releasing agent for the monoamine neurotransmitters norepinephrine, dopamine, and serotonin. 3-FEA acts on the central nervous system and elicits physical and mental side effects, such as euphoria, increased heart rate, and excitement. However, little is known about the withdrawal symptoms and behavioral changes induced by 3-FEA administration. This study aimed to evaluate the short-term consequences of 3-FEA administration (twice a day, 7 days, i.p.; 1 and 10 mg/kg) in C57BL/6J mice (male, 7 weeks old) at three behavioral levels following 1-4 days of withdrawal. The evaluation included (1) withdrawal score, (2) hyperactivity (open field [OF], elevated plus maze [EPM], and cliff avoidance [CA] test), and (3) depression-like behavior (forced-swim test). In the withdrawal score test, withdrawal behavior increased in all 3-FEA groups at 16 and 40 h after withdrawal. In the OF, EPM, and CA tests, the 3-FEA administration group showed significant changes in terms of hyperactivity. In addition, in the forced-swim test, both the 1 mg/kg and 10 mg/kg 3-FEA groups showed increased immobility time. These findings indicate that 3-FEA administration may lead to physical dependence, demonstrated by the withdrawal score increase and significant changes in hyperactivity and depression-like behavior following repeated administration and drug cessation. In conclusion, this study reveals the adverse consequences of 3-FEA administration and highlights the need for awareness raising and regulatory action to control the use of this new psychoactive substance.
Collapse
Affiliation(s)
- Cheolmin Jo
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Hyejin Joo
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Na Young Lim
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Su-Jeong Park
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Sun Ok Choi
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| |
Collapse
|
3
|
Lepeak L, Miracle S, Ferragud A, Seiglie MP, Shafique S, Ozturk Z, Minnig MA, Medeiros G, Cottone P, Sabino V. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) of the Bed Nucleus of the Stria Terminalis Mediates Heavy Alcohol Drinking in Mice. eNeuro 2023; 10:ENEURO.0424-23.2023. [PMID: 38053471 PMCID: PMC10755645 DOI: 10.1523/eneuro.0424-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
Alcohol use disorder (AUD) is a complex psychiatric disease characterized by periods of heavy drinking and periods of withdrawal. Chronic exposure to ethanol causes profound neuroadaptations in the extended amygdala, which cause allostatic changes promoting excessive drinking. The bed nucleus of the stria terminalis (BNST), a brain region involved in both excessive drinking and anxiety-like behavior, shows particularly high levels of pituitary adenylate cyclase-activating polypeptide (PACAP), a key mediator of the stress response. Recently, a role for PACAP in withdrawal-induced alcohol drinking and anxiety-like behavior in alcohol-dependent rats has been proposed; whether the PACAP system of the BNST is also recruited in other models of alcohol addiction and whether it is of local or nonlocal origin is currently unknown. Here, we show that PACAP immunoreactivity is increased selectively in the BNST of C57BL/6J mice exposed to a chronic, intermittent access to ethanol. While pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor-expressing cells were unchanged by chronic alcohol, the levels of a peptide closely related to PACAP, the calcitonin gene-related neuropeptide, were found to also be increased in the BNST. Finally, using a retrograde chemogenetic approach in PACAP-ires-Cre mice, we found that the inhibition of PACAP neuronal afferents to the BNST reduced heavy ethanol drinking. Our data suggest that the PACAP system of the BNST is recruited by chronic, voluntary alcohol drinking in mice and that nonlocally originating PACAP projections to the BNST regulate heavy alcohol intake, indicating that this system may represent a promising target for novel AUD therapies.
Collapse
Affiliation(s)
| | | | - Antonio Ferragud
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University Chobanian & Avedisian, School of Medicine, Boston, Massachusetts 02118
| | - Mariel P. Seiglie
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University Chobanian & Avedisian, School of Medicine, Boston, Massachusetts 02118
| | - Samih Shafique
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University Chobanian & Avedisian, School of Medicine, Boston, Massachusetts 02118
| | - Zeynep Ozturk
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University Chobanian & Avedisian, School of Medicine, Boston, Massachusetts 02118
| | - Margaret A. Minnig
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University Chobanian & Avedisian, School of Medicine, Boston, Massachusetts 02118
| | - Gianna Medeiros
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University Chobanian & Avedisian, School of Medicine, Boston, Massachusetts 02118
| | | | | |
Collapse
|
4
|
Iqbal A, Hamid A, Ahmad SM, Lutfy K. The Role of Mu Opioid Receptors in High Fat Diet-Induced Reward and Potentiation of the Rewarding Effect of Oxycodone. Life (Basel) 2023; 13:life13030619. [PMID: 36983775 PMCID: PMC10055773 DOI: 10.3390/life13030619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Excessive high fat diet (HFD) consumption can induce food addiction, which is believed to involve the communication between the hypothalamus and mesolimbic dopaminergic neurons, originating in the ventral tegmental area (VTA) and projecting to the nucleus accumbens (NAc). These brain areas are densely populated with opioid receptors, raising the possibility that these receptors, and particularly mu opioid receptors (MORs), are involved in rewards elicited by palatable food. This study sought to investigate the involvement of MORs in HFD-induced reward and if there is any difference between male and female subjects in this response. We also assessed if exposure to HFD would alter the rewarding action of oxycodone, a relatively selective MOR agonist. The place conditioning paradigm was used as an animal model of reward to determine if short-time (STC, 2 h) or long-time (LTC, 16 h) conditioning with HFD induces reward or alters the rewarding action of oxycodone. Male and female C57BL/6J mice as well as MOR knockout and their wildtype littermates of both sexes were tested for basal place preference on day 1 and then conditioned with an HFD in one chamber and a regular chow diet (RCD) in another chamber for 2 h on alternate days. Three sets of STC were used, followed by a set of LTC. Each set of conditioning consisted of two conditioning with RCD and two conditioning with HFD. Mice were tested for place preference after each set of STC and again after LTC. Controls were conditioned with RCD in both conditioning chambers. Following the last place preference test, mice were treated with oxycodone and conditioned in the HFD-paired chamber and with saline in the RCD-paired chamber for one hour once a day to explore the possibility if the HFD could alter oxycodone reward. The result showed that HFD induced conditioned place preference (CPP) in male but not female subjects. However, oxycodone conditioning elicited reward in both male and female mice of the HFD group but not the control group, showing that prior conditioning with HFD potentiated the rewarding action of oxycodone. The latter response was mediated via MORs, as it was blunted in MOR knockout mice. Similarly, HFD-induced CPP was blunted in male MOR knockout mice, suggesting sexual dimorphism in this response.
Collapse
|
5
|
TA-GAN: transformer-driven addiction-perception generative adversarial network. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-08187-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Pituitary adenylate cyclase-activating polypeptide type 1 receptor within the nucleus accumbens core mediates excessive alcohol drinking in alcohol-preferring rats. Neuropharmacology 2022; 212:109063. [PMID: 35460713 DOI: 10.1016/j.neuropharm.2022.109063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Alcohol use disorders (AUD) have a strong component of heritability; however, the neurobiological mechanisms mediating the propensity to consume excessive amounts of alcohol are still not well understood. Pituitary adenylate cyclase-activating polypeptide (PACAP), a highly conserved neuropeptide which exerts its effects mainly through the PAC1 receptor (PAC1R), has been suggested to be one of the mediators of the effects of drugs of abuse and alcohol. Here, we investigated the role of the PACAP/PAC1R system in excessive alcohol drinking in alcohol-preferring rats, an established animal model of AUD. Intracerebroventricular (i.c.v.) administration of the PAC1R antagonist PACAP(6-38) blocked excessive alcohol drinking and motivation to drink in Sardinian alcohol-preferring (Scr:sP) rats, without affecting water, saccharin, or sucrose intake. Notably, PACAP(6-38) did not affect ethanol responding in outbred Wistar rats. PACAP(6-38) also significantly reduced alcohol-seeking behavior under a second-order schedule of reinforcement. Using immunohistochemistry, a significant increase in the number of PAC1R positive cells was observed selectively in the nucleus accumbens (NAcc) Core of Scr:sP rats, compared to Wistar rats following alcohol drinking. Finally, excessive drinking in Scr:sP rats was suppressed by intra-NAcc Core, but not intra-NAcc Shell, PACAP(6-38), as well as by virally-mediated PAC1R knockdown in the NAcc Core. The present study shows that hyperactivity of the PACAP/PAC1R system specifically in the NAcc Core mediates excessive drinking of alcohol-preferring rats, and indicates that this system may represent a novel target for the treatment of AUD.
Collapse
|
7
|
Chen G, Ghazal M, Rahman S, Lutfy K. The impact of adolescent nicotine exposure on alcohol use during adulthood: The role of neuropeptides. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:53-93. [PMID: 34801174 DOI: 10.1016/bs.irn.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nicotine and alcohol abuse and co-dependence represent major public health crises. Indeed, previous research has shown that the prevalence of alcoholism is higher in smokers than in non-smokers. Adolescence is a susceptible period of life for the initiation of nicotine and alcohol use and the development of nicotine-alcohol codependence. However, there is a limited number of pharmacotherapeutic agents to treat addiction to nicotine or alcohol alone. Notably, there is no effective medication to treat this comorbid disorder. This chapter aims to review the early nicotine use and its impact on subsequent alcohol abuse during adolescence and adulthood as well as the role of neuropeptides in this comorbid disorder. The preclinical and clinical findings discussed in this chapter will advance our understanding of this comorbid disorder's neurobiology and lay a foundation for developing novel pharmacotherapies to treat nicotine and alcohol codependence.
Collapse
Affiliation(s)
- G Chen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States; Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - M Ghazal
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - K Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States.
| |
Collapse
|
8
|
Moody TW, Jensen RT. Pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal peptide (Part 2): biology and clinical importance in central nervous system and inflammatory disorders. Curr Opin Endocrinol Diabetes Obes 2021; 28:206-213. [PMID: 33481421 PMCID: PMC7961158 DOI: 10.1097/med.0000000000000621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW To discuss recent advances of vasoactive intestinal peptide/pituitary adenylate cyclase-activating polypeptide (VIP/PACAP) receptors in the selected central nervous system (CNS) and inflammatory disorders. RECENT FINDINGS Recent studies provide evidence that PACAP plays an important role in a number of CNS disorders, particularly the pathogenesis of headaches (migraine, etc.) as well as posttraumatic stress disorder and drug/alcohol/smoking addiction. VIP has important therapeutic effects in a number of autoimmune/inflammatory disorder such as rheumatoid arthritis. In some cases, these insights have advanced to therapeutic trials. SUMMARY Recent insights from studies of VIP/PACAP and their receptors in both CNS disorders (migraine, posttraumatic stress disorder, addiction [drugs, alcohol, smoking]) and inflammatory disorders [such as rheumatoid arthritis] are suggesting new treatment approaches. The elucidation of the importance of VIP/PACAP system in these disorders combined recent development of specific drugs acting on this system (i.e., monoclonal VIP/PACAP antibodies) will likely lead to importance novel treatment approaches in these diseases.
Collapse
Affiliation(s)
- Terry W Moody
- Department of Health and Human services, National Cancer Institute, Center for Cancer Training. Bethesda, Maryland, USA
| | - Robert T Jensen
- National Institutes of Health, National Institute of Diabetes, Digestive and Kidney Diseases, Digestive Diseases Branch, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Pituitary adenylate cyclase-activating polypeptide (PACAP) modulates dependence-induced alcohol drinking and anxiety-like behavior in male rats. Neuropsychopharmacology 2021; 46:509-518. [PMID: 33191400 PMCID: PMC8027820 DOI: 10.1038/s41386-020-00904-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder (AUD) is a devastating illness defined by periods of heavy drinking and withdrawal, often leading to a chronic relapsing course. Initially, alcohol is consumed for its positive reinforcing effects, but later stages of AUD are characterized by drinking to alleviate withdrawal-induced negative emotional states. Brain stress response systems in the extended amygdala are recruited by excessive alcohol intake, sensitized by repeated withdrawal, and contribute to the development of addiction. In this study, we investigated one such brain stress response system, pituitary adenylate cyclase-activating polypeptide (PACAP), and its cognate receptor, PAC1R, in alcohol withdrawal-induced behaviors. During acute withdrawal, rats exposed to chronic intermittent ethanol vapor (ethanol-dependent) displayed a significant increase in PACAP levels in the bed nucleus of the stria terminalis (BNST), a brain area within the extended amygdala critically involved in both stress and withdrawal. No changes in PACAP levels were observed in the central nucleus of the amygdala. Site-specific microinfusion of the PAC1R antagonist PACAP(6-38) into the BNST dose-dependently blocked excessive alcohol intake in ethanol-dependent rats without affecting water intake overall or basal ethanol intake in control, nondependent rats. Intra-BNST PACAP(6-38) also reversed ethanol withdrawal-induced anxiety-like behavior in ethanol-dependent rats, but did not affect this measure in control rats. Our findings show that chronic intermittent exposure to ethanol recruits the PACAP/PAC1R system of the BNST and that these neuroadaptations mediate the heightened alcohol drinking and anxiety-like behavior observed during withdrawal, suggesting that this system represents a major brain stress element responsible for the negative reinforcement associated with the "dark side" of alcohol addiction.
Collapse
|