1
|
Abstract
Cryptococcosis is a disease caused by the pathogenic fungi Cryptococcus neoformans and Cryptococcus gattii, both environmental fungi that cause severe pneumonia and may even lead to cryptococcal meningoencephalitis. Although C. neoformans affects more fragile individuals, such as immunocompromised hosts through opportunistic infections, C. gattii causes a serious indiscriminate primary infection in immunocompetent individuals. Typically seen in tropical and subtropical environments, C. gattii has increased its endemic area over recent years, largely due to climatic factors that favor contagion in warmer climates. It is important to point out that not only C. gattii, but the Cryptococcus species complex produces a polysaccharidic capsule with immunomodulatory properties, enabling the pathogenic species of Cryptococccus to subvert the host immune response during the establishment of cryptococcosis, facilitating its dissemination in the infected organism. C. gattii causes a more severe and difficult-to-treat infection, with few antifungals eliciting an effective response during chronic treatment. Much of the immunopathology of this cryptococcosis is still poorly understood, with most studies focusing on cryptococcosis caused by the species C. neoformans. C. gattii became more important in the epidemiological scenario with the outbreaks in the Pacific Northwest of the United States, which resulted in phylogenetic studies of the virulent variant responsible for the severe infection in the region. Since then, the study of cryptococcosis caused by C. gattii has helped researchers understand the immunopathological aspects of different variants of this pathogen.
Collapse
|
2
|
Cai Y, Zhang B, Liang L, Wang S, Zhang L, Wang L, Cui HL, Zhou Y, Wang D. A solid-state nanopore-based single-molecule approach for label-free characterization of plant polysaccharides. PLANT COMMUNICATIONS 2021; 2:100106. [PMID: 33898974 PMCID: PMC8060702 DOI: 10.1016/j.xplc.2020.100106] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 05/07/2023]
Abstract
Polysaccharides are important biomacromolecules existing in all plants, most of which are integrated into a fibrillar structure called the cell wall. In the absence of an effective methodology for polysaccharide analysis that arises from compositional heterogeneity and structural flexibility, our knowledge of cell wall architecture and function is greatly constrained. Here, we develop a single-molecule approach for identifying plant polysaccharides with acetylated modification levels. We designed a solid-state nanopore sensor supported by a free-standing SiN x membrane in fluidic cells. This device was able to detect cell wall polysaccharide xylans at concentrations as low as 5 ng/μL and discriminate xylans with hyperacetylated and unacetylated modifications. We further demonstrated the capability of this method in distinguishing arabinoxylan and glucuronoxylan in monocot and dicot plants. Combining the data for categorizing polysaccharide mixtures, our study establishes a single-molecule platform for polysaccharide analysis, opening a new avenue for understanding cell wall structures, and expanding polysaccharide applications.
Collapse
Affiliation(s)
- Yao Cai
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin 130016, China
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Liyuan Liang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Sen Wang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Wang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Liang Cui
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun, Jilin 130016, China
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Deqiang Wang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Stratilová B, Klaudiny J, Řehulka P, Stratilová E, Mészárosová C, Garajová S, Pavlatovská B, Řehulková H, Kozmon S, Šesták S, Firáková Z, Vadkertiová R. Characterization of a long-chain α-galactosidase from Papiliotrema flavescens. World J Microbiol Biotechnol 2018; 34:19. [PMID: 29302817 DOI: 10.1007/s11274-017-2403-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/22/2017] [Indexed: 11/30/2022]
Abstract
α-Galactosidases are assigned to the class of hydrolases and the subclass of glycoside hydrolases (GHs). They belong to six GH families and include the only characterized α-galactosidases from yeasts (GH 27, Saccharomyces cerevisiae). The present study focuses on an investigation of the lactose-inducible α-galactosidase produced by Papiliotrema flavescens. The enzyme was present on the surface of cells and in the cytosol. Its temperature optimum was about 60 °C and the pH optimum was 4.8; the pH stability ranged from 3.2 to 6.6. This α-galactosidase also exhibited transglycosylation activity. The cytosol α-galactosidase with a molecular weight about 110 kDa, was purified using a combination of liquid chromatography techniques. Three intramolecular peptides were determined by the partial structural analysis of the sequences of the protein isolated, using MALDI-TOF/TOF mass spectrometry. The data obtained recognized the first yeast α-galactosidase, which belongs to the GH 36 family. The bioinformatics analysis and homology modeling of a 210 amino acids long C-terminal sequence (derived from cDNA) confirmed the correctness of these findings. The study was also supplemented by the screening of capsular cryptococcal yeasts, which produce the surface lactose-inducible α- and β-galactosidases. The production of the lactose-inducible α-galactosidases was not found to be a general feature within the yeast strains examined and, therefore, the existing hypothesis on the general function of this enzyme in cryptococcal capsule rearrangement cannot be confirmed.
Collapse
Affiliation(s)
- Barbora Stratilová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.,Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Jaroslav Klaudiny
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Pavel Řehulka
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 50001, Hradec Králové, Czech Republic
| | - Eva Stratilová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Csilla Mészárosová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Soňa Garajová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Barbora Pavlatovská
- Institute of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Helena Řehulková
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 50001, Hradec Králové, Czech Republic
| | - Stanislav Kozmon
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Sergej Šesták
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Zuzana Firáková
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Renáta Vadkertiová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| |
Collapse
|
4
|
Geddes JMH, Croll D, Caza M, Stoynov N, Foster LJ, Kronstad JW. Secretome profiling of Cryptococcus neoformans reveals regulation of a subset of virulence-associated proteins and potential biomarkers by protein kinase A. BMC Microbiol 2015; 15:206. [PMID: 26453029 PMCID: PMC4600298 DOI: 10.1186/s12866-015-0532-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/25/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The pathogenic yeast Cryptococcus neoformans causes life-threatening meningoencephalitis in individuals suffering from HIV/AIDS. The cyclic-AMP/protein kinase A (PKA) signal transduction pathway regulates the production of extracellular virulence factors in C. neoformans, but the influence of the pathway on the secretome has not been investigated. In this study, we performed quantitative proteomics using galactose-inducible and glucose-repressible expression of the PKA1 gene encoding the catalytic subunit of PKA to identify regulated proteins in the secretome. METHODS The proteins in the supernatants of cultures of C. neoformans were precipitated and identified using liquid chromatography-coupled tandem mass spectrometry. We also employed multiple reaction monitoring in a targeted approach to identify fungal proteins in samples from macrophages after phagocytosis of C. neoformans cells, as well as from the blood and bronchoalveolar fluid of infected mice. RESULTS We identified 61 secreted proteins and found that changes in PKA1 expression influenced the extracellular abundance of five proteins, including the Cig1 and Aph1 proteins with known roles in virulence. We also observed a change in the secretome profile upon induction of Pka1 from proteins primarily involved in catabolic and metabolic processes to an expanded set that included proteins for translational regulation and the response to stress. We further characterized the secretome data using enrichment analysis and by predicting conventional versus non-conventional secretion. Targeted proteomics of the Pka1-regulated proteins allowed us to identify the secreted proteins in lysates of phagocytic cells containing C. neoformans, and in samples from infected mice. This analysis also revealed that modulation of PKA1 expression influences the intracellular survival of cryptococcal cells upon phagocytosis. CONCLUSIONS Overall, we found that the cAMP/PKA pathway regulates specific components of the secretome including proteins that affect the virulence of C. neoformans. The detection of secreted cryptococcal proteins from infected phagocytic cells and tissue samples suggests their potential utility as biomarkers of infection. The proteomics data are available via ProteomeXchange with identifiers PXD002731 and PASS00736.
Collapse
Affiliation(s)
- Jennifer M H Geddes
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Daniel Croll
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Mélissa Caza
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Nikolay Stoynov
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Leonard J Foster
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
5
|
Djordjevic JT. Role of phospholipases in fungal fitness, pathogenicity, and drug development - lessons from cryptococcus neoformans. Front Microbiol 2010; 1:125. [PMID: 21687772 PMCID: PMC3109512 DOI: 10.3389/fmicb.2010.00125] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 10/25/2010] [Indexed: 11/13/2022] Open
Abstract
Many pathogenic microbes, including many fungi, produce phospholipases which facilitate survival of the pathogen in vivo, invasion and dissemination throughout the host, expression of virulence traits and evasion of host immune defense mechanisms. These phospholipases are either secreted or produced intracellularly and act by physically disrupting host membranes, and/or by affecting fungal cell signaling and production of immunomodulatory effectors. Many of the secreted phospholipases acquire a glycosylphosphatidylinositol sorting motif to facilitate membrane and/or cell wall association and secretion. This review focuses primarily on the role of two members of the phospholipase enzyme family, phospholipase B (Plb) and phosphatidylinositol (PI)-specific phospholipase C (PI-C/Plc), in fungal pathogenesis and in particular, what has been learnt about their function from studies performed in the model pathogenic yeast, Cryptococcus neoformans. These studies have revealed how Plb has adapted to become an important part of the virulence repertoire of pathogenic fungi and how its secretion is regulated. They have also provided valuable insight into how the intracellular enzyme, Plc1, contributes to fungal fitness and pathogenicity – via a putative role in signal transduction pathways that regulate the production of stress-protecting pigments, polysaccharide capsule, cell wall integrity, and adaptation to growth at host temperature. Finally, this review will address the role fungal phospholipases have played in the development of a new class of antifungal drugs, which mimic their phospholipid substrates.
Collapse
Affiliation(s)
- Julianne Teresa Djordjevic
- Fungal Pathogenesis Laboratory, Centre for Infectious Diseases and Microbiology, Sydney Medical School-Western, Westmead Millennium Institute, University of Sydney at Westmead Hospital Westmead, NSW, Australia
| |
Collapse
|
6
|
Siafakas AR, Sorrell TC, Wright LC, Wilson C, Larsen M, Boadle R, Williamson PR, Djordjevic JT. Cell wall-linked cryptococcal phospholipase B1 is a source of secreted enzyme and a determinant of cell wall integrity. J Biol Chem 2007; 282:37508-14. [PMID: 17947228 DOI: 10.1074/jbc.m707913200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase B (Plb1) is secreted by pathogenic fungi and is a proven virulence determinant in Cryptococcus neoformans. Cell-associated Plb1 is presumptively involved in fungal membrane biogenesis and remodelling. We have also identified it in cryptococcal cell walls. Motif scanning programs predict that Plb1 is attached to cryptococcal membranes via a glycosylphosphatidylinositol (GPI) anchor, which could regulate Plb1 export and secretion. A functional GPI anchor was identified in cell-associated Plb1 by (G)PI-specific phospholipase C (PLC)-induced release of Plb1 from strain H99 membrane rafts and inhibition of GPI anchor synthesis by YW3548, which prevented Plb1 secretion and transport to membranes and cell walls. Plb1 containing beta-1,6-linked glucan was released from H99 (wild-type strain) cell walls by beta-1,3 glucanase, consistent with covalent attachment of Plb1 via beta-1,6-linked glucans to beta-1,3-linked glucan in the central scaffold of the wall. Naturally secreted Plb1 also contained beta-1,6-linked glucan, confirming that it originated from the cell wall. Plb1 maintains cell wall integrity because a H99 deletion mutant, DeltaPLB1, exhibited a morphological defect and was more susceptible than H99 to cell wall disruption by SDS and Congo red. Growth of DeltaPLB1 was unaffected by caffeine, excluding an effect of Plb1 on cell wall biogenesis-related signaling pathways. Environmental (heat) stress caused Plb1 accumulation in cell walls, with loss from membranes and reduced secretion, further supporting the importance of Plb1 in cell wall integrity. This is the first demonstration that Plb1 contributes to fungal survival by maintaining cell wall integrity and that the cell wall is a source of secreted enzyme.
Collapse
Affiliation(s)
- A Rosemary Siafakas
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney at Westmead Hospital, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|