1
|
Du Y, Hua L, Tian S, Dai Z, Xia Y, Zhao S, Zou H, Wang X, Sun H, Zhou H, Huang Y, Yao Z, Lu Q. Altered beta band spatial-temporal interactions during negative emotional processing in major depressive disorder: An MEG study. J Affect Disord 2023; 338:254-261. [PMID: 37271293 DOI: 10.1016/j.jad.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The mood-concordance bias is a key feature of major depressive disorder (MDD), but the spatiotemporal neural activity associated with emotional processing in MDD remains unclear. Understanding the dysregulated connectivity patterns during emotional processing and their relationship with clinical symptoms could provide insights into MDD neuropathology. METHODS We enrolled 108 MDD patients and 64 healthy controls (HCs) who performed an emotion recognition task during magnetoencephalography recording. Network-based statistics (NBS) was used to analyze whole-brain functional connectivity (FC) across different frequency ranges during distinct temporal periods. The relationship between the aberrant FC and affective symptoms was explored. RESULTS MDD patients exhibited decreased FC strength in the beta band (13-30 Hz) compared to HCs. During the early stage of emotional processing (0-100 ms), reduced FC was observed between the left parahippocampal gyrus and the left cuneus. In the late stage (250-400 ms), aberrant FC was primarily found in the cortex-limbic-striatum systems. Moreover, the FC strength between the right fusiform gyrus and left thalamus, and between the left calcarine fissure and left inferior temporal gyrus were negatively associated with Hamilton Depression Rating Scale (HAMD) scores. LIMITATIONS Medication information was not involved. CONCLUSION MDD patients exhibited abnormal temporal-spatial neural interactions in the beta band, ranging from early sensory to later cognitive processing stages. These aberrant interactions involve the cortex-limbic-striatum circuit. Notably, aberrant FC in may serve as a potential biomarker for assessing depression severity.
Collapse
Affiliation(s)
- Yishan Du
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingling Hua
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shui Tian
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - ZhongPeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Yi Xia
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuai Zhao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - HaoWen Zou
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaoqin Wang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Sun
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Hongliang Zhou
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - YingHong Huang
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - ZhiJian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
2
|
Dai Z, Zhang S, Wang H, Chen Z, Zhang W, Hu X, Yao Z, Lu Q. Hampered gamma oscillations induced by sad emotion underlying suicide attempt in major depressive disorder. Psychiatry Clin Neurosci 2023; 77:20-29. [PMID: 36207792 DOI: 10.1111/pcn.13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/18/2022] [Accepted: 09/30/2022] [Indexed: 01/06/2023]
Abstract
AIM Major depressive disorder (MDD) is associated with high suicidality, especially for those with suicide attempt (SA). Although impaired oscillatory activity has been previously reported in patients with SA, little is known about precise temporal-spatial variability of its neural dynamics. To solve this, the current study probed the spectral power and network interactions underlying SA in MDD. METHODS The present study recruited 104 subjects including 56 subjects with MDD (30 with SA and 26 without SA) and 48 healthy controls, who performed sad expressions recognition task during magnetoencephalography (MEG) recording. By investigating source-reconstructed MEG-data, brain states representing different task stages were estimated from a Hidden Markov model. Spectrum power and network connectivity were compared via Gaussian Mixture Models, and fractional occupancy (FO) of states were compared via an independent F-test. RESULTS Brain states were corresponding to various frequencies (theta/beta/low gamma/ high gamma). In low gamma band (35-45 Hz), the early visual state exhibited increased activation and hyper inter-network connectivity between visual regions and the limbic system, while the middle fronto-parietal state exhibited attenuated activation and decreased intra-network connectivity within fronto-parietal regions in SA group. Crucially, FO values of these two states were significantly correlated with the suicide risks. CONCLUSIONS Suicide behavior of patients with MDD was significantly associated with aberrant oscillations in low gamma band. Elevated oscillations in occipital cortices and attenuated oscillations in fronto-parietal cortices were significantly associated with SA. Manifesting sadness indulging and reckless decision-making, the hampered temporal characteristics could help explain the neural-electric basis of SA.
Collapse
Affiliation(s)
- Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Child Development and Learning Science, Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, China.,Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Siqi Zhang
- School of Biological Sciences & Medical Engineering, Child Development and Learning Science, Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, China
| | - Huan Wang
- School of Biological Sciences & Medical Engineering, Child Development and Learning Science, Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, China
| | - Zhilu Chen
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei Zhang
- School of Biological Sciences & Medical Engineering, Child Development and Learning Science, Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, China
| | - Xiaowen Hu
- School of Biological Sciences & Medical Engineering, Child Development and Learning Science, Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, China
| | - Zhijian Yao
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Child Development and Learning Science, Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Dai Z, Zhou H, Zhang W, Tang H, Wang T, Chen Z, Yao Z, Lu Q. Alpha-beta decoupling relevant to inhibition deficits leads to suicide attempt in major depressive disorder. J Affect Disord 2022; 314:168-175. [PMID: 35820473 DOI: 10.1016/j.jad.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND One devastating outcome of major depressive disorder (MDD) is high suicidality, especially for patients with suicide attempt (SA). Evidence indicated that SA may be strongly associated with inhibitory control deficits. We hypothesized that the inhibition function deficits of patient with SA might be underpinned by abnormal neuronal oscillations. METHODS Our study recruited 111 subjects including 74 patients and 37 controls, who performed a GO/NOGO task during magnetoencephalography recording. Time-frequency-representations and phase-amplitude-coupling were measured for the brain circuits involved in the inhibitory function. Phase-slope-indexes were calculated between regions to determine the direction of power flow. RESULTS Significant increased reaction time and decreased judgment accuracy were observed in SA group. During the perception stage of GO task (approximately 125 ms), SA group manifested elevated alpha power in ventral prefrontal cortex (VPFC) and attenuated beta power in dorsal anterior cingulate (dACC) compared with other groups (p < 0.01). In the processing stage of NOGO task (approximately 300 ms), they showed decreased beta power in VPFC and increased alpha power in dACC (p < 0.01). Alpha-beta decoupling during both tasks was observed in SA group. Furthermore, the decoupling from VPFC to dACC under NOGO tasks was significantly correlated with suicide risk level. LIMITATIONS The number of participants was relatively small, and psychological elements were not involved in current study. CONCLUSION Dysregulated oscillatory activities of dACC and VPFC suggested deficits in execution and inhibition functions triggering high suicide risks. The alpha-beta decoupling from VPFC to dACC could be served as a neuro-electrophysiological biomarker for identifying potential suicide risk.
Collapse
Affiliation(s)
- Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Child Development and Learning Science, Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China
| | - Hongliang Zhou
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Wei Zhang
- School of Biological Sciences & Medical Engineering, Child Development and Learning Science, Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China
| | - Hao Tang
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Ting Wang
- School of Biological Sciences & Medical Engineering, Child Development and Learning Science, Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China
| | - Zhilu Chen
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Zhijian Yao
- School of Biological Sciences & Medical Engineering, Child Development and Learning Science, Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China; Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Child Development and Learning Science, Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China.
| |
Collapse
|
4
|
Lyu Y, Sun Y. Global and local feature fusion via long and short-term memory mechanism for dance emotion recognition in robot. Front Neurorobot 2022; 16:998568. [PMID: 36091417 PMCID: PMC9449463 DOI: 10.3389/fnbot.2022.998568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, there are more and more intelligent machines in people's life, such as intelligent wristbands, sweeping robots, intelligent learning machines and so on, which can simply complete a single execution task. We want robots to be as emotional as humans. In this way, human-computer interaction can be more natural, smooth and intelligent. Therefore, emotion research has become a hot topic that researchers pay close attention to. In this paper, we propose a new dance emotion recognition based on global and local feature fusion method. If the single feature of audio is extracted, the global information of dance cannot be reflected. And the dimension of data features is very high. In this paper, an improved long and short-term memory (LSTM) method is used to extract global dance information. Linear prediction coefficient is used to extract local information. Considering the complementarity of different features, a global and local feature fusion method based on discriminant multi-canonical correlation analysis is proposed in this paper. Experimental results on public data sets show that the proposed method can effectively identify dance emotion compared with other state-of-the-art emotion recognition methods.
Collapse
Affiliation(s)
- Yin Lyu
- College of Music, Huaiyin Normal University, Huai'an, China
| | - Yang Sun
- College of Software, Shenyang Normal University, Shenyang, China
- *Correspondence: Yang Sun
| |
Collapse
|
5
|
Nasr K, Haslacher D, Dayan E, Censor N, Cohen LG, Soekadar SR. Breaking the boundaries of interacting with the human brain using adaptive closed-loop stimulation. Prog Neurobiol 2022; 216:102311. [PMID: 35750290 DOI: 10.1016/j.pneurobio.2022.102311] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022]
Abstract
The human brain is arguably one of the most complex systems in nature. To understand how it operates, it is essential to understand the link between neural activity and behavior. Experimental investigation of that link requires tools to interact with neural activity during behavior. Human neuroscience, however, has been severely bottlenecked by the limitations of these tools. While invasive methods can support highly specific interaction with brain activity during behavior, their applicability in human neuroscience is limited. Despite extensive development in the last decades, noninvasive alternatives have lacked spatial specificity and yielded results that are commonly fraught with variability and replicability issues, along with relatively limited understanding of the neural mechanisms involved. Here we provide a comprehensive review of the state-of-the-art in interacting with human brain activity and highlight current limitations and recent efforts to overcome these limitations. Beyond crucial technical and scientific advancements in electromagnetic brain stimulation, new frontiers in interacting with human brain activity such as task-irrelevant sensory stimulation and focal ultrasound stimulation are introduced. Finally, we argue that, along with technological improvements and breakthroughs in noninvasive methods, a paradigm shift towards adaptive closed-loop stimulation will be a critical step for advancing human neuroscience.
Collapse
Affiliation(s)
- Khaled Nasr
- Clinical Neurotechnology Laboratory & Center for Translational Neuromodulation, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Haslacher
- Clinical Neurotechnology Laboratory & Center for Translational Neuromodulation, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eran Dayan
- Department of Radiology and Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nitzan Censor
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institutes of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Surjo R Soekadar
- Clinical Neurotechnology Laboratory & Center for Translational Neuromodulation, Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|