1
|
Zhu Y, Wei Y, Yu X, Liu J, Lan R, Guo X, Luo Y. Altered sleep onset transition in depression: Evidence from EEG activity and EEG functional connectivity analyses. Clin Neurophysiol 2024; 166:129-141. [PMID: 39163676 DOI: 10.1016/j.clinph.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/22/2024]
Abstract
OBJECTIVE Sleep disorders constitute a principal diagnostic criterion for depression, potentially reflecting the abnormal persistence of brain activity during the sleep onset (SO) transition. Here, we sought to explore the differences in the dynamic changes in the EEG activity and the EEG functional connectivity (FC) during the SO transition in depressed patients. METHODS Overnight polysomnography recordings were obtained from thirty-two depressed patients and thirty-three healthy controls. The multiscale permutation entropy (MSPE) and EEG relative power were extracted to characterize EEG activity, and weighted phase lag index (WPLI) was calculated to characterize EEG FC. RESULTS The intergroup differences in EEG activity of relative power and MSPE were reversed near SO, which attributed to slower rates of change among depressed patients. Regarding the characteristics of the EEG FC network, depressed patients exhibited significantly higher inter-hemispheric and interregional WPLI values in both delta and alpha bands throughout the SO transition, concomitant with different dynamic properties in the delta band FC. During the process after SO, patients exhibited increased inter-hemispheric long-range links, whereas controls showed more intra-hemispheric ones. Finally, we found significant correlations in the dynamic changes between different EEG measures. CONCLUSIONS Our research revealed that the abnormal changes during the SO transition in depressed patients were manifested in both homeostatic and dynamic aspects, which were reflected in EEG FC and EEG activity, respectively. SIGNIFICANCE These findings may elucidate the mechanism underlying sleep disorders in depression from the perspective of neural activity.
Collapse
Affiliation(s)
- Yongpeng Zhu
- School of Biomedical Engineering, Sun Yat-sen University-Shenzhen Campus, Shenzhen 518000, China
| | - Yu Wei
- School of Biomedical Engineering, Sun Yat-sen University-Shenzhen Campus, Shenzhen 518000, China
| | - Xiaokang Yu
- School of Biomedical Engineering, Sun Yat-sen University-Shenzhen Campus, Shenzhen 518000, China
| | - Jiahao Liu
- School of Biomedical Engineering, Sun Yat-sen University-Shenzhen Campus, Shenzhen 518000, China
| | - Rongxi Lan
- School of Biomedical Engineering, Sun Yat-sen University-Shenzhen Campus, Shenzhen 518000, China
| | - Xinwen Guo
- The Seventh Affiliated Hospital of Southern Medical University, Foshan 528000, China.
| | - Yuxi Luo
- School of Biomedical Engineering, Sun Yat-sen University-Shenzhen Campus, Shenzhen 518000, China; Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, Sun Yat-sen University-Shenzhen Campus, Shenzhen 518000, China.
| |
Collapse
|
2
|
Alterations in EEG functional connectivity in individuals with depression: A systematic review. J Affect Disord 2023; 328:287-302. [PMID: 36801418 DOI: 10.1016/j.jad.2023.01.126] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 02/19/2023]
Abstract
The brain works as an organised, network-like structure of functionally interconnected regions. Disruptions to interconnectivity in certain networks have been linked to symptoms of depression and impairments in cognition. Electroencephalography (EEG) is a low-burden tool by which differences in functional connectivity (FC) can be assessed. This systematic review aims to provide a synthesis of evidence relating to EEG FC in depression. A comprehensive electronic literature search for terms relating to depression, EEG, and FC was conducted on studies published before the end of November 2021, according to PRISMA guidelines. Studies comparing EEG measures of FC of individuals with depression to that of healthy control groups were included. Data was extracted by two independent reviewers, and the quality of EEG FC methods was assessed. Fifty-two studies assessing EEG FC in depression were identified: 36 assessed resting-state FC, and 16 assessed task-related or other (i.e., sleep) FC. Somewhat consistent findings in resting-state studies suggest for no differences between depression and control groups in EEG FC in the delta and gamma frequencies. However, while most resting-state studies noted a difference in alpha, theta, and beta, no clear conclusions could be drawn about the direction of the difference, due to considerable inconsistencies between study design and methodology. This was also true for task-related and other EEG FC. More robust research is needed to understand the true differences in EEG FC in depression. Given that the FC between brain regions drives behaviour, cognition, and emotion, characterising how FC differs in depression is essential for understanding the aetiology of depression.
Collapse
|
3
|
Wei Y, Zhu Y, Zhou Y, Yu X, Lin H, Ruan L, Lei H, Luo Y. Investigating the influence of an adjustable zoned air mattress on sleep: a multinight polysomnography study. Front Neurosci 2023; 17:1160805. [PMID: 37152595 PMCID: PMC10156966 DOI: 10.3389/fnins.2023.1160805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/16/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction A comfortable mattress should improve sleep quality. In this study, we sought to investigate the specific sleep parameters that could be affected by a mattress and explore any potential differences between the effects felt by each sex. Methods A total of 20 healthy young adults (10 females and 20 males; 22.10 ± 1.25 years) participated in the experiments. A smart adjustable zoned air mattress was designed to maintain comfortable support, and an ordinary mattress was used for comparison. The participants individually spent four nights on these two mattresses in four orders for polysomnography (PSG) scoring. Sleep architecture, electroencephalogram (EEG) spectrum, and heart rate variability (HRV), which reflect the central and autonomic nervous activities, were used to compare the difference between the two mattresses. Results An individual difference exited in sleep performance. The modes of influence of the mattresses were different between the sexes. The adjustable air mattress and the increase in experimental nights improved female participants' sleep efficiency, while male participants exhibited a smaller response to different mattresses. With an increasing number of experiment nights, both sexes showed increased REM and decreased N2 proportions; the N3 sleep proportion decreased in the male participants, and the heart rate decreased in both sexes. The performance of the EEG spectrum supports the above results. In addition, the adjustable air mattress weakened automatic nerve activity during N3 sleep in most participants. The female participants appeared to be more sensitive to mattresses. Experiment night was associated with psychological factors. There were differences in the results for this influence between the sexes. Conclusion This study may shed some light on the differences between the ideal sleep environment of each sex.
Collapse
Affiliation(s)
- Yu Wei
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yongpeng Zhu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yihan Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiaokang Yu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Huiping Lin
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Lijun Ruan
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Hua Lei
- De Rucci Healthy Sleep Limited Company, Dongguan, Guangdong, China
- Hua Lei
| | - Yuxi Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Yuxi Luo
| |
Collapse
|
4
|
Klippel Zanona Q, Alves Marconi G, de Sá Couto Pereira N, Lazzarotto G, Luiza Ferreira Donatti A, Antonio Cortes de Oliveira J, Garcia-Cairasco N, Elisa Calcagnotto M. Absence-like seizures, cortical oscillations abnormalities and decreased anxiety-like behavior in Wistar Audiogenic Rats with cortical microgyria. Neuroscience 2022; 500:26-40. [DOI: 10.1016/j.neuroscience.2022.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/25/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
|
5
|
Zhang Y, Wang K, Yu W, Guo X, Wen J, Luo Y. Minimal EEG channel selection for depression detection with connectivity features during sleep. Comput Biol Med 2022; 147:105690. [DOI: 10.1016/j.compbiomed.2022.105690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
|
6
|
Song Y, Wang K, Wei Y, Zhu Y, Wen J, Luo Y. Graph Theory Analysis of the Cortical Functional Network During Sleep in Patients With Depression. Front Physiol 2022; 13:858739. [PMID: 35721531 PMCID: PMC9199990 DOI: 10.3389/fphys.2022.858739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Depression, a common mental illness that seriously affects the psychological health of patients, is also thought to be associated with abnormal brain functional connectivity. This study aimed to explore the differences in the sleep-state functional network topology in depressed patients. A total of 25 healthy participants and 26 depressed patients underwent overnight 16-channel electroencephalography (EEG) examination. The cortical networks were constructed by using functional connectivity metrics of participants based on the weighted phase lag index (WPLI) between the EEG signals. The results indicated that depressed patients exhibited higher global efficiency and node strength than healthy participants. Furthermore, the depressed group indicated right-lateralization in the δ band. The top 30% of connectivity in both groups were shown in undirected connectivity graphs, revealing the distinct link patterns between the depressed and control groups. Links between the hemispheres were noted in the patient group, while the links in the control group were only observed within each hemisphere, and there were many long-range links inside the hemisphere. The altered sleep-state functional network topology in depressed patients may provide clues for a better understanding of the depression pathology. Overall, functional network topology may become a powerful tool for the diagnosis of depression.
Collapse
Affiliation(s)
- Yingjie Song
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Kejie Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yu Wei
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yongpeng Zhu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jinfeng Wen
- Department of Psychology, Guangdong, 999 Brain Hospital, Guangzhou, China
| | - Yuxi Luo
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Wang K, Zhang Y, Zhu Y, Luo Y. Associations between cortical activation and network interaction during sleep. Behav Brain Res 2022; 422:113751. [PMID: 35038462 DOI: 10.1016/j.bbr.2022.113751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 11/02/2022]
Abstract
Cortical activation and network interaction, two characterizations of the cortical states, are separately studied in most previous studies. To further clarify the underlying mechanism, the association between these two indicators during sleep was investigated in this study. Twenty healthy individuals were enrolled and all of them underwent overnight polysomnography (PSG) recording. The relative spectral powers and the phase transfer entropy (PTE) of various frequency components were extracted from 6 electroencephalographic (EEG) channels, to assess the cortical activation and network interaction, respectively. Pearson correlation coefficient was employed to estimate their associations. The results suggested that there was a negative correlation between spectral power and phase transfer entropy in δ and α frequency bands during sleep. As the sleep deepened, an increased negative correlation in the δ frequency band was noted, but the negative correlation became less extreme in the α frequency band. The extremum of the correlation coefficient was noted in δ of N3, and α of Wake. Overall, this study provides a connection between these two cortical activity assessments, especially reveals the variable characteristics of different frequency components, which is conducive to better understand sleep state.
Collapse
Affiliation(s)
- Kejie Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yangting Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yongpeng Zhu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yuxi Luo
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|