1
|
Gao L, Chen X, Tang Y, Zhao J, Li Q, Fan X, Xu H, Yin ZQ. Neuroprotective effect of memantine on the retinal ganglion cells of APPswe/PS1ΔE9 mice and its immunomodulatory mechanisms. Exp Eye Res 2015; 135:47-58. [PMID: 25912193 DOI: 10.1016/j.exer.2015.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/20/2015] [Accepted: 04/21/2015] [Indexed: 01/16/2023]
Abstract
Besides the cognitive impairment and degeneration in the brain, vision dysfunction and retina damage are always prevalent in patients with Alzheimer's disease (AD). The uncompetitive antagonist of the N-methyl-d-aspartate receptor, memantine (MEM), has been proven to improve the cognition of patients with AD. However, limited information exists regarding the mechanism of neurodegeneration and the possible neuroprotective mechanisms of MEM on the retinas of patients with AD. In the present study, by using APPswe/PS1ΔE9 double transgenic (dtg) mice, we found that MEM rescued the loss of retinal ganglion cells (RGCs), as well as improved visual impairments, including improving the P50 component in pattern electroretinograms and the latency delay of the P2 component in flash visual evoked potentials of APPswe/PS1ΔE9 dtg mice. The activated microglia in the retinas of APPswe/PS1ΔE9 dtg mice were also inhibited by MEM. Additionally, the level of glutamine synthetase expressed by Müller cells within the RGC layer was upregulated in APPswe/PS1ΔE9 dtg mice, which was inhibited by MEM. Simultaneously, MEM also reduced the apoptosis of choline acetyl transferase-immunoreactive cholinergic amacrine cells within the RGC layer of AD mice. Moreover, the phosphorylation level of extracellular regulated protein kinases 1 and 2 was increased in APPswe/PS1ΔE9 dtg mice, which was blocked by MEM treatment. These findings suggest that MEM protects RGCs in the retinas of APPswe/PS1ΔE9 dtg mice by modulating the immune response of microglia and the adapted response of Müller cells, making MEM a potential ophthalmic treatment alternative in patients with AD.
Collapse
Affiliation(s)
- Lixiong Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China; Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, China.
| | - Xi Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China; School of Medicine, Nankai University, Tianjin 300071, China; Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing 100853, China.
| | - Yongping Tang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| | - Jinghui Zhao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, China.
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
2
|
Kim DY, Jung CS. Gap junction contributions to the goldfish electroretinogram at the photopic illumination level. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:219-24. [PMID: 22802705 PMCID: PMC3394926 DOI: 10.4196/kjpp.2012.16.3.219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 11/15/2022]
Abstract
Understanding how the b-wave of the electroretinogram (ERG) is generated by full-field light stimulation is still a challenge in visual neuroscience. To understand more about the origin of the b-wave, we studied the contributions of gap junctions to the ERG b-wave. Many types of retinal neurons are connected to similar and different neighboring neurons through gap junctions. The photopic (cone-dominated) ERG, stimulated by a small light beam, was recorded from goldfish (Carassius auratus) using a corneal electrode. Data were obtained before and after intravitreal injection of agents into the eye under a photopic illumination level. Several agents were used to affect gap junctions, such as dopamine D1 and D2 receptor agonists and antagonists, a nitric oxide (NO) donor, a nitric oxide synthase (NOS) inhibitor, the gap junction blocker meclofenamic acid (MFA), and mixtures of these agents. The ERG b-waves, which were enhanced by MFA, sodium nitroprusside (SNP), SKF 38393, and sulpiride, remained following application of a further injection of a mixture with MFA. The ERG b-waves decreased following N(G)-nitro-L-arginine methyl ester (L-NAME), SCH 23390, and quinpirole administration but were enhanced by further injection of a mixture with MFA. These results indicate that gap junction activity influences b-waves of the ERG related to NO and dopamine actions.
Collapse
Affiliation(s)
- Doh-Yeon Kim
- Natural Sciences Section, Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | |
Collapse
|
3
|
Calaza KC, Gardino PF, de Mello FG. Transporter mediated GABA release in the retina: Role of excitatory amino acids and dopamine. Neurochem Int 2006; 49:769-77. [PMID: 16956697 DOI: 10.1016/j.neuint.2006.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 07/05/2006] [Accepted: 07/07/2006] [Indexed: 10/24/2022]
Abstract
In general, the release of neurotransmitters in the central nervous system is accomplished by a calcium-dependent process which constitutes a common feature of exocytosis, a conserved mechanism for transmitter release in all species. However, neurotransmitters can also be released by the reversal of their transporters. In the retina, a large portion of GABA is released by this mechanism, which is under the control of neuroactive agents, such as excitatory amino acids and dopamine. In this review, we will focus on the transporter mediated GABA release and the role played by excitatory amino acids and dopamine in this process. First, we will discuss the works that used radiolabeled GABA to study the outflow of the neurotransmitter and then the works that took into consideration the endogenous pool of GABA and the topography of GABAergic circuits influenced by excitatory amino acids and dopamine.
Collapse
Affiliation(s)
- K C Calaza
- Departamento de Neurobiologia do Instituto de Biologia da UFF, Brazil.
| | | | | |
Collapse
|
4
|
Calaza KC, Hokoç JN, Gardino PF. GABAergic circuitry in the opossum retina: a GABA release induced by L-aspartate. Exp Brain Res 2006; 172:322-30. [PMID: 16501965 DOI: 10.1007/s00221-005-0338-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 12/13/2005] [Indexed: 11/26/2022]
Abstract
Glutamate and gamma-amino butyric acid (GABA) are the major excitatory and inhibitory neurotransmitters, respectively, in the central nervous system (CNS), including the retina. Although in a number of studies the retinal source of GABA was identified, in several species, as horizontal, amacrine cells and cells in the ganglion cell layer, nothing was described for the opossum retina. Thus, the first goal of this study was to determine the pattern of GABAergic cell expression in the South America opossum retina by using an immunohistochemical approach for GABA and for its synthetic enzyme, glutamic acid decarboxylase (GAD). GABA and GAD immunoreactivity showed a similar cellular pattern by appearing in a few faint horizontal cells, topic and displaced amacrine cells. In an effort to extend the knowledge of the opossum retinal circuitry, the possible influence of glutamatergic inputs in GABAergic cells was also studied. Retinas were stimulated with different glutamatergic agonists and aspartate (Asp), and the GABA remaining in the tissue was detected by immunohistochemical procedures. The exposure of retinas to NMDA and kainate resulted the reduction of the number of GABA immunoreactive topic and displaced amacrine cells. The Asp treatment also resulted in reduction of the number of GABA immunoreactive amacrine cells but, in contrast, the displaced amacrine cells were not affected. Finally, the Asp effect was totally blocked by MK-801. This result suggests that Asp could be indeed a putative neurotransmitter in this non-placental animal by acting on an amacrine cell sub-population of GABA-positive NMDA-sensitive cells.
Collapse
Affiliation(s)
- K C Calaza
- Departamento de Neurobiologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
5
|
Acosta ML, Kalloniatis M. Short- and long-term enzymatic regulation secondary to metabolic insult in the rat retina. J Neurochem 2005; 92:1350-62. [PMID: 15748154 DOI: 10.1111/j.1471-4159.2004.02976.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Changes in oxygen and/or glucose availability may result in altered levels of ATP production and amino acid levels, and alteration in lactic acid production. However, under certain metabolic insults, the retina demonstrates considerable resilience and maintains ATP production, and/or retinal function. We wanted to investigate whether this resilience would be reflected in alterations in the activity of key enzymes of retinal metabolism, or enzymes associated with amino acid production that may supply their carbon skeleton for energy production. Enzymatic assays were conducted to determine the activity of key retinal metabolic enzymes total ATPase and Na(+)/K(+)-ATPase, aspartate aminotransferase and lactate dehydrogenase. In vitro anoxia led to an increase in retinal lactate dehydrogenase activity and to a decrease in retinal aspartate aminotransferase activity, without significant changes in Na(+)/K(+)-ATPase activity. In vivo inhibition of glutamine synthetase resulted in a short-term significant decrease in retinal aspartate aminotransferase activity. An increase in retinal aspartate aminotransferase and lactate dehydrogenase activities was accompanied by altered levels of amino acids in neurons and glia after partial inhibition of glial metabolism, implying that short- and long-term up- and down-regulation of key metabolic enzymes occurs to supply carbon skeletons for retinal metabolism. ATPase activity does not appear to fluctuate under the metabolic stresses employed in our experimental procedures.
Collapse
Affiliation(s)
- Monica L Acosta
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
6
|
Bui BV, Vingrys AJ, Wellard JW, Kalloniatis M. Monocarboxylate transport inhibition alters retinal function and cellular amino acid levels. Eur J Neurosci 2004; 20:1525-37. [PMID: 15355319 DOI: 10.1111/j.1460-9568.2004.03601.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We assessed the effect of the in vivo application of monocarboxylate transport inhibitors on retinal function and amino acid immunocytochemistry. We wanted to determine the impact that altered aerobic metabolite availability has on retinal function and the characteristics of amino acid shunting into metabolic pools. Electroretinograms were collected from anaesthetized rats at various times after intravitreal injection of the monocarboxylate transport inhibitors alpha-cyano-4-hydroxycinnamate (4-CIN; 2 micro L, 0.1-10 mm) or p-(dipropylsulphamoyl)benzoic acid (probenecid; 1-10 mm). Changes in retinal function were compared with quantitative amino acid immunocytochemical changes in retinas harvested 20 and 40 min after either 4-CIN or vehicle treatment. The injection of 4-CIN resulted in a dose-dependent reduction of the ON-bipolar cell P2 wave amplitude (20-80%) and delay in its implicit time. The phototransduction sensitivity was mildly reduced whereas the ON-bipolar cell P2 sensitivity was unaffected. Probenecid induced functional changes similar to those observed with 4-CIN. We also mapped the amino acid alterations within specific cell classes induced by 4-CIN application. All neurones displayed a reduced glutamate content averaging 48%; reduced GABA (31%) and glycine (28%) were found within amacrine cells and glutamine was reduced in all cell classes except photoreceptor and Müller cells. All cell classes in the retina demonstrated increases in aspartate (57%), whereas leucine (24%) and ornithine (21%) were only significantly increased in photoreceptor and bipolar cells. The reduction in glutamate immunolabelling in specific retinal cell classes was mirrored by an increase in aspartate levels at these locations. In addition, attenuated glutamine immunolabelling also closely matched the spatial pattern observed for glutamate. Our immunocytochemical analysis provides evidence that monocarboxylate transport inhibition induces a shift in the equilibrium of glutamate transamination reactions involving aspartate throughout the retina whereas photoreceptor and bipolar cells also use glutamate transamination reactions involving ornithine and leucine. The distribution pattern of glutamine secondary to monocarboxylate inhibition suggests that this amino acid is a major precursor for glutamate throughout the retina.
Collapse
Affiliation(s)
- Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
7
|
Kalloniatis M, Napper GA. Retinal neurochemical changes following application of glutamate as a metablolic substrate. Clin Exp Optom 2002; 85:27-36. [PMID: 11952393 DOI: 10.1111/j.1444-0938.2002.tb03069.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2001] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Retinal neural and glial cells share an intricate relationship that includes uptake and recycling of the amino acid neurotransmitters, glutamate and gamma-amino butyric acid (GABA), as well as metabolic links. The aim of this work was to determine the neurochemical and morphological changes induced by the removal of glucose but with the provision of exogenous glutamate in the isolated retinal preparation incubated under aerobic conditions. The carbon skeleton of glutamate can enter the tricarboxylic acid cycle as alpha-ketogluterate, providing an alternative metabolic substrate in cases of glucose deprivation. METHODS Isolated rat retinas were incubated in physiological media with and without glucose, using a range of glutamate concentrations to provide an alternative source of metabolic substrate. We conducted post-embedding immunocytochemistry and quantified the change in glutamate and GABA immunoreactivity within Müller cells under these different incubation conditions. RESULTS The provision of glutamate with normal (6 mM) glucose levels resulted in a gradual accumulation of glutamate and GABA in Müller cells, with Müller loading when exogenous glutamate concentrations were above 0.1 mM. However, when these varying levels of glutamate were applied in the absence of glucose, glutamate accumulation in Müller cells was decreased compared to the 6 mM glucose condition and GABA accumulation in Müller cells was at a minimum at moderate (0.5 and 1 mM) glutamate levels. Under hypoglycaemic conditions, exogenous glutamate (0.5 to 1 mM) is rapidly metabolised by Müller cells to the extent that no glial loading is evident, despite the high concentrations. CONCLUSIONS Normal neurochemical function appears to be maintained secondary to exogenous glutamate provision of 0.5 to 1 mM when glucose is not in the incubation medium, implying that glutamate can be used as an alternative metabolic substrate. We also show that Müller cells possess more rapid glutamate metabolic capabilities compared to the metabolism of GABA.
Collapse
Affiliation(s)
- Michael Kalloniatis
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | |
Collapse
|
8
|
Carter-Dawson L, Shen F, Harwerth RS, Smith EL, Crawford ML, Chuang A. Glutamine immunoreactivity in Müller cells of monkey eyes with experimental glaucoma. Exp Eye Res 1998; 66:537-45. [PMID: 9628801 DOI: 10.1006/exer.1997.0447] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The action of glutamate in retina is largely terminated through rapid uptake by Müller cells and subsequent conversion primarily to glutamine. Glutamine, transferred from Müller cells to neurons, serves as a precursor for the formation of glutamate in neurons completing the glutamate-glutamine cycle. In a monkey model of high-tension glaucoma, we have examined glutamine immunoreactivity in the Müller cell as well as the number of Müller cells to determine whether the activity of these cells in the glutamate-glutamine cycle is affected, particularly since high vitreal glutamate has been reported in glaucoma. Unilateral glaucoma was induced in three monkeys by argon laser application to the trabecular meshwork. LR White sections of retina from the temporal mid-periphery (about 23 degrees) and the parafovea (central 3 degrees) were immunolabeled for glutamine using immunogold and silver intensification. The percentage difference in labeling intensity (darkness) in the glaucomatous retina was determined relative to the labeling found in the control retina by image analysis. Ganglion cell density was estimated from radial sections in the parafovea and from retinal whole mounts in the mid-periphery. The number of Müller cells was estimated from vibratome sections immunolabeled by vimentin antibodies in the temporal mid-periphery (about 30 degrees). Glutamine immunoreactivity was localized predominately in ganglion cells and Müller cells. However, the intensity of glutamine immunolabeling was greater in Müller cells of glaucomatous eyes than in control eyes. This increase in glutamine immunolabeling was 25-32% in the temporal mid-periphery and 27-48% in the parafovea. Müller cell number in the glaucomatous eye was similar to that of the control in the temporal mid-periphery. The data in this study indicate that the increase in glutamine in Müller cells is not a consequence of their loss and that Müller cell function in the glutamate-glutamine cycle continues in glaucomatous eyes. These findings are consistent with a previous report that extracellular/vitreal glutamate concentration is elevated in high-tension glaucoma.
Collapse
Affiliation(s)
- L Carter-Dawson
- Department of Ophthalmology and Visual Science, University of Texas-Houston Health Science Centre 77030, USA
| | | | | | | | | | | |
Collapse
|
9
|
Kalloniatis M, Tomisich G, Marc RE. Neurochemical signatures revealed by glutamine labeling in the chicken retina. Vis Neurosci 1994; 11:793-804. [PMID: 7918229 DOI: 10.1017/s0952523800003096] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Postembedding immunocytochemistry was used to determine the retinal distribution of the amino acid glutamine, and characterize amino acid signatures in the avian retinal ganglion cell layer. Glutamine is a potential precursor of glutamate and some glutamatergic neurons may use this amino acid to sustain production of glutamate for neurotransmission. Ganglion cells, cells in the inner nuclear layer, and some photoreceptors exhibited glutamine immunoreactivity of varying intensity. Ganglion cells demonstrated the highest level of immunoreactivity which indicates either slow glutamine turnover or active maintenance of a large standing glutamine pool relative to other glutamatergic neurons. Müller's cells in the avian retina are involved in glutamate uptake and carbon recycling by the rapid conversion of glutamate to glutamine, thus explaining the low glutamate and high glutamine immunoreactivity found throughout Müller's cells. Most chicken retinal ganglion cells are glutamate (E) and glutamine (Q) immunoreactive but display diverse signatures with presumed functional subsets of cells displaying admixtures of E and Q with GABA (gamma) and/or glycine (G). The four major ganglion cell signatures are (1) EQ; (2) EQ gamma; (3) EQG; and (4) EQ gamma G.
Collapse
Affiliation(s)
- M Kalloniatis
- Department of Optometry, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
10
|
Abstract
Dopamine (DA) has satisfied many of the criteria for being a major neurochemical in vertebrate retinae. It is synthesized in amacrine and/or interplexiform cells (depending on species) and released upon membrane depolarization in a calcium-dependent way. Strong evidence suggests that it is normally released within the retina during light adaptation, although flickering and not so much steady light stimuli have been found to be most effective in inducing endogenous dopamine release. DA action is not restricted to those neurones which appear to be in "direct" contact with pre-synaptic dopaminergic terminals. Neurones that are several microns away from such terminals can also be affected, presumably by short diffusion of the chemical. DA thus affects the activity of many cell types in the retina. In photoreceptors, it induces retinomotor movements, but inhibits disc shedding acting via D2 receptors, without significantly altering their electrophysiological responses. DA has two main effects upon horizontal cells: it uncouples their gap junctions and, independently, enhances the efficacy of their photoreceptor inputs, both effects involving D1 receptors. In the amphibian retina, where horizontal cells receive mixed rod and cone inputs, DA alters their balance in favour of the cone input, thus mimicking light adaptation. Light-evoked DA release also appears to be responsible for potentiating the horizontal cell-->cone negative feed-back pathway responsible for generation of multi-phasic, chromatic S-potentials. However, there is little information concerning action of DA upon bipolar and amacrine cells. DA effects upon ganglion cells have been investigated in mammalian (cat and rabbit) retinae. The results suggest that there are both synaptic and non-synaptic D1 and D2 receptors on all physiological types of ganglion cell tested. Although the available data cannot readily be integrated, the balance of evidence suggests that dopaminergic neurones are involved in the light/dark adaptation process in the mammalian retina. Studies of the DA system in vertebrate retinae have contributed greatly to our understanding of its role in vision as well as DA neurobiology generally in the central nervous system. For example, the effect of DA in uncoupling horizontal cells is one of the earliest demonstrations of the uncoupling of electrotonic junctions by a neurally released chemical. The many other, diverse actions of DA in the retina reviewed here are also likely to become model modes of neurochemical action in the nervous system.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M B Djamgoz
- Imperial College of Science, Technology and Medicine, Department of Biology, London, U.K
| | | |
Collapse
|
11
|
Robin LN, Kalloniatis M. Interrelationship between retinal ischaemic damage and turnover and metabolism of putative amino acid neurotransmitters, glutamate and GABA. Doc Ophthalmol 1992; 80:273-300. [PMID: 1361907 DOI: 10.1007/bf00154376] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Conditions causing a reduction of oxygen availability (anoxia), such as stroke or diabetes, result in drastic changes in ion movements, levels of neurotransmitters and metabolites and subsequent neural death. Currently, there is no clinically available treatment for anoxia induced neural cell death resulting in drastic and permanent central nervous system dysfunction. However, there have been some exciting developments in experimentally induced anoxic conditions where several classes of drugs appear to significantly reduce neural cell death. This report aims to provide the foundations for understanding both the basic mechanisms involved in retinal ischaemic damage and experimental treatments used to prevent such damage. We discuss the normal release, actions and uptake of the fast retinal neurotransmitters, glutamate and GABA, in the vertebrate retina. Immunocytochemistry is used to demonstrate that both glutamate and GABA are found in the macaque retina. Following this is a discussion on how ischaemia may enhance neurotransmitter release or disrupt its uptake, thus causing an increase in extracellular concentration of these neurotransmitters and subsequent neuronal damage. The mechanisms involved in glutamate neurotoxicity are reviewed, because excess glutamate is the likely cause of retinal ischaemic damage. Finally, the mechanisms behind four possible modes of treatment of neurotransmitter toxicity and their advantages and disadvantages are discussed. Hopefully, further research in this area will lead to the development of a rational therapy for retinal, as well as cerebral ischaemia.
Collapse
Affiliation(s)
- L N Robin
- Department of Optometry, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
12
|
Somohano F, López-Colomé AM. Characteristics of excitatory amino acid uptake in cultures from neurons and glia from the retina. J Neurosci Res 1991; 28:556-62. [PMID: 1870157 DOI: 10.1002/jnr.490280412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
3H-D-Aspartate uptake was biochemically characterized in cultures from chick retina enriched in glial (Müller) cells or neurons during progressive days in vitro (DIV). In the neuronal cultures a high-affinity, Na(+)-dependent system was found with Km = 8-13 microM and pharmacological characteristics in agreement with those of reuptake systems in other regions of the CNS. The uptake system in glial cells showed a lower affinity, with Km = 100-135 microM. In both cases, uptake was temperature and energy dependent. A sharp increase in the Vmax of uptake was observed in both neuronal and glial cultures at 5 DIV, at which time morphologically mature synapses have been shown to be present in retinal cultures. A parallel increase in the pharmacological specificity of the uptake system in neuronal cultures was observed, with a rise in the efficiency of D-Asp, L-Asp, L-Glu, and DL-asp- beta-hydroxamate for inhibiting 3H-D-Aspartate uptake. Results suggest the possibility of reuptake participating in the regulation of extracellular glutamate concentration during development.
Collapse
Affiliation(s)
- F Somohano
- Departamento de Neurociencias, Instituto de Fisiología Celular, UNAM, México
| | | |
Collapse
|
13
|
Ishimoto I, Kiyama H, Hamano K, Shiosaka S, Malbon CC, Nakauchi M, Emson PC, Manabe R, Tohyama M. Co-localization of adrenergic receptors and vitamin-D-dependent calcium-binding protein (calbindin) in the dopaminergic amacrine cells of the rat retina. Neurosci Res 1989; 7:257-63. [PMID: 2575732 DOI: 10.1016/0168-0102(89)90020-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Using antisera against tyrosine hydroxylase (TH) and purified beta 2-adrenergic receptors (beta 2-AdR), we found that TH- and AdR-like immunoreactivities coexisted in large amacrine cells. These findings indicated an association between dopamine-containing amacrine cells and adrenergic amacrine cells. The present study also showed that amacrine cells with TH-like immunoreactivity have vitamin-D-dependent calcium-binding protein (calbindin, 27,000 kDa)-like immunoreactivity as well, suggesting that calbindin plays an important postsynaptic role in dopaminergic amacrine cells.
Collapse
Affiliation(s)
- I Ishimoto
- Department of Ophthalmology, Osaka University Medical School, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mitchell CK, Redburn DA. AP4 inhibits chloride-dependent binding and uptake of [3H]glutamate in rabbit retina. Brain Res 1988; 459:298-311. [PMID: 2902902 DOI: 10.1016/0006-8993(88)90646-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Glutamate is one of the major neurotransmitters used by primary and secondary neurons of the visual pathway in retina. AP4(2-amino-4-phosphonobutyric acid) preferentially blocks the activity of one functional subclass of retinal neurons, ON bipolar cells, apparently by acting as an agonist at a hyperpolarizing glutamate receptor. We have used in vitro binding assays to examine different subclasses of presumptive glutamate receptors in retinal membrane fractions. One subclass consists of AP4-sensitive binding sites which require calcium and chloride for maximal binding and which are inhibited by freeze-thaw procedures. In addition, AP4 inhibits chloride-dependent [3H]glutamate uptake into retinal synaptosomes and intact retina. [3H]glutamate which is accumulated via the AP4-sensitive mechanism can be subsequently released by depolarizing levels of potassium. The pharmacological selectivity of AP4-sensitive glutamate receptors on ON bipolar cells measured electrophysiologically is very similar to that of AP4-sensitive, [3H]glutamate binding and uptake, measured biochemically in subcellular fractions. These results raise the possibility that AP4-sensitive glutamate recognition sites in retina may be linked to two separate effectors, one which gates ion channels and leads to hyperpolarization, and another which acts as a glutamate transporter.
Collapse
Affiliation(s)
- C K Mitchell
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston 77225
| | | |
Collapse
|
15
|
Nguyen-Legros J. Chapter 5 morphology and distribution of catecholamine-neurons in mammalian retina. ACTA ACUST UNITED AC 1988. [DOI: 10.1016/0278-4327(88)90007-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
|
17
|
|
18
|
Moran J, Pasantes-Morales H, Redburn DA. Glutamate receptor agonists release [3H]GABA preferentially from horizontal cells. Brain Res 1986; 398:276-87. [PMID: 2879608 DOI: 10.1016/0006-8993(86)91487-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A total of 5-6 different cell types in vertebrate retinas accumulate [3H]gamma-aminobutyric acid (GABA). In frog retina, specific populations of cells in the horizontal, amacrine and ganglion cell layers are labeled autoradiographically after a 15-min in vitro incubation with [3H]GABA. Cells which may be bipolar or interplexiform cells are also labeled. Similar autoradiographic patterns are observed in chick retina except for the absence of labeled bipolar or interplexiform cells. In rat retinas, [3H]GABA uptake is limited primarily to Muller and amacrine cells. Depolarizing glutamate receptor agonists (glutamate, aspartate and kainic acid) applied in an in vitro perfusion system, stimulated massive release of [3H]GABA from frog and chick retina but not from rat retina. Under these conditions, autoradiographic labeling of horizontal cells was virtually depleted, while labeling of other cell types remained robust. In contrast, potassium caused release of the label from all 3 types of retina, and loss of autoradiographic labeling occurred uniformly in all cell types. We conclude that [3H]GABA-accumulating horizontal cells possess depolarizing glutamate receptors and that activation of these receptors leads to a release of GABA stores. On the other hand, Muller cells and the various subclasses of [3H]GABA-accumulating amacrine, bipolar and/or interplexiform cells, do not release GABA in response to glutamate receptor stimulation and thus appear to be relatively insensitive to excitatory amino acids.
Collapse
|
19
|
Abstract
Light and electron microscopic autoradiography demonstrates that 3H-GABA is accumulated by horizontal cells in neonatal rabbit retina but not in the adult. A specific population of horizontal cells appears to be mature at birth and they avidly accumulate 3H-GABA during a 15-minute incubation period in vitro. Uptake into horizontal cells is not observed after the fifth postnatal day; 3H-GABA-accumulating horizontal cell bodies and their processes are the first identifiable components that clearly mark the future location of the outer plexiform layer at birth and as such, may be considered pioneering elements. Our observations raise the interesting possibility that the pioneering horizontal cell may provide structural and/or chemical factors necessary for the subsequent development of the outer plexiform layer of the retina. Labeling patterns of other retinal cells also show varying degrees of change during development. A population of amacrine cells accumulate 3H-GABA at birth. These cells show little change in their morphological or 3H-GABA uptake properties from birth to adulthood. Müller cells show weak accumulation of 3H-GABA at birth. Subsequent to this time, labeling of Müller cells is significantly more robust, resulting in Müller cell domination of retinal autoradiographic patterns in more mature retinas. Every cell body in the ganglion cell layer accumulates 3H-GABA at birth. The number of labeled cells declines during postnatal development, resulting in a very limited adult population. We conclude that the ability of retinal cells to accumulate 3H-GABA does not remain constant during postnatal development; rather each cell population displays a unique maturation sequence that results in a dramatic developmental shift in the number and types of GABA-accumulating cells present in the retina.
Collapse
|
20
|
Campochiaro P, Ferkany JW, Coyle JT. The dissociation of evoked release of [3H]-GABA and of endogenous GABA from chick retina in vitro. Exp Eye Res 1984; 39:299-305. [PMID: 6389164 DOI: 10.1016/0014-4835(84)90017-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The release of prelabeled [3H]-GABA and endogenous GABA evoked by KCl and excitatory amino acid analogs was compared in intact chick retina and retina previously lesioned by the neurotoxins, kainic acid and N-methyl-D,L-aspartic acid. Significant discrepancies were found in the results obtained by the two techniques; and while changes in endogenous GABA release after neurotoxin lesions correlated with retinal glutamate decarboxylase activity, a marker for GABAergic neurons, the release of [3H]-GABA did not. These results call into question the validity of the prelabeling technique for studying GABA release from retina.
Collapse
|